曹妃甸南部海域表层沉积物侵蚀特征

佀同浩, 褚宏宪, 孙菲菲, 白大鹏, 朱龙海, 胡日军, 林超然. 曹妃甸南部海域表层沉积物侵蚀特征[J]. 海洋地质前沿, 2025, 41(2): 92-104. doi: 10.16028/j.1009-2722.2024.039
引用本文: 佀同浩, 褚宏宪, 孙菲菲, 白大鹏, 朱龙海, 胡日军, 林超然. 曹妃甸南部海域表层沉积物侵蚀特征[J]. 海洋地质前沿, 2025, 41(2): 92-104. doi: 10.16028/j.1009-2722.2024.039
SI Tonghao, CHU Hongxian, SUN Feifei, BAI Dapeng, ZHU Longhai, HU Rijun, LIN Chaoran. Study on erosion characteristics of surface sediments in southern Caofeidian[J]. Marine Geology Frontiers, 2025, 41(2): 92-104. doi: 10.16028/j.1009-2722.2024.039
Citation: SI Tonghao, CHU Hongxian, SUN Feifei, BAI Dapeng, ZHU Longhai, HU Rijun, LIN Chaoran. Study on erosion characteristics of surface sediments in southern Caofeidian[J]. Marine Geology Frontiers, 2025, 41(2): 92-104. doi: 10.16028/j.1009-2722.2024.039

曹妃甸南部海域表层沉积物侵蚀特征

  • 基金项目: 中国地质调查局项目“渤海曹妃甸海域1:5万海洋区域地质调查”(DD20211553), 国家自然科学基金(42276172)
详细信息
    作者简介: 佀同浩(1999—),男,在读硕士,主要从事海洋沉积动力方面的研究工作. E-mail:1303919038@qq.com
    通讯作者: 白大鹏(1977—),男,高级工程师,主要从事海洋地球物理、海岸带地质调查方面的研究工作. E-mail:527673119@qq.com
  • 中图分类号: P736.2

Study on erosion characteristics of surface sediments in southern Caofeidian

More Information
  • 近岸海域是海陆相互作用的敏感地带,受自然和人类活动的共同影响,沉积动力环境较为复杂。海底表层是水体和海底交互作用的关键界面,表层沉积物侵蚀特征是影响海底冲淤演化的重要因子。本文利用于2021年10月在曹妃甸南部海域获取的91个表层沉积物样品及10个原状插管样,通过粒度实验、室内U-GEMS微观侵蚀实验,分析了研究区表层沉积物临界侵蚀剪应力及侵蚀速率的空间分布特征,结合潮流数值模拟结果,探讨了潮流作用下研究区表层沉积物侵蚀特征。结果表明:表层沉积物临界侵蚀剪应力介于0.3~0.6 N/m2,曹妃甸周边区域表层沉积物临界侵蚀剪应力为0.45~0.6 N/m2,研究区东部及南部表层沉积物临界侵蚀剪应力相对较小,为0.3~0.45 N/m2。侵蚀速率随剪应力的增大总体呈线性增加趋势,侵蚀速率最大值为0.059 g·m−2·s−1。研究区内表层沉积物侵蚀特征受到潮流作用和表层沉积物可侵蚀性的影响。该研究有利于从沉积物侵蚀特征方面丰富近海冲淤演化理论,对于近岸工程建设和海岸防护具有一定指导意义。

  • 加载中
  • 图 1  研究区域及采样站位

    Figure 1. 

    图 2  U-GEMS微观侵蚀系统[14]

    Figure 2. 

    图 3  研究区计算域网格示意图

    Figure 3. 

    图 4  潮位验证曲线

    Figure 4. 

    图 5  2022年7月30日—7月31日流速(左)流向(右)验证曲线

    Figure 5. 

    图 6  表层沉积物类型及粒度组分百分含量分布

    Figure 6. 

    图 7  表层沉积物粒度参数分布

    Figure 7. 

    图 8  典型站位微观侵蚀实验结果

    Figure 8. 

    图 9  侵蚀速率及临界侵蚀剪应力分布

    Figure 9. 

    图 10  研究区涨落潮流场分布(大潮)

    Figure 10. 

    图 11  潮周期内最大流致剪应力分布

    Figure 11. 

    图 12  各站位流致剪应力与U-GEMS实验沉积物临界侵蚀剪应力值对比

    Figure 12. 

    表 1  流致剪应力计算公式参数一览表

    Table 1.  Parameter list of flow-induced shear stress calculation formula

    参数 含义
    摩阻流速,m/s
    海水密度,g/cm3
    冯卡门常数
    床层粗糙度
    垂线平均流速,m/s
    H 水深,m
    深度z处的水流平均速度,m/s
    下载: 导出CSV

    表 2  沉积物粒度特征及临界侵蚀剪应力

    Table 2.  Sediment grain size characteristics and critical erosion shear stress

    站位 沉积物类型 平均粒径/μm 黏土/% 粉砂/% 砂/% 临界侵蚀剪应力/(N/m2
    1 砂质粉砂 28.56 17.69 41.61 40.70 0.6
    2 粉砂 10.10 25.15 68.07 6.78 0.6
    3 粉砂质砂 92.14 8.06 17.89 74.05 0.3
    4 粉砂 7.65 28.58 70.48 0.94 0.6
    5 粉砂质砂 84.79 8.90 20.47 70.63 0.45
    6 粉砂质砂 59.54 12.71 25.99 61.31 0.45
    7 5.64 34.62 65.39 0.00 0.45
    8 砂质粉砂 28.36 17.13 38.96 43.92 0.45
    9 粉砂 6.62 29.68 70.32 0.00 0.45
    10 粉砂 7.04 27.80 72.20 0.00 0.45
    下载: 导出CSV
  • [1]

