Sandwave characteristic, evolution and erosion protection of wind farm in the western South China Sea
-
摘要:
海底沙波的发育对海上风电场设计、安装和后期运维有诸多不利影响。结合南海某风电场区多次勘察结果,分析了场区内海底沙波沙脊的发育特征、运移规律及其控制机制。结果表明:研究区内沙波的发育存在空间差异,直线形沙波通常发育在沙脊顶部和尾部,新月形沙波和弯曲形沙波发育在沙脊槽内的平坦地形上,分叉形沙波为直线形沙波的前身。北部沙波整体向南迁移,南部沙波整体向北部移动,转换带为两侧沉积物汇集区,处于长期稳定状态。研究区沙波发育主要经历新月形沙波、弯曲形沙波—分叉形沙波—直线形沙波3个演化阶段;随着沙波的演化,沙波的规模逐渐增大,移动性逐渐减弱。针对风机桩基冲刷防护,可采用在桩基周围增加仿生水草垫或水工布等方式,增加海床稳定性,减小桩基周围的冲刷。
Abstract:The development of seabed sand waves has many adverse effects on the installation, construction, and subsequent operation and maintenance of offshore wind farms. Based on the survey results of a wind farm in the South China Sea, we analyzed the developmental characteristics, migration pattern, and control mechanism of seabed sand ridge in the field. Results show that there are spatial differences in the development of linear sand waves in the study area. Linear sand waves usually develop on the top and tail of the sand ridge; crescent sand waves and curved sand waves develop on the flat terrain in the sand ridge trough; and forked sand waves are the predecessor of linear sand waves. The sand waves in the north migrated southward as a whole due to falling tidal flow, while the sand waves in the southern part of the study area migrated northward as a whole due to rising tidal flow, and the transition zone was the area where sediments converged on both sides, reflecting a long-term stable state. The development of sand waves in the study area experienced three evolutionary stages, namely, crescent or curved sand waves, bifurcated sand waves, and linear sand waves. With the evolution of sand waves, the scale of sand waves gradually increased and the mobility gradually weakened. To protect wind turbine pile base from scouring, bionic water grass mats, rocks, or hydraulic fabrics can be applied around the pile foundation to increase the stability of the seabed and reduce the scour around the pile base.
-
Key words:
- offshore wind power /
- seabed sand waves /
- sand wave type /
- sand wave transport /
- scour protection
-
-
表 1 不同类型沙波形态参数
Table 1. Shape parameters of different types of sand waves
类型 发育位置 规格 形态特征 对称指数 新月形沙波 A区 东北部冲刷槽内 长度:72~211 m,中位数160 m
宽度:150~420 m,中位数255 m
长宽比:0.5~0.8
波高:1.8~5.7 m,中位数3.6 m陡坡倾角36.0°,
缓坡倾角0.5°~3.0°4~6 B区 东南部冲刷槽内 长度:105~215 m,中位数160 m
宽度:170~620 m,中位数365 m
长宽比:0.4~0.6
波高:2.2~6.5 m,中位数4.4 m脊线尖陡,陡坡倾角15°~25°,
缓坡倾角4°~14°3~5 C区 西北部冲刷槽内 长度:25~175 m,中位数50 m
宽度:44~420 m,中位数145 m
长宽比:0.1~0.8;
波高:0.8~3.5 m,中位数1.8 m脊部浑圆 2~3 直线形沙波 沙脊尾部 波长:94~166 m,中位数140 m
波高:3.2~12.4 m,中位数7.3 m脊线平直,
坡面光滑1~1.5,
局部到4弯曲形沙波 西部 波高:5.5~14.0 m,中位数8.6 m 脊线弯曲尖窄,
陡坡16°~26°,
