咸水层CO2地质封存研究进展及前景展望

马馨蕊, 梁杰, 李清, 袁勇, 陈建文, 骆迪, 赵化淋, 宋鹏. 咸水层CO2地质封存研究进展及前景展望[J]. 海洋地质前沿, 2024, 40(10): 1-18. doi: 10.16028/j.1009-2722.2023.266
引用本文: 马馨蕊, 梁杰, 李清, 袁勇, 陈建文, 骆迪, 赵化淋, 宋鹏. 咸水层CO2地质封存研究进展及前景展望[J]. 海洋地质前沿, 2024, 40(10): 1-18. doi: 10.16028/j.1009-2722.2023.266
MA Xinrui, LIANG Jie, LI Qing, YUAN Yong, CHEN Jianwen, LUO Di, ZHAO Hualin, SONG Peng. Progress and prospects of CO2 geological storage in saline aquifer[J]. Marine Geology Frontiers, 2024, 40(10): 1-18. doi: 10.16028/j.1009-2722.2023.266
Citation: MA Xinrui, LIANG Jie, LI Qing, YUAN Yong, CHEN Jianwen, LUO Di, ZHAO Hualin, SONG Peng. Progress and prospects of CO2 geological storage in saline aquifer[J]. Marine Geology Frontiers, 2024, 40(10): 1-18. doi: 10.16028/j.1009-2722.2023.266

咸水层CO2地质封存研究进展及前景展望

  • 基金项目: 国家自然科学基金“南黄海崂山隆起二叠系储层油气成藏破坏与流体演化过程还原研究”(42076220),“南黄海CSDP-2井二叠系砂岩储层致密化过程及其对油气充注事件的响应”(42206234);中国地质调查局项目“渤海等海域新生界油气地质条件与碳封存选区”(DD20230401);山东省自然科学基金“南黄海盆地崂山隆起石炭系油气保存条件的主控因素分析”(ZR2020MD071),“南黄海盆地崂山隆起上二叠统特低渗砂岩致密层储层表征研究”(ZR2020QD038)
详细信息
    作者简介: 马馨蕊(2000—),女,在读硕士,主要从事CO2地质封存与利用方面的研究工作. E-mail:katherine00k@foxmail.com
    通讯作者: 梁杰(1979—),男,博士,正高级工程师,主要从事海域油气资源调查方面的研究工作. E-mail:cgsljie@mail.cgs.gov.cn
  • 中图分类号: P744.4

Progress and prospects of CO2 geological storage in saline aquifer

More Information
  • 针对全球变暖问题,众多国家在巴黎气候变化大会上签署的协定为后续碳排放和控制气温上升提供了新思路。碳捕集、利用与封存(Carbon Capture, Utilization and Storage, CCUS)是处理过度排放CO2的方法之一。作为CO2封存方法之一,咸水层封存具有储层分布广、与碳排放源匹配性好、封存潜力大、环境影响小的特点。本文从咸水层封存中的构造、毛细管、溶解和矿化封存这4种主要机理出发,从盖层地质条件、储层物性参数、CO2纯度、封存操作4种主控因素入手,结合全球应用咸水层进行CO2封存的工程项目案例,通过分析和对比全球咸水层封存项目实施的地质构造背景、封存过程、封存潜力以及环境监测方法等,总结适宜CO2封存的地点和合适的监测机制,以期为中国咸水层CO2地质封存工作提供借鉴。

  • 加载中
  • 图 1  不同温压条件下CO2相图

    Figure 1. 

    图 2  地质封存方式

    Figure 2. 

    图 3  CO2咸水层地质封存不同阶段示意图

    Figure 3. 

    图 4  CO2进入咸水层后的封存机制

    Figure 4. 

    图 5  全球主要咸水层碳封存项目示意图

    Figure 5. 

    图 6  Sleipner平台

    Figure 6. 

    表 1  全球主要咸水层碳封存项目统计

    Table 1.  Statistics of projects on major global carbon sequestration in saline aquifer

