强非均质性储层构型表征与流动单元智能分类评价

李熙盛. 强非均质性储层构型表征与流动单元智能分类评价[J]. 海洋地质前沿, 2024, 40(9): 28-37. doi: 10.16028/j.1009-2722.2023.283
引用本文: 李熙盛. 强非均质性储层构型表征与流动单元智能分类评价[J]. 海洋地质前沿, 2024, 40(9): 28-37. doi: 10.16028/j.1009-2722.2023.283
LI Xisheng. Characterization of strongly heterogeneous reservoir architecture and intelligent classification evaluation of flow units[J]. Marine Geology Frontiers, 2024, 40(9): 28-37. doi: 10.16028/j.1009-2722.2023.283
Citation: LI Xisheng. Characterization of strongly heterogeneous reservoir architecture and intelligent classification evaluation of flow units[J]. Marine Geology Frontiers, 2024, 40(9): 28-37. doi: 10.16028/j.1009-2722.2023.283

强非均质性储层构型表征与流动单元智能分类评价

  • 基金项目: 中海石油有限公司科研院所联合攻关项目(2022-YXKJ-006)
详细信息
    作者简介: 李熙盛(1966—),男,硕士,高级工程师,主要从事油田地质地球物理方面的研究工作. E-mail:lixsh3@cnooc.com.cn
  • 中图分类号: P744.4;P736

Characterization of strongly heterogeneous reservoir architecture and intelligent classification evaluation of flow units

  • 为了评价珠江口盆地惠州A油田珠江组ZJ452强非均质性储层的储层质量及流体渗流规律,采用了储层构型分析与多层次自动聚类算法对强非均质性储层进行分类评价,筛选出孔隙度、渗透率、流动带指数(FZI)和储层质量参数作为判别参数。应用自组织映射神经网络和贝叶斯判别流动单元智能分类技术,将ZJ452储层定量划分出Ⅰ、Ⅱ、Ⅲ 3类流动单元。通过流动单元判别公式进行体计算,建立三维流动单元模型,分析流动单元空间分布特征,得出ZJ452储层虽然空间上表现为强非均质性,但平面上Ⅰ类流动单元和Ⅱ类流动单元连片分布连通的结论。本研究为惠州A油田ZJ452强非均质性储层油藏挖潜指明了方向。

  • 加载中
  • 图 1  惠州A油田ZJ452砂体单井构型特征

    Figure 1. 

    图 2  惠州A油田ZJ452砂体剖面构型

    Figure 2. 

    图 3  惠州A油田ZJ452纵波阻抗与界限叠合图

    Figure 3. 

    图 4  ZJ452储层精细分类评价结果

    Figure 4. 

    图 5  惠州A油田ZJ452孔隙度-渗透率流动单元交会图

    Figure 5. 

    图 6  流动单元剖面

    Figure 6. 

    图 7  流动单元平面分布

    Figure 7. 

    表 1  ZJ452复合砂体叠置样式与连通性

    Table 1.  Overlay style and connectivity in reservoir ZJ452 composite sand

    下载: 导出CSV
  • [1]

    TESTERMAN J D. A statistical reservoir zonation technique[J]. Petrol Technol,1962,14(8):889-893. doi: 10.2118/286-PA

    [2]

    CANT D J. Subsurface facies analysis//Walker R G. Facies Models[M]. Toronto:Geological Association of Canada Publications,Business & Economic Service,1984:27-45.

    [3]

    HEARN C L,HOBSON J P,FOWLER M L. Reservoir characterization for simulation,Hartog Draw Field,Wyoming[M]// Lake L W,Carroll H B. Reservoir Characterization. Florida:Academic Press,1986:341-372.

    [4]

    EBANKS W J. Flow unit concept-integrated approach to reservoir description for engineering projects[J]. AAPG Bulletin,1987,71(5):551-552.

    [5]

    HEARN C L,EBANKS W J,TYE R S,et al. Geoiogical factors influencing reservoir performance of Hartog Draw Field,Wyoming[J]. Journal of Canadian Petroleum Technology,1984,36(9):1335-1344.

    [6]

    计秉玉. 国内外油田提高采收率技术进展与展望[J]. 石油与天然气地质,2012,33(1):111-117. doi: 10.11743/ogg20120114

    JI Bingyu. Progress and prospects of enhanced oil recovery technologies at home and abroad[J]. Oil & Gas Geology,2012,33(1):111-117. doi: 10.11743/ogg20120114

    [7]

    万琼华,吴胜和,王石,等. 深水浊积水道储层多参数流动单元划分方法及其分布规律研究[J]. 高校地质学报,2014,20(2):315-323.

