河南“7·20”暴雨洪水影响下黄河口水文特征变化

徐禾禾, 刘夙睿, 陈健斌, 王厚杰, 毕乃双, 俞永庆, 王亚梅, 吴晓. 河南“7·20”暴雨洪水影响下黄河口水文特征变化[J]. 海洋地质前沿, 2025, 41(2): 78-91. doi: 10.16028/j.1009-2722.2024.025
引用本文: 徐禾禾, 刘夙睿, 陈健斌, 王厚杰, 毕乃双, 俞永庆, 王亚梅, 吴晓. 河南“7·20”暴雨洪水影响下黄河口水文特征变化[J]. 海洋地质前沿, 2025, 41(2): 78-91. doi: 10.16028/j.1009-2722.2024.025
XU Hehe, LIU Surui, CHEN Jianbin, WANG Houjie, BI Naishuang, YU Yongqing, WANG Yamei, WU Xiao. Variations of hydrological characteristics off the Yellow River Estuary induced by the “7·20” rainstorm flood in Henan Province[J]. Marine Geology Frontiers, 2025, 41(2): 78-91. doi: 10.16028/j.1009-2722.2024.025
Citation: XU Hehe, LIU Surui, CHEN Jianbin, WANG Houjie, BI Naishuang, YU Yongqing, WANG Yamei, WU Xiao. Variations of hydrological characteristics off the Yellow River Estuary induced by the “7·20” rainstorm flood in Henan Province[J]. Marine Geology Frontiers, 2025, 41(2): 78-91. doi: 10.16028/j.1009-2722.2024.025

河南“7·20”暴雨洪水影响下黄河口水文特征变化

  • 基金项目: 国家自然科学基金重点项目(42330407);山东省杰出青年基金项目(ZR2024JQ016);山东省泰山学者项目(TSQN202211054);山东省高等学校青创科技支持计划(2022KJ045);东营市市校合作项目(SXHZ-2024-02-5)
详细信息
    作者简介: 徐禾禾(1999—),女,在读硕士,主要从事河口海岸沉积动力方面的研究工作. E-mail:957994911@qq.com
    通讯作者: 吴晓(1989—),男,博士,教授,主要从事河口海岸学方面的研究工作. E-mail:wuxiao@ouc.edu.cn
  • 中图分类号: P736

Variations of hydrological characteristics off the Yellow River Estuary induced by the “7·20” rainstorm flood in Henan Province

More Information
  • 在全球变暖的背景下,以暴雨洪水为代表的极端天气事件的频率和强度显著增加。暴雨洪水不仅对人类社会和自然环境产生深远的影响,还极易改变陆源物质向海输送通量,引起水沙扩散格局的变化,对河口演变至关重要。2021年7月17—23日,河南省郑州市及其周边地区遭遇特大暴雨事件,在黄河下游形成了为期1周的暴雨洪水事件。本文通过实测资料,结合卫星遥感手段,探讨了洪水前、洪水初期、洪水后期和洪水后的黄河口水文特征、水体层化结构与动力机制。结果表明:暴雨洪水期间利津站的日均径流量为1.95×108 m3,输沙量为1.58×106 t,分别是洪水前、后的2.71倍和9.38倍;由于高流量持续时间与洪水周期均短于调水调沙的调水阶段,因此本次暴雨洪水的入海水沙通量略低于调水阶段;暴雨洪水注入导致黄河口的浊度和盐度在洪水期间发生了显著变化,浊度的最高值和高浊度范围明显变大,冲淡水呈NW—SE向向外海扩张,但在潮流切变锋等因素的影响下,泥沙在河口近岸迅速沉积,扩散范围远小于冲淡水;与人工洪水相比,暴雨洪水对河口盐度的影响相对较小,羽流扩散范围较为局限,泥沙扩散范围与人工洪水差异较小,符合潮流切变峰阻隔下入海泥沙的沉降范围;洪水的汇入还造成了河口地区较高程度的水体层化,水体浮力频率最高可达到0.1 s−2以上,与洪水后的浮力频率值有着量级上的差异。

  • 加载中
  • 图 1  “7·20”暴雨事件降雨量统计

    Figure 1. 

    图 2  研究区位置及黄河口取样站位布设

    Figure 2. 

    图 3  遥感反演浊度、盐度与其实测数据的对比

    Figure 3. 

    图 4  2021年7月18日—8月3日花园口站和利津站的水沙变化过程

    Figure 4. 