    序号 名称 注入
    时间
    经营
    公司
    所在
    地点
    目的 沉积
    环境
    构造
    特征
    注入
    位置
    储层孔
    隙度/%
    储层渗透
    率/μm2
    盖层渗透
    率/μm2
    盖层厚
    度/m
    储层
    特征
    埋深/m 运输
    类型
    储存量
    /(t/a)
    监测
    机制
    所在洲 运营
    情况
    性质 注入
    方式
    参考
    文献
    1 Sleipner 1996年 挪威能源公司Equinor 挪威北海中部 为天然气和油田寻找解决方案 海相浊积岩 无断层、夹层发育,中、大型背斜构造 深盐
    含水层Utsira组
    37 >1 0.0004 500 中新世晚期—上新世晚期
    砂岩
    800 管道和船舶 100万 重力法、地震法、岩石物理建模、电磁测量等 欧洲 运行中 世界首例商业规模的深部咸水层封存工程 海上注入 文献
    [2348]
    2 In Salah 2004年 Sonatra-ch、BP和Stato-ilHydro 阿尔及利亚中部 从生产的天然气中去除CO2 潮汐三角洲 平缓背斜,裂缝相对发育 Tournai-sian 砂岩的咸水层地层单元 17 0.01~
    0.1
    0.0001 900 潮汐三角洲沉积,主要由石英组成 1880 管道和船舶 120万 4D地震、岩芯分析、干涉测量等 非洲 运行中 世界首个枯竭气田工业规模储存项目 陆上注入 文献
    [25-26]
    3 Snøhvit 2008年 挪威国家石油公司 巴伦支海西部的哈默费斯特盆地 开发巴伦支海3个气田的资源 三角洲平原分流河道 细长的EW走向断块系统 Tubaen组咸水层 10~
    15
    185~
    883
    0.0001 60~
    100
    石英和长石发育,富含生物碎屑和海绿石砂岩 2600 管道 70万 三维地震数据用于监测断层 欧洲 运行中 挪威大陆架首个没有固定或浮动单元的重大开发项目 海上注入 文献
    [2448]
    4 神华 2011年 神华
    集团
    鄂尔多斯盆地 为煤炭清洁转化和碳减排做出贡献 三角洲、滨浅海 单斜构造,局部发育小幅度隆起,断层不发育 1 690~
    2 450 m的多个
    含水层
    5~
    12.9
    0.0001
    0.00658
    0.0001 700 陆相沉积地层,发育多套可注入砂岩及碳酸盐岩咸水层 16002500 管道 10万 地震监测,井下、地下水监测 亚洲 监测中 中国首个以封存为目的的全流程CO2咸水层封存示范CCS项目 陆上注入 文献
    [2748]
    5 Otway盆地示范工程 2007—2020年(第2阶段) 澳大利亚温室气体技术合作中心 澳大利亚南部 证明CCS是一种环境安全的方式 海相和河口三角洲相 水平延伸,没有明显的构造圈闭特征 上白垩统Paaratte咸水含水层 25~
    30
    / 粉细砂、粗砂和钙质泥岩地层相互交错 11281528 管道
    15050 t
    VSP地震、压力层析成像 澳洲 开发中 澳大利亚首个CO2地质封存研究项目 陆上注入 文献
    [28-29]
    6 Tomakomai 2016年 JCCS
    公司
    日本北海道 证明捕获、注入和储存在盐水层中完整系统的技术可行性 / 具有背斜构造 Moebetsu 地层的砂岩层Takinoue火山岩层 5~40 0.009~
    0.025
    0.01~7 200 中新世含水层,由火山岩和火山碎屑岩组成 24003000 管道 10万 综合海上和陆上监测设施 亚洲 监测中 日本首个全链CCS项目 陆上注入 文献
    [49]
    7 Gorgon 2019年 雪佛龙澳大利亚子公司 西澳大利亚海岸 减轻澳大利亚的碳减排压力 海相沉积,深水斜坡环境 背斜构造 Dupuy深层储层单元 22 30~
    100
    / 侏罗纪晚期沉积在海底斜坡上的互层砂岩和粉砂岩 20002500 船舶 超过
    1亿t
    4D地震、评估井 澳洲 运行中 世界上最大的CO2地质封存项目 海上注入 文献
    [2530]
    8 Quest 2015年 壳牌 加拿大阿尔伯塔省 显著地降低碳排放 潮汐、河流、海相沉积 砂岩型圈闭 基底寒武系砂岩 8~24 1~
    1000
    / 250 加拿大西部沉积盆地中部、底部的深盐开放含水层,又称BCS 2000 管道 120万 延时地震、同位素追踪 北美洲 监测中 世界首个与油砂沥青升级器相关的CCS项目 陆上注入 文献
    [25
    31-32]
    9 恩平
    15-1
    2021年 中海油 珠江口盆地 实现CCUS技术在石油行业的温室气体处理功能 / 油田浅部水层为自圈闭构造,圈闭面积大 800 m深处的穹顶式咸水层中 / 管道 30万 / 亚洲 运行中 中国首个海上CO2封存示范工程 海上注入 /
    10 Decatur 2011年 GSC、ADM公司、Trimeric 美国伊利诺伊州迪凯特 以商业规模评估和测试CCS技术 河流、边缘海相沉积 长石颗粒的溶解产生了良好的二次孔隙率 较低的西蒙山砂岩 20 185 <1 151 寒武系西蒙山砂岩 21292149 管道 共550万t 微地震监测 北美洲 监测中 世界首个生物能源碳捕集与封存项目 陆上注入 文献
    [33-34]
    11 Northern Lights 2024年 Equinor、Shell和Total 挪威
    北海
    捕获和储存约80万t的CO2 / 海床以下2 500 m
    处,Troll油田以南
    / 管道和船舶 1.5M 4D地震 欧洲 计划中 有史以来首个跨境、开源的CO2运输和储存基础设施
    网络
    海上注入 /
    12 CStore1 / deepC Store 西、北澳大利亚州和维多利亚州近海 接收和储存多行业来源的CO2 / 管道 2.1万~5万 / 澳洲 研究中 首个大型离岸多用户中心 海上注入 /
    下载: 导出CSV

    表 2  咸水层CO2封存选址和评价综合评价表

    Table 2.  Comprehensive evaluation for site selection and evaluation of CO2 storage in saline aquifer

    指标层 指标亚层 具体指标 排序标准 参考文献
    一般
    技术
    指标层
    储层宏观
    特征
    埋深/m 800~3 000 >3 500 <800 文献[135-137]
    厚度/m >80 30~80 <30
    沉积环境 陆相 冲积平原、三角洲
    平原、前缘
    冲积扇、三角洲前缘、
    滨浅湖
    湖底扇、粉泥质砂岩
    海相 封闭半封闭浅水碳酸盐 潮上带、潮下带、
    碳酸岩盐
    其他
    矿化度/(g/L) 10.0~50 3.0~10 <3、>50
    储层地热
    地质特征
    地表温度/℃ <−2 >10 《地热储层评价方法》(NB/T 10263—2019),文献[138]
    地温梯度/(℃/100 m) <2 2~4 >4
    储层物性参数 孔隙度/% 砂岩 >15 15~10 <10 《油气储层评价方法》
    (SY/T 6285—1997),文献[139]
    碳酸盐岩 >12 12~4 <4
    渗透率/
    10−3 μm2
    砂岩 >50 50~10 <10
    碳酸盐岩 >10 10~5 <5
    储层储存
    前景
    有效储存量/104 t >900 900~300 <300 文献[135]
    使用年限/a >30 30 <30
    安全性
    评价指标层
    盖层稳定性
    评价指标
    盖层岩性 蒸发岩类 泥质岩类 页岩和致密灰岩 文献[140-142]
    盖层单层厚度/m >20 10~20 <10
    盖层累计厚度/m >300 150~300 <150
    盖层分布连续性 连续,具区域性 基本连续 不连续,局限
    经济评价指标层 碳源距离/km <100 100~200 >200 文献[135]
    运输方式 管道 公路、铁路 轮船
    基础设施 完善 中等 不完善
    下载: 导出CSV
  • [1]

    向勇,侯力,杜猛,等. 中国CCUS-EOR技术研究进展及发展前景[J]. 油气地质与采收率,2023,30(2):1-17.

    XIANG Yong,HOU Li,DU Meng,et al. Research progress and development prospect of CCUS-EOR technologies in China[J]. Petroleum Geology and Recovery Efficiency,2023,30(2):1-17.

    [2]

    于恩毅,邸元,吴辉,等. CO2地质封存风险分析的多场耦合数值模拟技术综述[J]. 力学学报,2023,55(9):2075-2090. doi: 10.6052/0459-1879-23-127

    YU Enyi,DI Yuan,WU Hui,et al. Numerical simulation on risk analysis of CO2 geological storage under multi-field coupling:a review[J]. Chinese Journal of Theoretical and Applied Mechanics,2023,55(9):2075-2090. doi: 10.6052/0459-1879-23-127

    [3]

    AMINU M D,NABAVI S A,ROCHELLE C A,et al. A review of developments in carbon dioxide storage[J]. Applied Energy,2017,208:1389-1419. doi: 10.1016/j.apenergy.2017.09.015

    [4]

    黄晶. 碳捕集利用与封存(CCUS)技术发展的几点研判[J]. 中国人口·资源与环境,2023,33(1):100. doi: 10.12062/cpre.20221201

    HUANG Jing. Some observations on the development of carbon capture,utilization and storage (CCUS) technologies[J]. China Population Resources and Environment,2023,33(1):100. doi: 10.12062/cpre.20221201

    [5]

    刘国伟. 中国等57国将在2030年实现碳达峰 各国携手迈向碳中和[J]. 环境与生活,2021(1):8-23.