    WAN Qionghua,WU Shenghe,WANG Shi,et al. Multi-parameter technology on the study of flow units division and their distribution in deep-water turbidity channel reservoir[J]. Geological Journal of China Universities,2014,20(2):315-323.

    [8]

    万琼华,吴胜和,陈亮,等. 基于深水浊积水道构型的流动单元分布规律[J]. 石油与天然气地质,2015,36(2):306-313. doi: 10.11743/ogg20150216

    WAN Qionghua,WU Shenghe,CHEN Liang,et al. Analysis of flow unit distribution based on architecture of deep-water turbidite channel systems[J]. Oil & Gas Geology,2015,36(2):306-313. doi: 10.11743/ogg20150216

    [9]

    吴胜和,王仲林. 陆相储层流动单元研究的新思路[J]. 沉积学报,1999,17(2):87-92.

    WU Shenghe,WANG Zhonglin. A new method of non-marine reservoir flow unit study[J]. Journal of Sedimentology,1999,17(2):87-92.

    [10]

    蒋平,吕明胜,王国亭. 基于储层构型的流动单元划分:以扶余油田东5-9区块扶杨油层为例[J]. 石油实验地质,2013,35(2):213-219. doi: 10.11781/sysydz201302213

    JIANG Ping,LYU Mingsheng,WANG Guoting. Flow unit division based on reservoir architecture:taking Fuyu-Yangdachengzi Formation in Blocks Dong 5-9 of Fuyu Oilfield as an example[J]. Petroleum experimental geology,2013,35(2):213-219. doi: 10.11781/sysydz201302213

    [11]

    王石,万琼华,陈玉琨,等. 基于辫状河储层构型的流动单元划分及其分布规律[J]. 油气地质与采收率,2015,22(5):47-51,68. doi: 10.3969/j.issn.1009-9603.2015.05.008

    WANG Shi,WAN Qionghua,CHEN Yukun,et al. Flow units division and their distribution law based on braided river reservoir architecture[J]. Oil and gas geology and recovery rate,2015,22(5):47-51,68. doi: 10.3969/j.issn.1009-9603.2015.05.008

    [12]

    陈飞,胡光义,胡宇霆,等. 储层构型研究发展历程与趋势思考[J]. 西南石油大学学报(自然科学版),2018,40 (5):1-14.

    CHEN Fei,HU Guangyi,HU Yuting,et al. Development history and future trends in reservoir architecture research [J]. Journal of Southwest Petroleum University (Natural Science Edition),2018,40 (5):1-14.

    [13]

    屈兴勃,刘学利,郑小杰,等. 基于储层构型的流动单元划分及其分布规律[J]. 内蒙古石油化工,2022,48(1):88-94. doi: 10.3969/j.issn.1006-7981.2022.01.022

    QU Xingbo,LIU Xueli,ZHENG Xiaojie,et al. Flow unit division and their distribution law based on reservoir architecture[J]. Inner Mongolia Petrochemical Industry,2022,48(1):88-94. doi: 10.3969/j.issn.1006-7981.2022.01.022

    [14]

    封从军,鲍志东,代春明,等. 三角洲前缘水下分流河道单砂体叠置机理及对剩余油的控制:以扶余油田J19区块泉头组四段为例[J]. 石油与天然气地质,2015,36 (1):128-135.

    FENG Congjun,BAO Zhidong,DAI Chunming,et al. Superimposition patterns of underwater distributary channel sands in deltaic front and its control on remaining oil distribution:a case study from K1q4 in J19 Block,Fuyu Oilfield[J]. Oil & Gas Geology,2015,36(1):128-135.

    [15]

    赵小庆,鲍志东,刘宗飞,等. 河控三角洲水下分流河道砂体储集层构型精细分析:以扶余油田探51区块为例[J]. 石油勘探与开发,2013,40 (2):181-187.

    ZHAO Xiaoqing,BAO Zhidong,LIU Zongfei,et al. An in-depth analysis of reservoir architecture of underwater distributary channel sand bodies in a river dominated delta:a case study of T51 Block,Fuyu Oilfield[J]. Petroleum Exploration and Development,2013,40(2):181-187.

    [16]

    温立峰,吴胜和,王延忠,等. 河控三角洲河口坝地下储层构型精细解剖方法[J]. 中南大学学报(自然科学版),2011,42(4):1072-1078.

    WEN Lifeng,WU Shenghe,WANG Yanzhong,et al. An accurate method for anatomizing architecture of subsurface reservoir in mouth bar of fluvial dominated delta[J]. Journal of Central South University(Science and Technology),2011,42(4):1072-1078.