缓坡4°~8°4~6 分叉形沙波 东部 波高:<2.5 m 坡面坡度4°~10° 1~1.5 表 2 不同研究方法对比
Table 2. Comparison of different research methods
研究方法 方法描述 代表方法 优缺点 经验数值计算法 根据实验、模型或野外调查结果总结出来的经验公式进行计算 日本筱原-椿东一郎公式
Rubin公式、Knaapen公式优点:公式简单、计算便捷
缺点:适用范围小,准确度低数学模型法 通过直接实时求解水动力和泥沙输运过程来模拟真实的
海底沙波形成和演变二维垂向模型(2DV)
准三维力学模型(Q3D)
高分辨率三维海洋环境数值模拟优点:成本低、效率高
缺点:有一定的适用范围野外测量法 通过野外测量获取的高精度数字地形模型用于数据分析 测量技术:多波束测量法;ADCP测量法
分析技术:剖面分析法;空间互相关技术法优点:准确度最高
缺点:数据少、效率低、成本高、
且受天气等自然因素限制卫星遥感法 利用卫星遥感影像获取
沙波区水深数据星载合成孔径雷达图像
遥感影像
太阳耀光影像优点:效率高、可进行大面积
区域调查;动态观测
缺点:探测精度有待提高表 3 不同场区桩基冲刷深度
Table 3. Scouring depth of pile foundation in different sites
表 4 桩基冲刷防护方法与对比
Table 4. Methods of erosion protection and comparison of different foundations
防冲刷措施 方法描述 优点 缺点 水下抛石 在桩基周围覆盖抛石层以达到防止海床沉积物被冲刷的目的,石块与石块之间形成互锁机制,石块靠落边效应可以及时掉落已有冲刷坑中进行填埋,实现动态稳定 防护效果较好,石块能够及时滚落并填补冲刷坑,造价低 石块坠落对结构物安全有一定影响 砂袋、砂被堆砌 将土工膜袋缝制的砂袋或砂被堆砌在桩基周围 造价低,作业方法简单成熟,应用范围广,可解决抛石防护难以准确定位和被水流冲走的问题 水下作业工作量大,容易产生二次冲刷 仿生水草垫 采用柔性的聚丙烯材料制作成仿水草的软垫,用以降低桩腿周围的水流速度 作为一种柔性保护措施,可避免刚性保护措施所引起的新的“二次”冲刷 水下作业量较大 水工布法 使用柔性冲刷防护装置布置在桩基周围,达到减弱冲刷的目的 通常与砂袋结合使用,施工简单,造价低 水工布依靠其上面的砂袋固定,且水工布不具备促淤的作用,在海流的长期冲刷下,水工布被破坏的几率很大 混凝土沉排垫 硬冲刷保护装置,在地基周围有4层,最底层是土工布,第2层是防渗石块层,第3层是防护石块层,第4层是水泥压块,以减轻冲刷 稳定性较高,不容易损坏或散失 水下作业量大,容易沉降,引起二次冲刷 -
[1] 陶建根,陈怡,黄博远. 海上风电发展现状与趋势分析[J]. 能源工程,2023,43(4):1-9.
TAO J G,CHEN Y,HUANG B Y. Offshore wind development present situation and the trend analysis[J]. Journal of Energy Engineering,2023,43(4):1-9.
[2] 冯文科,黎维峰,石要红. 南海北部海底沙波地貌动态研究[J]. 海洋学报,1994,16(6):92-99,142.
FENG W K,LI W F, SHI Y H. Dynamic study of sea-floor sand wave geomorphology in the northern South China Sea[J]. Acta Oceanologica Sinica,1994,16(6):92-99,142.
[3] 夏东兴,吴桑云,刘振夏,等. 海南东方岸外海底沙波活动性研究[J]. 黄渤海海洋,2001,19(1):17-24.
XIA D X,WU S Y,LIU Z X,et al. Study on submarine sand wave activity off the east coast of Hainan[J]. Huang-bohai Ocean,2001,19(1):17-24.
[4] FLEMMING B W. Zur klassifikation subaquatischer,strömungstransversaler transportkörper[J]. Bochumer geologische und geotechnische Arbeiten,1988,29(93/97):44-47.
[5] 曹立华,徐继尚,李广雪,等. 海南岛西部岸外沙波的高分辨率形态特征[J]. 海洋地质与第四纪地质,2006,26(4):15-22.
CAO L H,XU J S,LI G X,et al. High-resolution morphological characteristics of offshore sand waves in the west of Hainan Island[J]. Marine Geology & Quaternary Geology,2006,26(4):15-22.
[6] 王文介. 南海北部的潮波传播与海底沙脊和沙波发育[J]. 热带海洋,2000,19(1):1-7.
WANG W J. Tidal wave propagation and seabed sand ridge and sand wave development in the northern South China Sea[J]. Tropical Oceans,2000,19(1):1-7.
[7] 马小川. 海南岛西南海域海底沙波沙脊形成演化及其工程意义[D]. 青岛:中国科学院研究生院(海洋研究所),2013.
MA X C. Formation and evolution of seabed sandwave ridge in southwest Hainan Island and its engineering significance [D]. Qingdao:Graduate School of Oceanology,Chinese Academy of Sciences,2013.