    LIU Guowei. China,57 other countries to reach peak carbon by 2030,countries join hands to move toward carbon neutrality[J]. Green Living,2021(1):8-23.

    [6]

    可行,陈建文,龚建明,等. 东海陆架盆地CO2地质封存适宜性评价[J]. 海洋地质前沿,2023,39(7):1-12.

    KE Xing,CHEN Jianwen,GONG Jianming,et al. Suitability evaluation of CO2 sequestration in the East China Sea Shelf Basin[J]. Marine Geology Frontiers,2023,39(7):1-12.

    [7]

    蔡立亚,郭剑锋,石川,等. “双碳”目标下中国能源供需演变路径规划模拟研究[J]. 气候变化研究进展,2023,19(5):616-633.

    CAI Liya,GUO Jianfeng,SHI Chuan,et al. Simulation research on the evolution pathway planning of energy supply and demand in China under the dual carbon targets[J]. Advances in Climate Change Research,2023,19(5):616-633.

    [8]

    赵晓春,吴子珺,孙群,等. 双碳目标下的中国碳排放政策评价[J]. 统计与决策,2023(2):167-172.

    ZHAO Xiaochun,WU Zijun,SUN Qun,et al. Evaluation of China's carbon emission policies under dual carbon targets[J]. Statistics and Decision,2023(2):167-172.

    [9]

    TURKENBURG W C. Sustainable development, climate chan-ge, and carbon dioxide removal (CDR)[J]. Energy Conversion and Management,1997,38:3-12. doi: 10.1016/S0196-8904(96)00237-3

    [10]

    LIRO C R,ADAMS E E,HERZOG H J. Modeling the release of CO2 in the deep ocean[J]. Energy Conversion and Management,1992,33(5):667-674.

    [11]

    GUNTER W D,WONG S,CHEEL D B,et al. Large CO2 sinks:their role in the mitigation of greenhouse gases from an international,national (Canadian) and provincial (Alberta) perspective[J]. Applied Energy,1998,61(4):209-227. doi: 10.1016/S0306-2619(98)00042-7

    [12]

    YAN J Y,ZHANG Z E. Carbon capture,utilization and storage (CCUS)[J]. Applied Energy,2019,25:1289-1299.

    [13]

    ZHANG X,LI Y,MA Q,et al. Development of carbon capture,utilization and storage technology in China[J]. Chinese Journal of Engineering Science,2021,23:70-80. doi: 10.15302/J-SSCAE-2021.06.004

    [14]

    QIN J Z,ZHONG Q H,TANG Y,et al. CO2 storage potential assessment of offshore saline aquifers in China[J]. Fuel,2023,341:127681. doi: 10.1016/j.fuel.2023.127681

    [15]

    ALI M,JHA N K,PAL N,et al. Recent advances in carbon dioxide geological storage,experimental procedures,influencing parameters,and future outlook[J]. Earth-Science Reviews,2022,225:103895. doi: 10.1016/j.earscirev.2021.103895

    [16]

    BENSON S M,COLE D R. CO2 sequestration in deep sedimentary formations[J]. Elements,2008,4(5):325-331. doi: 10.2113/gselements.4.5.325

    [17]

    WANG J Q,YUAN Y,CHEN J W,et al. Geological conditions and suitability evaluation for CO2 geological storage in deep saline aquifers of the Beibu Gulf Basin (South China)[J]. Energies,2023,16(5):2360. doi: 10.3390/en16052360

    [18]

    LI Y,WANG R,ZHAO Q N,et al. A CO2 storage potential evaluation method for saline aquifers in a petroliferous basin[J]. Petroleum Exploration and Development,2023,50(2):484-491. doi: 10.1016/S1876-3804(23)60403-3

    [19]

    JAFARI M,CAO S C,JUNG J. Geological CO2 sequestration in saline aquifers:implication on potential solutions of China’s power sector[J]. Resources,Conservation and Recycling,2017,121:137-155.

    [20]

    林桂艳. 水文地质视角下的矿山地下水分类分析[J]. 科技风,2009(13):138. doi: 10.3969/j.issn.1671-7341.2009.13.119

    LIN Guiyan. Analysis of mine groundwater classification from a hydrogeological perspective[J]. Technology Trend,2009(13):138. doi: 10.3969/j.issn.1671-7341.2009.13.119

    [21]

    BENSON S,COOK P,ANDERSON J,et al. Chapter 5-Underground Geological Storage [M]//METZ B,DAVIDSON O,de CONINCK H,et al. Carbon Dioxide Capture and Storage. New York:Cambridge university press,2005:195-265.

    [22]

    CUI G D,HU Z,NING F,et al. A review of salt precipitation during CO2 injection into saline aquifers and its potential impact on carbon sequestration projects in China[J]. Fuel,2023,334:126615.

    [23]

    FURRE A K,EIKEN O,ALNES H,et al. 20 years of monitoring CO2-injection at Sleipner[J]. Energy Procedia,2017,114:3916-3926. doi: 10.1016/j.egypro.2017.03.1523

    [24]

    HANSEN O,GILDING D,NAZARIAN B,et al. Snøhvit:the history of injecting and storing 1 Mt CO2 in the fluvial Tubåen Fm[J]. Energy Procedia,2013,37:3565-3573. doi: 10.1016/j.egypro.2013.06.249

    [25]

    王紫剑,唐玄. 中国年封存量百万吨级CO2地质封存选址策略[J]. 现代地质,2022,36(5):1414-1431.

    WANG Zijian,TANG Xuan. Site selection strategy for an annual million-ton scale CO2 geological storage in China[J]. Geoscience,2022,36(5):1414-1431.

    [26]

    RINGROSE P S,MATHIESON A S,WRIGHT I W,et al. The In Salah CO2 storage project:lessons learned and knowledge transfer[J]. Energy Procedia,2013,37:6226-6236. doi: 10.1016/j.egypro.2013.06.551

    [27]

    YU Y,LI Y L,YANG G D ,et al. Simulation and analysis of long-term CO2 trapping for the Shenhua CCS demonstration project in the Ordos Basin [J]. Geofluids,2017, 2017:1-18. DOI:10.1155/2017/2595701.

    [28]

    张二勇. 澳大利亚Otway盆地二氧化碳地质封存示范工程介绍[J]. 水文地质工程地质,2012,39(2):131-138.