    [17]

    吴胜和,王仲林. 陆相储层流动单元研究的新思路[J]. 沉积学报,1999,17(2):252-257. doi: 10.3969/j.issn.1000-0550.1999.02.015

    WU Shenghe,WANG Zhonglin. A new method of non-marine reservoir flow units study[J]. Journal of Sedimentology,1999,17(2):252-257. doi: 10.3969/j.issn.1000-0550.1999.02.015

    [18]

    吴胜和. 储层表征与建模[M]. 北京:石油工业出版社,2010:228-234.

    WU Shenghe. Reservoir Characterization & Modeling[M]. Beijing:Petroleum Industry Press,2010:228-234.

    [19]

    胡光义,陈飞,范廷恩,等. 基于复合砂体构型样式的河流相储层细分对比方法[J]. 大庆石油地质与开发,2017,36(2):12-18. doi: 10.3969/J.ISSN.1000-3754.2017.02.002

    HU Guangyi,CHEN Fei,FAN Ting'en,et al. Subdividing and comparing method of the fluvial facies reservoirs based on the complex sandbody architectures[J]. Daqing Petroleum Geology and Development,2017,36(2):12-18. doi: 10.3969/J.ISSN.1000-3754.2017.02.002

    [20]

    胡光义,范廷恩,梁旭,等. 河流相储层复合砂体构型概念体系、表征方法及其在渤海油田开发中的应用探索[J]. 中国海上油气,2018,30 (1):89-98.

    HU Guangyi,FAN Ting'en,LIANG Xu,et al. Concept system and characterization method of compound sandbody architecture in fluvial reservoir and its application exploration in development of Bohai oilfield[J]. China's Offshore Oil and Gas,2018,30 (1):89-98.

    [21]

    范廷恩,王海峰,胡光义,等. 海上油田复合砂体构型解剖方法及其应用[J]. 中国海上油气,2018,30(4):102-112.

    FAN Ting'en,WANG Haifeng,HU Guangyi,et al. Anatomy method of composite sand body architecture in offshore oilfield and its application[J]. China's offshore oil and gas,2018,30(4):102-112.

    [22]

    胡光义,范廷恩,陈飞,等. 复合砂体构型理论及其生产应用[J]. 石油与天然气地质,2018,39 (1):1-10.

    HU Guangyi,FAN Ting'en,CHEN Fei,et al. Theory of composite sand body architecture and its application to oilfield development[J]. Petroleum and Natural Gas Geology,2018,39 (1):1-10.

    [23]

    胡光义,肖大坤,范廷恩,等. 河流相储层构型研究新理论、新方法:海上油田河流相复合砂体构型概念、内容及表征方法[J]. 古地理学报,2019,21(1):143-159. doi: 10.7605/gdlxb.2019.01.008

    HU Guangyi,XIAO Dakun,FAN Ting'en,et al. New theory and method of fluvial reservoir architecture study:concepts,contents and characterization of offshore oilfield fluvial compound sand-body architecture[J]. Journal of Paleogeography,2019,21(1):143-159. doi: 10.7605/gdlxb.2019.01.008

    [24]

    MIALL A D. The Geology of Fluvial Deposits:Sedimentary Facies,Basin Analysis,and Petroleum Geology[M]. Berlin:Springer,1996.

    [25]

    张显文,范廷恩,张晶玉,等. 河流相储层不连续界限地震响应特征研究[J]. 中国海上油气,2021,33(2):106-113.

    ZHANG Xianwen,FAN Ting'en,ZHANG Jingyu,et al. Study on seismic response characteristics of fluvial reservoir discontinuous boundary[J]. China's Offshore Oil and Gas,2021,33(2):106-113.

    [26]

    范廷恩. 点坝砂体储层内部不连续界线类型及预测方法研究[D]. 成都:西南石油大学,2016.

    FAN Ting'en. The discontinuous boundary of thin fluvial reservoir and its prediction[D]. Chengdu:Southwest Petrolueum University,2016.

    [27]

    雍世和,张超谟. 测井数据处理与综合解释[M]. 东营:中国石油大学出版社,1996:350-366.

    YONG Shihe,ZHANG Chaomo. Logging data processing and comprehensive interpretation[M]. Dongying:China University of Petroleum Press,1996:350-366.

  • 加载中

(7)

(1)

计量
  • 文章访问数:  442
  • PDF下载数:  40
  • 施引文献:  0
出版历程
收稿日期:  2023-12-14
刊出日期:  2024-09-28

目录