    图 5  GOCI影像反演的洪水期表层盐度分布

    Figure 5. 

    图 6  GOCI影像反演的洪水期表层浊度分布

    Figure 6. 

    图 7  C断面洪水初期、洪水后期和洪水后的盐度与浊度剖面分布特征

    Figure 7. 

    图 8  B断面洪水后期和洪水后的盐度与浊度剖面分布特征

    Figure 8. 

    图 9  C1、C2、C3站位在洪水初期、洪水后期和洪水后的密度和浮力频率的垂向分布剖面

    Figure 9. 

    图 10  B1、B2、B3站位在洪水后期和洪水后的密度和浮力频率的垂向分布剖面

    Figure 10. 

  • [1]

    PAERL H W,HALL N S,HOUNSHELL A G,et al. Recent increases of rainfall and flooding from tropical cyclones (TCs) in North Carolina (USA):implications for organic matter and nutrient cycling in coastal watersheds[J]. Biogeochemistry,2020,150:197-216. doi: 10.1007/s10533-020-00693-4

    [2]

    KITHEKA J U,OBIERO M,NTHENGE P. River discharge,sediment transport and exchange in the Tana Estuary,Kenya[J]. Estuarine,Coastal and Shelf Science,2005,63(3):455-468. doi: 10.1016/j.ecss.2004.11.011

    [3]

    RALSTON D K,WARNER J C,GEYER W R,et al. Sediment transport due to extreme events:the Hudson River estuary after tropical storms Irene and Lee[J]. Geophysical Research Letters,2013,40(20):5537-5563.

    [4]

    于帅. 黄河调水调沙影响下河口入海泥沙扩散及地貌效应[D]. 青岛:中国海洋大学,2014.

    YU S. Suspended sediment dispersal off the Huanghe (Yellow River) River Mouth and its morphological effects under impact of the Water-Sediment Regulation Scheme[D]. Qingdao:Ocean University of China,2014.

    [5]

    CROKE J,FRYIRS K,THOMPSON C. Channel-floodplain connectivity during an extreme flood event:implications for sediment erosion,deposition,and delivery[J]. Earth Surface Processes and Landforms,2013,38(12):1444-1456. doi: 10.1002/esp.3430

    [6]

    KOITER A J,OWENS P N,PETTICREW E L,et al. The behavioural characteristics of sediment properties and their implications for sediment fingerprinting as an approach for identifying sediment sources in river basins[J]. Earth-Science Reviews,2013,125:24-42. doi: 10.1016/j.earscirev.2013.05.009

    [7]

    BRACKEN L J,TURNBULL L,WAINWRIGHT J,et al. Sediment connectivity:a framework for understanding sediment transfer at multiple scales[J]. Earth Surface Processes and Landforms,2015,40(2):177-188. doi: 10.1002/esp.3635

    [8]

    HOROWITZ A J. A quarter century of declining suspended sediment fluxes in the Mississippi River and the effect of the 1993 flood[J]. Hydrological Processe,2010,24(1):13-34. doi: 10.1002/hyp.7425

    [9]

    KOLKER A S,LI C Y,WALKER N D,et al. The impacts of the great Mississippi/Atchafalaya River flood on the oceanography of the Atchafalaya Shelf[J]. Continental Shelf Research,2014,86:17-33. doi: 10.1016/j.csr.2014.04.023

    [10]

    FAN H S,YAN H Z,TENG L Z,et al. The effects of extreme flood events on the turbidity maximum zone in the Yangtze (Changjiang) Estuary,China[J]. Marine Geology,2023,456:106993. doi: 10.1016/j.margeo.2023.106993

    [11]

    WU X,BI N S,YUAN P,et al. Sediment dispersal and accumulation off the present Huanghe (Yellow River) Delta as impacted by the Water-Sediment Regulation Scheme[J]. Continental Shelf Research,2015,111:126-138. doi: 10.1016/j.csr.2015.11.003

    [12]

    ZELLOU B,RAHALI H. Assessment of the joint impact of extreme rainfall and storm surge on the risk of flooding in a coastal area[J]. Journal of Hydrology,2019,569:647-665. doi: 10.1016/j.jhydrol.2018.12.028

    [13]

    XU J X. Sediment flux to the sea as influenced by the changing human activities and precipitation:example of the Huanghe River,China[J]. Environmental Management,2003,31(3):328-341. doi: 10.1007/s00267-002-2828-y

    [14]

    ZHANG Q,PENG J T,SINGH V P,et al. Spatio-temporal variations of precipitation in arid and semiarid regions of China:the Yellow River Basin as a case study[J]. Global and Planetary Change,2014,114:38-49. doi: 10.1016/j.gloplacha.2014.01.005

    [15]

    王振亚,姚成,董俊玲,等. 郑州“7·20”特大暴雨降水特征及其内涝影响[J]. 河海大学学报(自然科学版),2022,50(3):17-22.