    ZHANG Eryong. Overview on the Otway Basin CO2 geosequestration demonstrate project in Australia[J]. Hydrogeology and Engineering Geology,2012,39(2):131-138.

    [29]

    COOK P J. 11-The CO2 CRC Otway Project in Australia [M]// GLUYAS J,MATHIAS S. Geological Storage of Carbon Dioxide (CO2). Cambridge:Woodhead Publishing,2013:251-277.

    [30]

    HERZOG H. Financing CCS Demonstration Projects:lessons learned from two decades of experience[J]. Energy Procedia,2017,114:5691-5700. doi: 10.1016/j.egypro.2017.03.1708

    [31]

    HARVEY S,HOPKINS J,KUEHL H,et al. Quest CCS facility:time-lapse seismic campaigns[J]. International Journal of Greenhouse Gas Control,2022,117:103665. doi: 10.1016/j.ijggc.2022.103665

    [32]

    ROCK L,O’BRIEN S,TESSAROLO S,et al. The Quest CCS Project:1st year review post start of injection[J]. Energy Procedia,2017,114:5320-5328. doi: 10.1016/j.egypro.2017.03.1654

    [33]

    GOLLAKOTA S,MCDONALD S. Commercial-scale CCS Project in Decatur,Illinois:construction status and operational plans for demonstration[J]. Energy Procedia,2014,63:5986-5993. doi: 10.1016/j.egypro.2014.11.633

    [34]

    SENEL O,CHUGUNOV N. CO2 injection in a saline formation:pre-injection reservoir modeling and uncertainty analysis for Illinois Basin:Decatur Project[J]. Energy Procedia,2013,37:4598-4611. doi: 10.1016/j.egypro.2013.06.368

    [35]

    SHUKLA R,RANJITH P,HAQUE A,et al. A review of studies on CO2 sequestration and caprock integrity[J]. Fuel,2010,89(10):2651-2664. doi: 10.1016/j.fuel.2010.05.012

    [36]

    CABEZA L F,DE GRACIA Á,FERNANDEZ A I,et al. Supercritical CO2 as heat transfer fluid:a review[J]. Applied Thermal Engineering,2017,125:799-810. doi: 10.1016/j.applthermaleng.2017.07.049

    [37]

    METZ B,DAVIDSON O,CONINCK H D,et al. IPCC special report on carbon dioxide capture and storage [M]. New York:Cambridge University Press,2005.

    [38]

    OLDENBURG C M,BENSON S M. CO2 injection for enhanced gas production and carbon sequestration[C]//Proceedings of the SPE International Petroleum Conference and Exhibition in Mexico,2002.

    [39]

    JI X Y,ZHU C. Chapter 10-CO2 Storage in Deep Saline Aquifers [M]//MORREALE B,SHI B. Novel Materials for Carbon Dioxide Mitigation Technology. Amsterdam:Elsevier,2015:299-332.

    [40]

    陈建文,孙晶,杨长清,等. 东海陆架盆地新生界咸水层二氧化碳封存地质条件及封存前景[J]. 海洋地质前沿,2023,39(10):14-21.

    CHEN Jianwen,SUN Jing,YANG Changqing,et al. Geological conditions and prospects of carbon dioxide storage in the Cenozoic saline water layers of the East China Sea Shelf Basin[J]. Marine Geology Frontiers,2023,39(10):14-21.

    [41]

    可行,陈建文,龚建明,等. 珠江口盆地二氧化碳地质封存条件及源汇匹配性分析[J]. 海洋地质与第四纪地质,2023,43(2):55-65.

    KE Xing,CHEN Jianwen,GONG Jianming,et al. Assessment on geological condition for carbon dioxide sequestration and source-sink matching in the Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology,2023,43(2):55-65.

    [42]

    叶斌,叶为民. 地下咸水层封存CO2的研究现状及展望[J]. 科技资讯,2012(36):66-69.

    YE Bin,YE Weimin. Research status and prospects of CO2 sequestration in underground saline aquifers[J]. Science and Technology Information,2012(36):66-69.

    [43]

    张二勇,李旭峰,何锦,等. 地下咸水层封存CO2的关键技术研究[J]. 地下水,2009,31(3):15-19.

    ZHANG Eryong,LI Xufeng,HE Jin,et al. Research on key technologies for CO2 sequestration in underground saline aquifers[J]. Ground Water,2009,31(3):15-19.

    [44]

    ALCALDE J,FLUDE S,WILKINSON M,et al. Estimating geological CO2 storage security to deliver on climate mitigation[J]. Nature Communications,2018,9(1):2201. doi: 10.1038/s41467-018-04423-1

    [45]

    DE SILVA P N K,RANJITH P G. A study of methodologies for CO2 storage capacity estimation of saline aquifers[J]. Fuel,2012,93:13-27. doi: 10.1016/j.fuel.2011.07.004

    [46]

    BACON D H. 6-Modeling Long-term CO2 Storage,Sequestration and Cycling [M]//JON GLUYAS J,MATHIAS S. Geological Storage of Carbon Dioxide (CO2):Geoscience, Technologies, Environmental Aspects and Legal Frameworks. Oxford:Woodhead Publishing,2013:110-146.

    [47]

    ZHOU J P,TIAN S F,YANG K,et al. Chapter Eleven-Enhanced Gas Recovery Technologies aimed at Exploiting Captured Carbon Dioxide [M]//WOOD D A,CAI J C. Sustainable Natural Gas Reservoir and Production Engineering. Boston:Gulf Professional Publishing. 2022:305-347.

    [48]

    周银邦,王锐,何应付,等. 咸水层CO2地质封存典型案例分析及对比[J]. 油气地质与采收率,2023,30(2):162-167

    ZHOU Yinbang,WANG Rui,HE Yingfu,et al. Analysis and comparison of typical cases of CO2 geological storage in saline aquifer[J]. Petroleum Geology and Recovery Efficiency,2023,30(2):162-167.

    [49]

    SAWADA Y,TANAKA J,TANASE D,et al. Overall Review of Tomakomai CCS Demonstration Project:target of 300 000 tonnes CO2 injection achieved [J]. SSRN Electronic Journal,2021. DOI:10.2139/ssrn.3812038.