[8] 周川,范奉鑫,栾振东,等. 南海北部陆架主要地貌特征及灾害地质因素[J]. 海洋地质前沿,2013,29(1):51-60.
ZHOU C,FAN F X,LUAN Z D,et al. Major geomorphic features and hazard geological factors of the northern shelf of the South China Sea[J]. Marine Geology Frontiers,2013,29(1):51-60.
[9] 李勇航,牟泽霖,倪玉根,等. 海南东方近岸海底活动沙波的地球物理特征及其迁移机制[J]. 海洋地质与第四纪地质,2021,41(4):27-35.
LI Y H,MOU Z L,NI Y G,et al. Geophysical characteristics and migration mechanism of active submarine sand waves off the coast of Dongfang, Hainan[J]. Marine Geology & Quaternary Geology,2021,41(4):27-35.
[10] 单治钢,孙淼军,王振红,等. 海上风电重大工程地质问题与对策研究[C]//中国地质学会. 2021年全国工程地质学术年会论文集. 2021年全国工程地质学术年会论文集,2021:210-219.
SHAN Z G,SUN M J,WANG Z H,et al. Research on major engineering geological problems and countermeasures of offshore wind power [C]//Geological Society of China. Proceedings of the 2021 National Engineering Geology Annual Conference. Proceedings of the 2021 National Engineering Geology Annual Conference,2021:210-219.
[11] 郭立,马小川,阎军. 北部湾东南海域海底沙波发育分布特征及控制因素[J]. 海洋地质与第四纪地质,2017,37(1):67-76.
GUO L,MA X C,YAN J. Distribution pattern and control factors of sand waves in southeast Beibu Gulf[J]. Marine Geology & Quaternary Geology,2017,37(1):67-76.
[12] 甘雨,马小川,阎军. 空间互相关方法在分析海底沙波迁移规律中的应用[J]. 海洋学报,2019,41(4):42-52.
GAN Y,MA X C,YAN J. The application of spatial cross correlation in analyzing the migration of submarine sand waves[J]. Acta Oceanologica Sinica,2019,41(4):42-52.
[13] 史卜涛,苗运赞,迟洪明,等. 海上风机单桩基础海床冲刷模拟及防冲刷结构设计[J]. 建筑结构,2023,53(S1):2988-2991.
SHI P T,MIAO Y Z,CHI H M,et al. Sea bed scour simulation and anti-scour structure design of single pile foundation of offshore wind turbine[J]. Building Structure,2023,53(S1):2988-2991.
[14] 王玉芳,张颖,贺广零,等. 海上风电基础冲刷防护措施探讨[J]. 武汉大学学报(工学版),2020,53(S1):137-141.
WANG Y F,ZHANG Y,HE G L,et al. Discussion on erosion protection measures for offshore wind power foundation[J]. Journal of Wuhan University (Engineering and Technology Edition),2020,53(S1):137-141.
[15] 王楠,徐永臣,宋玉鹏等. 冲刷作用下桩基承载能力分析[J]. 海洋地质前沿,2013,29(9):54-58.
WANG N,XU Y C,SONG Y P,et al. Analysis of load bearing capacity of pile foundation under erosion[J]. Marine Geology Frontiers,2013,29(9):54-58.
[16] 夏冰,苗得胜,张敏,等. 海上风机单桩基础稳流冲刷数值模拟[J]. 南方能源建设,2023,10(1):81-87.
XIA B,MIAO D S,ZHANG M,et al. Numerical simulation of scour process around offshore wind turbine monopile foundation in steady flow[J]. Southern Energy Construction,2023,10(1):81-87.
[17] 杜硕,戴国亮,高鲁超,等. 波流作用近海风机单桩基础局部冲刷深度预测[J]. 东南大学学报(自然科学版),2020,50(4):616-622.
DU S,DAI G L,GAO L C,et al. Prediction of local scour depth of offshore fan single pile foundation under wave and current action [J]. Journal of Southeast University (Natural Science Edition),2020,50(4):616-622.
[18] 祁一鸣,陆培东,曾成杰,等. 海上风电桩基局部冲刷试验研究[J]. 水利水运工程学报,2015(6):60-67.
QI Y M,LU P D,ZENG C J,et al. Experimental studies on local scour of offshore wind turbine pile[J]. Hydro-Science and Engineering,2015(6):60-67.
-