    WANG Z Y,YAO C,DONG J L,et al. Precipitation characteristic and urban flooding influence of “7·20” extreme rainstorm in Zhengzhou[J]. Journal of Hohai University (Natural Sciences),2022,50(3):17-22.

    [16]

    李威,叶殿秀,赵琳,等. 从全球气候变化角度看2021年河南“7·20”特大暴雨[J]. 中国防汛抗旱,2022,32(4):38-44.

    LI W,YE D X,ZHAO L,et al. Examining “7·20” extreme rainstorm disaster in Henan Province in 2021 from global warming perspective[J]. China Flood and Drought Management,2022,32(4):38-44.

    [17]

    GUO Y,WANG X J,LI X L,et al. Impacts of land use and salinization on soil inorganic and organic carbon in the middle-lower Yellow River Delta[J]. Pedosphere,2021,31(6):839-848. doi: 10.1016/S1002-0160(21)60018-8

    [18]

    WANG H J,YANG,Z S,LI Y H,et al. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) Mouth[J]. Continent Shelf Research,2007,27(6):854-871. doi: 10.1016/j.csr.2006.12.002

    [19]

    蒋超. 黄河口动力地貌过程及其对河流输入变化的响应[D]. 上海:华东师范大学,2020.

    JIANG C. Morphodynamic processes in the Yellow River estuary and their responses to variation of riverine supply[D]. Shanghai:East China Normal University,2020.

    [20]

    殷鹏. 黄河口及附近海域碳参数与营养盐调查研究[D]. 青岛:中国海洋大学,2010.

    YIN P. The study of carbon system parameters and nutrients in the Yellow River Estuary and adjacent waters[D]. Qingdao:Ocean University of China,2010.

    [21]

    YANG Z S,JI,Y J,BI,N S,et al. Sediment transport off the Huanghe (Yellow River) Delta and the adjacent Bohai Sea in winter and seasonal comparison[J]. Estuarine,Coastal and Shelf Science,2011,93(3):173-181. doi: 10.1016/j.ecss.2010.06.005

    [22]

    BI N S,YANG Z S,WANG H J,et al. Sediment dispersion pattern off the present Huanghe (Yellow River) subdelta and its dynamic mechanism during normal river discharge period[J]. Estuarine,Coastal and Shelf Science,2010,86(3):352-362.

    [23]

    MILLERO F J,POISSON A. International one-atmosphere equation of state for sea water[J]. Deep-sea Research,1981,28(A):625-629.

    [24]

    倪智慧,陈辉,董礼先,等. 长江口外羽状流水体中的垂向混合与层化的观测与分析[J]. 上海交通大学学报,2012,46(11):1862-1873.

    NI Z H,CHEN H,DONG L X,et al. Measurement and analysis of vertical mixing and stratification on within the plume outside the Changjiang River Estuary[J]. Journal of Shanghaijiaotong University,2012,46(11):1862-1873.

    [25]

    TRITTON D J. Physical Fluid Dynamics[M]. Oxford:Clarendon Press,1988.

    [26]

    郑鹭飞. 东中国海水体浊度遥感算法及时空分布规律研究[D]. 南京:南京信息工程大学,2017.

    ZHENG L F. Study on remote sensing algorithm and the temporal-spatial distribution of turbidity in the East China Seas[D]. Nanjing:Nanjing University of Information and Technology,2017.

    [27]

    LIU R J,ZHANG J,YAO H Y,et al. Hourly changes in sea surface salinity in coastal waters recorded by Geostationary Ocean Color Imager[J]. Estuarine,Coastal and Shelf Science,2017,196:227-236. doi: 10.1016/j.ecss.2017.07.004

    [28]

    徐卫红,刘昌军,吕娟,等. 郑州主城区2021年“7·20”特大暴雨洪涝特征及应对策略[J]. 中国防汛抗旱,2022,32(5):5-10.