    [50]

    KUMAR S,FOROOZESH J,EDLMANN K,et al. A comprehensive review of value-added CO2 sequestration in subsurface saline aquifers[J]. Journal of Natural Gas Science and Engineering,2020,81:103437. doi: 10.1016/j.jngse.2020.103437

    [51]

    JUNG S. Expansion of geological CO2 storage capacity in a closed aquifer by simultaneous brine production with CO2 injection[J]. Sustainability,2023,15(4):3499. doi: 10.3390/su15043499

    [52]

    BERGMO P E S,GRIMSTAD A A,LINDEBERG E. Simultaneous CO2 injection and water production to optimise aquifer storage capacity[J]. International Journal of Greenhouse Gas Control,2011,5(3):555-564. doi: 10.1016/j.ijggc.2010.09.002

    [53]

    郑艳,陈胜礼,张炜,等. 江汉盆地江陵凹陷二氧化碳地质封存数值模拟[J]. 地质科技情报,2009,28(4):75-82.

    ZHENG Yan,CHEN Shengli,ZHANG Wei,et al. Numerical simulation on geological storage of carbon dioxide in Jiangling Depression,Jianghan Basin,China[J]. Geological Science and Technology Information,2009,28(4):75-82.

    [54]

    ZAPATA Y,KRISTENSEN M R,HUERTA N,et al. CO2 geological storage: critical insights on plume dynamics and storage efficiency during long-term injection and post-injection periods[J]. Journal of Natural Gas Science and Engineering,2020,83: 103542.

    [55]

    LUO A,LI Y M,CHEN X,et al. Review of CO2 sequestration mechanism in saline aquifers[J]. Natural Gas Industry B,2022,9(4):383-393. doi: 10.1016/j.ngib.2022.07.002

    [56]

    KREVOR S,BLUNT M J,BENSON S M,et al. Capillary trapping for geologic carbon dioxide storage:from pore scale physics to field scale implications[J]. International Journal of Greenhouse Gas Control,2015,40:221-237. doi: 10.1016/j.ijggc.2015.04.006

    [57]

    IGLAUER S. CO2-water-rock wettability:variability,influencing factors,and implications for CO2 geostorage[J]. Accounts of Chemical Research,2017,50(5):1134-1142. doi: 10.1021/acs.accounts.6b00602

    [58]

    CHALBAUD C,ROBIN M,LOMBARD J M,et al. Interfacial tension measurements and wettability evaluation for geological CO2 storage[J]. Advances in Water Resources,2009,32(1):98-109. doi: 10.1016/j.advwatres.2008.10.012

    [59]

    CHALBAUD C,ROBIN M,LOMBARD J M,et al. Brine/CO2 interfacial properties and effects on CO2 storage in deep saline aquifers [J]. Oil & Gas Science and Technology,2010,65(4):541-555.

    [60]

    BURNSIDE N M,NAYLOR M. Review and implications of relative permeability of CO2/brine systems and residual trapping of CO2 [J]. International Journal of Greenhouse Gas Control,2014,23:1-11. doi: 10.1016/j.ijggc.2014.01.013

    [61]

    RIAZ A,HESSE M,TCHELEPI H A,et al. Onset of convection in a gravitationally unstable diffusive boundary layer in porous media[J]. Journal of Fluid Mechanics,2006,548:87-111. doi: 10.1017/S0022112005007494

    [62]

    SPITERI E J,JUANES R,BLUNT M J,et al. A new model of trapping and relative permeability hysteresis for all wettability characteristics[J]. SPE Journal,2008,13(3):277-288. doi: 10.2118/96448-PA

    [63]

    郭朝斌,张可霓,鲁维丰,等. 滞后现象对CO2深部咸水层地质封存的影响[J]. 水文地质工程地质,2014,41(2):91-97.

    GUO Chaobin,ZHANG Keni,LU Weifeng,et al. Influence of hysteretic phenomena on the process of CO2 injection into deep saline aquifers[J]. Hydrogeology & Engineering Geology,2014,41(2):91-97.

    [64]

    JUANES R,SPITERI E J,ORR JR. F M,et al. Impact of relative permeability hysteresis on geological CO2 storage[J]. Water Resources Research,2006,42(12):W12418.

    [65]

    PENTLAND C H,EL-MAGHRABY R,IGLAUER S,et al. Measurements of the capillary trapping of super-critical carbon dioxide in Berea sandstone [J]. Geophysical Research Letters,2011,38(6):L06401.

    [66]

    AL HAMELI F,BELHAJ H,AL DHUHOORI M. CO2 Sequestration overview in geological formations:trapping mechanisms matrix assessment[J]. Energies,2022,15(20):7805. doi: 10.3390/en15207805

    [67]

    ROCHELLE C A,CZERNICHOWSKI-LAURIOL I,MILODOWSKI A E,et al. The impact of chemical reactions on CO2 storage in geological formations:a brief review [J].Geological Society London Special Publications, 2004, 233(1):87-106.

    [68]

    AJAYI T,GOMES J S,BERA A. A review of CO2 storage in geological formations emphasizing modeling,monitoring and capacity estimation approaches[J]. Petroleum Science,2019,16(5):1028-1063. doi: 10.1007/s12182-019-0340-8

    [69]

    KLINS M A. Carbon Dioxide Flooding:Basic Mechanisms and Project Design[M]. Amsterdam:Springer Netherlands, 1984.

    [70]

    CHANG Y B,COATS B K,NOLEN J S. A compositional model for CO2 floods including CO2 solubility in water[J]. SPE Reservoir Evaluation & Engineering,1998,1(2):155-160.

    [71]

    CHEN Y W,CHEN S H,LI D D,et al. Density-driven convection for CO2 solubility trapping in saline aquifers:modeling and influencing factors[J]. Geotechnics,2023,3(1):70-103. doi: 10.3390/geotechnics3010006

    [72]

    RINGROSE P S,FURRE A K,GILFILLAN S M V,et al. Storage of carbon dioxide in saline aquifers:physicochemical processes,key constraints,and scale-up potential[J]. Annual Review of Chemical and Biomolecular Engineering,2021,12(1):471-494. doi: 10.1146/annurev-chembioeng-093020-091447

    [73]

    GILFILLAN S M V,LOLLAR B S,HOLLAND G,et al. Solubility trapping in formation water as dominant CO2 sink in natural gas fields[J]. Nature,2009,458(7238):614-618. doi: 10.1038/nature07852

    [74]

    PUNNAM P R,KRISHNAMURTHY B,SURASANI V K. Investigations of structural and residual trapping phenomena during CO2 sequestration in Deccan Volcanic Province of the Saurashtra Region, Gujarat[J].International Journal of Chemical Engineering,2021,7(8):1-16.

    [75]

    PUNNAM P R,KRISHNAMURTHY B,SURASANI V K. Investigation of solubility trapping mechanism during geologic CO2 sequestration in Deccan Volcanic Provinces,Saurashtra,Gujarat,India[J]. International Journal of Greenhouse Gas Control,2022,120:103769. doi: 10.1016/j.ijggc.2022.103769

    [76]

    CIVAN F. Chapter 16 - Inorganic Scaling and Geochemical Formation Damage [M]//CIVAN F. Reservoir Formation Damage. Boston:Gulf Professional Publishing. 2007: 407-467.

    [77]

    BLACK J R,CARROLL S A,HAESE R R. Rates of mineral dissolution under CO2 storage conditions[J]. Chemical Geology,2015,399:134-144. doi: 10.1016/j.chemgeo.2014.09.020

    [78]

    WILKINSON M,HASZELDINE R S,FALLICK A E,et al. CO2-mineral reaction in a natural analogue for CO2 storage:implications for modeling[J]. Journal of Sedimentary Research,2009,79(7):486-494. doi: 10.2110/jsr.2009.052

    [79]

    BACHU S,GUNTER W D,PERKINS E H. Aquifer disposal of CO2:hydrodynamic and mineral trapping[J]. Energy Conversion and Management,1994,35(4):269-279. doi: 10.1016/0196-8904(94)90060-4

    [80]

    SHIRAKI R,DUNN T L. Experimental study on water-rock interactions during CO2 flooding in the Tensleep Formation,Wyoming,USA[J]. Applied Geochemistry,2000,15(3):265-279. doi: 10.1016/S0883-2927(99)00048-7

    [81]

    MATTER J M,KELEMEN P B. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation[J]. Nature Geoscience,2009,2(12):837-841. doi: 10.1038/ngeo683

    [82]

    RAZA A,GLATZ G,GHOLAMI R,et al. Carbon mineralization and geological storage of CO2 in basalt:mechanisms and technical challenges[J]. Earth-Science Reviews,2022,229:104036. doi: 10.1016/j.earscirev.2022.104036

    [83]

    KHATIWADA M,ADAM L,MORRISON M,et al. A feasibility study of time-lapse seismic monitoring of CO2 sequestration in a layered basalt reservoir[J]. Journal of Applied Geophysics,2012,82:145-152. doi: 10.1016/j.jappgeo.2012.03.005

    [84]

    GISLASON S R,BROECKER W S,GUNNLAUGSSON E,et al. Rapid solubility and mineral storage of CO2 in basalt[J]. Energy Procedia,2014,63:4561-4574. doi: 10.1016/j.egypro.2014.11.489

    [85]

    ZHANG D X,SONG J. Mechanisms for geological carbon sequestration[J]. Procedia IUTAM,2014,10:319-327. doi: 10.1016/j.piutam.2014.01.027

    [86]

    MCNAB W W,CARROLL S A. Wellbore integrity at the Krechba Carbon Storage Site,in Salah,Algeria:2. reactive transport modeling of geochemical interactions near the cement-formation interface[J]. Energy Procedia,2011,4:5195-5202. doi: 10.1016/j.egypro.2011.02.497

    [87]

    KAMPMAN N,BICKLE M,WIGLEY M et al. Fluid flow and CO2-fluid-mineral interactions during CO2-storage in sedimentary basins[J]. Chemical Geology,2014,369:22-50. doi: 10.1016/j.chemgeo.2013.11.012

    [88]

    陈博文,王锐,李琦,等. CO2 地质封存盖层密闭性研究现状与进展[J],高校地质学报,2023,29(1):85-99

    CHEN Bowen,WANG Rui,LI Qi,et al. Status and advances of research on caprock sealing properties of CO2 geological storage[J]. Geological Journal of China Universities,2023,29(1):85-99.

    [89]

    崔振东,乔群,刘大安,等. CO2地质封存盖层岩石物性封闭能力评价[J],工程地质学报,2017,25(1):428-433.

    CUI Zhendong,QIAO Qun,LIU Da'an,et al. Evaluation on the physical sealing capacity of caprocks in CO2 sequestration sites[J]. Journal of Engineering Geology,2017,25(1):428-433.

    [90]

    马鑫,李义连,杨国栋,等. 盖层不确定性对CO2地质封存安全性的影响[J].安全与环境工程,2013,20(4):45-50.

    MA Xin,LI Yilian,YANG Guodong,et al. Impact of the uncertainties of caprocks on the security of CO2 geological storage[J]. Safety and Environmental Engineering,2013,20(4):45-50.

    [91]

    CHEN Z X,ZHOU F,RAHMAN S S. Effect of cap rock thickness and permeability on geological storage of CO2:laboratory test and numerical simulation[J]. Energy Exploration & Exploitation,2014,32(6):943-964.

    [92]

    王欢,王琪,张功成,等. 琼东南盆地梅山组泥岩盖层封闭性综合评价[J]. 地球科学与环境学报,2011,33(2):152-158

    WANG Huan,WANG Qi,ZHANG Gongcheng,et al. Comprehensive evaluation of the closure of the mudstone cover of the Meishan Formation in the Qiongdongnan Basin[J]. Journal of Earth Sciences and Environment,2011,33(2):152-158.

    [93]

    赵子娟,李义连,马鑫,等. 黏土矿物组合类型对盖层封闭性的影响[J]. 安全与环境工程,2014,21(6):84-91.

    ZHAO Zijuan,LI Yilian,MA Xin,et al. Influence of assemblage types of clay minerals on the sealing ability of caprock[J]. Safety and Environmental Engineering,2014,21(6):84-91.

    [94]

    POKROVSKY O,GOLUBEV S,CASTILLO A. Calcite,dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH,25 to 150 °C and 1 to 55 atm pCO2:new constraints on CO2 sequestration in sedimentary basins[J]. Chemical Geology,2009,265:20-32. doi: 10.1016/j.chemgeo.2009.01.013

    [95]

    CREDOZ A,BILDSTEIN O,JULLIEN M,et al. Experimental and modeling study of geochemical reactivity between clayey caprocks and CO2 in geological storage conditions[J]. Energy Procedia,2009,1(1):3445-3452. doi: 10.1016/j.egypro.2009.02.135

    [96]

    黄海平,邓宏文. 泥岩盖层的封闭性能及其影响因素[J].天然气地球科学,1995,6(2):20-26

    HUANG Haiping,DENG Hongwen. Closure properties of mudstone caps and their influencing factors[J]. Journal of Natural Gas Geoscience,1995,6(2):20-26.

    [97]

    HOU L,YU Z,LUO X,et al. Self-sealing of caprocks during CO2 geological sequestration[J]. Energy,2022,252:124064. doi: 10.1016/j.energy.2022.124064

    [98]

    VIALLE S,DRUHAN J L,MAHER K. Multi-phase flow simulation of CO2 leakage through a fractured caprock in response to mitigation strategies[J]. International Journal of Greenhouse Gas Control,2016,44:11-25. doi: 10.1016/j.ijggc.2015.10.007

    [99]

    ELKHOURY J E,DETWILER R L,AMELI P. Can a fractured caprock self-heal?[J]. Earth and Planetary Science Letters,2015,417:99-106. doi: 10.1016/j.jpgl.2015.02.010

    [100]

    喻英,李义连,杨国栋,等. 储层物性参数对CO2长期封存能力的影响研究[J]. 安全与环境工程,2017,24(5):75-83.