    XU W H,LIU C J,LYU J,et al. Characteristics of “7·20” extreme rainstorm and flood-waterlogging and countermeasures of the main urban area of Zhengzhou City[J]. China Flood and Drought Management,2022,32(5):5-10.

    [29]

    CHENG X Y,ZHU J R,CHEN S L. Dynamics of the extension of the Yellow River plume in the Bohai Sea[J]. Continental Shelf Research,2021,222:104438. doi: 10.1016/j.csr.2021.104438

    [30]

    WANG Q,GUO X Y,TAKEOKA H. Seasonal variations of the Yellow River plume in the Bohai Sea:a model study[J]. Journal of Geophysical Research:Oceans,2008,113:C08046.

    [31]

    GEYER W R,SCULLY M E,RALSTON D K. Quantifying vertical mixing in estuaries[J]. Environmental Fluid Mechanics,2008,8:495-509. doi: 10.1007/s10652-008-9107-2

    [32]

    BI N S,WANG H J,YANG Z S. Recent changes in the erosion-accretion patterns of the active Huanghe (Yellow River) Delta lobe caused by human activities[J]. Continental Shelf Research,2014,90:70-78. doi: 10.1016/j.csr.2014.02.014

    [33]

    WANG H J,WU X,BI N S,et al. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe):a review[J]. Global and Planetary Change,2017,157:93-113. doi: 10.1016/j.gloplacha.2017.08.005

    [34]

    JIA W F,YI Y J. Numerical study of the water-sediment regulation scheme (WSRS) impact on suspended sediment transport in the Yellow River Estuary[J]. Frontiers in Marine Science,2023,10:1135118. doi: 10.3389/fmars.2023.1135118

    [35]

    HU B Q,LI J,BI N S,et al. Seasonal variability and flux of particulate trace elements from the Yellow River:impacts of the anthropogenic flood event[J]. Marine Pollution Bulletin,2015,91(1):35-44. doi: 10.1016/j.marpolbul.2014.12.030

    [36]

    CHEN J B,LIU M,BI N S,et al. Variability of heavy metal transport during the water-sediment regulation period of the Yellow River in 2018[J]. Science of the Total Environment,2021,798:149061. doi: 10.1016/j.scitotenv.2021.149061

    [37]

    付春兰,李庆银,王庆斌,等. 小浪底水库调水调沙对黄河下游河道冲淤的影响分析[J]. 水资源与水工程学报,2012,23(5):173-175. doi: 10.11705/j.issn.1672-643X.2012.05.043

    FU C L,LI Q Y,WANG Q B,et al. Influence of water and sediment regulation of the Xiaolangdi reservoir on the channel scouring and silting of lower reaches of the Yellow River[J]. Journal of Water Resources and Water Engineering,2012,23(5):173-175. doi: 10.11705/j.issn.1672-643X.2012.05.043

    [38]

    BI N S,YANG Z S,WANG H J,et al. Impact of artificial water and sediment discharge regulation in the Huanghe (Yellow River) on the transport of particulate heavy metals to the sea[J]. Catena,2014,121:232-240. doi: 10.1016/j.catena.2014.05.006

    [39]

    QIAO S Q,SHI X F,ZHU A M,et al. Distribution and transport of suspended sediments off the Yellow River (Huanghe) Mouth and the nearby Bohai Sea[J]. Estuarine,Coastal and Shelf Science,2010,86(3):337-344. doi: 10.1016/j.ecss.2009.07.019

    [40]

    SALMELA J,KASVI E,ALHO P. River plume and sediment transport seasonality in a non-tidal semi-enclosed brackish water estuary of the Baltic Sea[J]. Estuarine,Coastal and Shelf Science,2020,245:106986. doi: 10.1016/j.ecss.2020.106986

    [41]

    WANG Y C,LIU Z,GAO H W,et al. Response of salinity distribution around the Yellow River Mouth to abrupt changes in river discharge[J]. Continental Shelf Research,2011,31:685-694. doi: 10.1016/j.csr.2011.01.005

    [42]

    MATHEW R,WINTERWERP J C. Sediment dynamics and transport regimes in a narrow microtidal estuary[J]. Ocean Dynamics,2020,70(4):435-462. doi: 10.1007/s10236-020-01345-9

  • 加载中

(10)

计量
  • 文章访问数:  32
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2024-01-19
刊出日期:  2025-02-28

目录