    YU Ying,LI Yilian,YANG Guodong,et al. A study of the effect of reservoir physical parameters on long-term CO2 storage capacity[J]. Safety and Environmental Engineering,2017,24(5):75-83.

    [101]

    ABRAHAM A R M,TASSINARI C C G. Carbon dioxide storage efficiency involving the complex reservoir units associated with Irati and Rio Bonito Formations,Paraná Basin,Brazil[J]. AAPG Bulletin,2023,107(3):357-386. doi: 10.1306/EG08232121005

    [102]

    ASPENES E,GRAUE A,RAMSDAL J. In situ wettability distribution and wetting stability in outcrop chalk aged in crude oil[J]. Journal of Petroleum Science and Engineering,2003,39:337-350. doi: 10.1016/S0920-4105(03)00073-1

    [103]

    AL-KHDHEEAWI E A,VIALLE S,BARIFCANI A,et al. Impact of reservoir wettability and heterogeneity on CO2-plume migration and trapping capacity[J]. International Journal of Greenhouse Gas Control,2017,58:142-158. doi: 10.1016/j.ijggc.2017.01.012

    [104]

    AL-KHDHEEAWI E A,VIALLE S,BARIFCANI A,et al. Effect of wettability heterogeneity and reservoir temperature on CO2 storage efficiency in deep saline aquifers[J]. International Journal of Greenhouse Gas Control,2018,68:216-229. doi: 10.1016/j.ijggc.2017.11.016

    [105]

    STERPENICH J,DUBESSY J,PIRONON J,et al. Role of impurities on CO2 injection:experimental and numerical simulations of thermodynamic properties of water-salt-gas mixtures (CO2 + co-injected gases) under geological storage conditions[J]. Energy Procedia,2013,37:3638-3645. doi: 10.1016/j.egypro.2013.06.257

    [106]

    WANG J,RYAN D,ANTHONY E J,et al. Effects of impurities on CO2 transport,injection and storage[J]. Energy Procedia,2011,4:3071-3078. doi: 10.1016/j.egypro.2011.02.219

    [107]

    WILKE F,VÁSQUEZ M,WIERSBERG T,et al. On the interaction of pure and impure supercritical CO2 with rock forming minerals in saline aquifers:an experimental geochemical approach[J]. Applied Geochemistry,2012,27:1615-1622. doi: 10.1016/j.apgeochem.2012.04.012

    [108]

    BRYANT S,LAKE L W. Chapter 18 - Effect of Impurities on Subsurface CO2 Storage Processes [M]//THOMAS D C. Effect of Impurities on Subsurface CO2 Storage Processes. Elsevier Science. 2005:983-996.

    [109]

    ELLIS B R,CRANDELL L E,PETERS C A. Limitations for brine acidification due to SO2 co-injection in geologic carbon sequestration[J]. International Journal of Greenhouse Gas Control,2010,4(3):575-582. doi: 10.1016/j.ijggc.2009.11.006

    [110]

    JU L,GUO Z. A multiscale study of the coupling effects of H2S impurity and dissolution reactions on convective mixing in CO2 geological storage[J]. Energy,2023,281:128261. doi: 10.1016/j.energy.2023.128261

    [111]

    JI X Y,ZHU C. Predicting possible effects of H2S impurity on CO2 transportation and geological storage [J]. Environmental science & technology,2013,47(1):55-62.

    [112]

    BACHU S,GUNTER W. Acid-gas injection in the Alberta basin,Canada:a CO2-storage experience[J]. Geological Society London Special Publications,2004,233:225-234. doi: 10.1144/GSL.SP.2004.233.01.15

    [113]

    JAFARI RAAD S M,HASSANZADEH H. Does impure CO2 impede or accelerate the onset of convective mixing in geological storage?[J]. International Journal of Greenhouse Gas Control,2016,54:250-257. doi: 10.1016/j.ijggc.2016.09.011

    [114]

    BUSCHECK T A,SUN Y,CHEN M,et al. Active CO2 reservoir management for carbon storage:analysis of operational strategies to relieve pressure buildup and improve injectivity[J]. International Journal of Greenhouse Gas Control,2012,6:230-245. doi: 10.1016/j.ijggc.2011.11.007

    [115]

    RUTQVIST J,BIRKHOLZER J,CAPPA F,et al. Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis[J]. Energy Conversion & Management,2007,48(6):1798-1807.

    [116]

    BACHU S. CO2 storage in geological media:role,means,status and barriers to deployment[J]. Progress in Energy and Combustion Science,2008,34(2):254-273. doi: 10.1016/j.pecs.2007.10.001

    [117]

    WANG Y,ZHANG K,WU N Y. Numerical investigation of the storage efficiency factor for CO2 geological sequestration in saline formations[J]. Energy Procedia,2013,37:5267-5274. doi: 10.1016/j.egypro.2013.06.443

    [118]

    LUBOŃ K. Influence of injection well location on CO2 geological storage efficiency[J]. Energies,2021,14(24):8604. doi: 10.3390/en14248604

    [119]

    ZHAO R R,CHENG J M. Salt precipitation and associated pressure buildup during CO2 storage in heterogeneous anisotropy aquifers[J]. Environmental Science and Pollution Research,2022,29(6):8650-8664. doi: 10.1007/s11356-021-16322-y

    [120]

    曹珂,吴林强,王建强,等. 我国海洋地质碳封存研究进展与展望[J]. 中国地质调查,2023,10(2):72-76.

    CAO Ke,WU Linqiang,WANG Jianqiang,et al. Progress and perspective of marine geological carbon storage in China[J]. Geological Survey of China,2023,10(2):72-76.

    [121]

    AUDIGANE P,GAUS I,CZERNICHOWSKI-LAURIOL I,et al. Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner site,North Sea [J]. American Journal of Science,2007,307:974-1008.

    [122]

    ZHANG K,LAU H C,CHEN Z. Extension of CO2 storage life in the Sleipner CCS project by reservoir pressure management [J]. Journal of Natural Gas Science and Engineering,2022,108:104814. doi: 10.1016/j.jngse.2022.104814

    [123]

    CHADWICK A,WILLIAMS G,DELEPINE N,et al. Quantitative analysis of time-lapse seismic monitoring data at the Sleipner CO2 storage operation[J]. The Leading Edge,2010,29(2):170-177. doi: 10.1190/1.3304820

    [124]

    FALCON-SUAREZ I,NORTH L,AMALOKWU K,et al. Integrated geophysical and hydromechanical assessment for CO2 storage:shallow low permeable reservoir sandstones[J]. Geophysical Prospecting,2016,64(4):828-847. doi: 10.1111/1365-2478.12396

    [125]

    SAWADA Y,TANAKA J,SUZUKI C,et al. Tomakomai CCS demonstration project of Japan,CO2 injection in progress[J]. Energy Procedia,2018,154:3-8. doi: 10.1016/j.egypro.2018.11.002

    [126]

    许晓艺,李琦,谭永胜,等. 日本苫小牧CO2海底地质封存监测技术分析及其启示[J]. 高校地质学报,2023,29(1):13-24

    XU Xiaoyi,LI Qi,TAN Yongsheng,et al. Analysis of monitoring technologies of offshore CO2 geological storage in Japan's Tomakomai and its enlightenment[J]. Geological Journal of China Universities,2023,29(1):13-24.

    [127]

    TANASE D,SAITO H,SASAKI T,et al. Progress of CO2 injection and monitoring of the Tomakomai CCS demonstration project [J]. Earth & Environmental Engineering eJournal,2019.

    [128]

    王建. 钻井取心工艺在神华CCS项目的应用[J]. 中国化工贸易,2013,5(5): 321-322.

    WANG Jian. Application of drilling and coring process in Shenhua CCS project[J]. China Chemical Trade,2013,5(5): 321-322.

    [129]

    王保登,赵兴雷,崔倩,等. 中国神华煤制油深部咸水层CO2地质封存示范项目监测技术分析[J]. 环境工程,2018,36(2):33-36.

    WANG Baodeng,ZHAO Xinglei,CUI Qian,et al. Monitoring technology analysis of Shenhua coal-to-oil deep saltwater formation CO2 geological sequestration demonstration project in China[J]. Environmental Engineering,2018,36(2):33-36.

    [130]

    金显杭,方佳伟,王永胜,等. 咸水层CO2地质封存泄漏监测的示踪剂优选[J].天然气化工:C1化学与化工,2020,45(5):72-76.

    JIN Xianhang,FANG Jiawei,WANG Yongsheng,et al. Screening gas tracers for leakage monitoring of CO2 geological storage in saline aquifer [J]. Natural Gas Chemical Industry,2020,45(5):72-76.

    [131]

    赵海英,陈沅忠,李彦鹏,等. CO2地质封存时移垂直地震监测技术[J].岩土力学,2018,39(8):3095-3102.

    ZHAO Haiying,CHEN Yuanzhong,LI Yanpeng,et al. CO2 geologic sequestration time-shifted vertical seismic monitoring technology[J]. Rock and Soil Mechanics,2018,39(8):3095-3102.

    [132]

    汤少兵,李宗要,谢承斌,等. 防CO2腐蚀水泥浆在神华CCS示范项目中的应用[J].钻井液与完井液,2011,28(B11):17-1983.

    TANG Shaobin,LI Zongyao,XIE Chengbin,et al. Application of CO2 corrosion resistance cement slurry in Shenhua CCS Demonstration Project[J]. Drilling Fluid & Completion Fluid,2011,28(B11):17-1983.

    [133]

    XU L B,WANG J L,TIAN D Q,et al. Innovation conceptual design on carbon neutrality deepwater drilling platform [C]//The 32nd International Ocean and Polar Engineering Conference, 2022.

    [134]

    张少鹏,刘晓磊,程光伟,等. 海底碳封存环境地质灾害风险及监测技术研究[J].中国工程科学,2023,25(3):122-130

    ZHANG Shaopeng,LIU Xiaolei,CHENG Guangwei,et al. Geoenvironmental hazard risks and monitoring technologies for marine carbon sequestration[J]. Engineering,2023,25(3):122-130.

    [135]

    张森琦,郭建强,李旭峰,等. 中国二氧化碳地质储存地质基础及场地地质评价 [M]. 北京:地质出版社,2011.

    ZHANG Senqi,GUO Jianqiang,LI Xufeng,et al. Geologic basis of carbon dioxide geologic storage and site geologic evaluation in China[M].Beijing:Geology Press,2011.

    [136]

    沈平平,廖新维,刘庆杰. 二氧化碳在油藏中埋存量计算方法[J].石油勘探与开发,2009,36(2):216-220.

    SHEN Pingping,LIAO Xinwei,LIU Qingjie,et al. Methodology for estimation of CO2 storage capacity in reservoirs[J]. Petroleum Exploration and Development,2009,36(2):216-220.

    [137]

    金毓荪,隋新光. 陆相油藏开发论 [M]. 北京:石油工业出版社,2006.

    JIN Yusun,SUI Xinguang. Theory of Onshore Reservoir Development[M]. Beijing:Petroleum Industry Press,2006.

    [138]

    李冬怀,袁旭光,韩军. 地热资源量评价计算方法评述[J]. 地球科学前沿,2018,8(3):546-554.

    LI Donghuai,YUAN Xuguang,HAN Jun. Summarization on calculation and assessment for geothermal resources[J]. Advances in Geosciences,2018,8(3):546-554.

    [139]

    胡文瑞. 二次开发挑战开采极限[J]. 中国石油石化,2009(1):42.

    HU Wenrui. Secondary development pushes the limits of mining[J]. China Petroleum,2009(1):42.

    [140]

    庞雄奇,方祖康. 地震层砂泥含量的地质意义及其应用中需要注意的问题[J]. 石油地球物理勘探,1993,28(1):84-90.

    PANG Xiongqi,FANG Zukang. Geologic significance of sand and mud content in seismic layers and the problems to be noted in its application[J]. Oil Geophysical Prospecting,1993,28(1):84-90.

    [141]

    吕延防,王清海. 盖层封闭天然气有效性研究方法及其应用[C]//油气成藏机理及油气资源评价国际研讨会论文集,1996.

    LYU Yanfang,WANG Qinghai. Methodology for the study of the effectiveness of capping confinement of natural gas and its application[C]//Proceedings of the International Symposium on Mechanisms of Hydrocarbon Formation and Evaluation of Hydrocarbon Resources,1996.

    [142]

    陈章明,吴元燕,吕延防. 油气藏保存与破坏研究 [M]. 北京:石油工业出版社,2003.

    CHEN Zhangming,WU Yuanyan,LYU Yanfang. Oil and Gas Reservoir Preservation and Destruction Studies[M]. Beijing:Petroleum Industry Press,2003.

  • 加载中

(6)

(2)

计量
  • 文章访问数:  454
  • PDF下载数:  244
  • 施引文献:  0
出版历程
收稿日期:  2023-11-27
刊出日期:  2024-10-28

目录