    VAN RIJN L C. Unified view of sediment transport by currents and waves. I:initiation of motion,bed roughness,and bed-load transport[J]. Journal of Hydraulic Engineering,2007,133(6):649-667. doi: 10.1061/(ASCE)0733-9429(2007)133:6(649)

    [2]

    YAO P,SU M,WANG Z,et al. Erosion Behavior of sand‐silt mixtures:revisiting the erosion threshold[J]. Water Resources Research,2022,58(9):e2021WR031788. doi: 10.1029/2021WR031788

    [3]

    HOUWING E J. Determination of the critical erosion threshold of cohesive sediments on intertidal mudflats along the Dutch Wadden Sea coast[J]. Estuarine,Coastal and Shelf Science,1999,49(4):545-555. doi: 10.1006/ecss.1999.0518

    [4]

    LI Q,GRAY K E,JAISI D P. Relative roles of sediment transport and localized erosion on phosphorus load in the lower Susquehanna River and its mouth in the Chesapeake Bay,USA[J]. Journal of Geophysical Research:Biogeosciences,2022,127(8):e2022JG006944.

    [5]

    乔宇,何青,王宪业. 长江口表层沉积物起动试验研究[J]. 泥沙研究,2021,46(1):34-41.

    QIAO Y,HE Q,WANG X Y. Experimental study on critical shear stress of surface sediments in the Yangtze Estuary[J]. Journal of Sediment Research,2021,46(1):34-41.

    [6]

    AMOS C L,BERGAMASCO A,UMGIESSER G,et al. The stability of tidal flats in Venice Lagoon: the results of in-situ measurements using two benthic,annular flumes[J]. Journal of Marine Systems,2004,51(1/4):211-241. doi: 10.1016/j.jmarsys.2004.05.013

    [7]

    NGUYEN H M,BRYAN K R,PILDITCH C A,et al. Influence of ambient temperature on erosion properties of exposed cohesive sediment from an intertidal mudflat[J]. Geo-Marine Letters,2019,39:337-347. doi: 10.1007/s00367-019-00579-x

    [8]

    WIBERG P L,LAW B A,WHEATCROFT R A,et al. Seasonal variations in erodibility and sediment transport potential in a mesotidal channel-flat complex,Willapa Bay,WA[J]. Continental Shelf Research,2013,60:S185-S197. doi: 10.1016/j.csr.2012.07.021

    [9]

    STEVENS A W,WHEATCROFT R A,WIBERG P L. Seabed properties and sediment erodibility along the western Adriatic margin,Italy[J]. Continental Shelf Research,2007,27(3/4):400-416. doi: 10.1016/j.csr.2005.09.009

    [10]

    陈思明,王宪业,孙健伟,等. 粉砂淤泥质潮滩表层沉积物可侵蚀性研究[J]. 泥沙研究,2020,45(1):45-51.

    CHEN S M,WANG X Y,SUN J W,et al. Study on erodibility of surface sediment on silty mud tidal flat[J]. Journal of Sediment Research,2020,45(1):45-51.

    [11]

    YANG Y,WANG Y P,GAO S,et al. Sediment resuspension in tidally dominated coastal environments:new insights into the threshold for initial movement[J]. Ocean Dynamics,2016,66(3):401-417. doi: 10.1007/s10236-016-0930-6

    [12]

    林超然,朱龙海,胡日军,等. 黏性沉积物可侵蚀性研究现状与展望[J]. 海洋地质前沿,2023,39(1):1-17.

    LIN C R,ZHU L H,HU R J,et al. Status quo and prospect of research on erodibility of viscous sediments[J]. Marine Geology Frontiers,2023,39(1):1-17.

    [13]

    乔宇. 长江口表层沉积物侵蚀特性研究[D]. 上海:华东师范大学,2019.

    QIAO Y. Erodibility of bed sediments in the Yangtze Estuary[D]. Shanghai:East China Normal University,2019

    [14]

    LIN C,BAO R,ZHU L,et al. Surface sediment erosion characteristics and influencing factors in the subaqueous delta of the abandoned Yellow River Estuary[J]. Marine Geology,2024,468:107219. doi: 10.1016/j.margeo.2024.107219

    [15]

    郭腾飞. 波浪与海流对沉积物再悬浮贡献的原位观测研究[D]. 青岛:中国海洋大学,2014.

    GUO T F. The study of waves and currents contributing to sediment resuspension by in-situ observation[D]. Qingdao:Ocean University of China,2014

    [16]

    SALIM S,PATTIARATCHI C,TINOCO R O,et al. Sediment resuspension due to near‐bed turbulent effects:a deep sea case study on the northwest continental slope of western Australia[J]. Journal of Geophysical Research:Oceans,2018,123(10):7102-7119.

    [17]

    LAW B A,HILL P S,MILLIGAN T G,et al. Size sorting of fine-grained sediments during erosion:results from the western Gulf of Lions[J]. Continental Shelf Research,2008,28(15):1935-1946. doi: 10.1016/j.csr.2007.11.006

    [18]

    赵中豪,孙健伟,王宪业. 三大河口典型潮滩表层沉积物侵蚀特性分析[J]. 泥沙研究,2021,46(4):68-74.

    ZHAO Z H,SUN J W,WANG X Y. Analysis of sediment erosion characteristics of typical tidal flats in three estuaries[J]. Journal of Sediment Research,2021,46(4):68-74.

    [19]

    张宁, 殷勇, 潘少明, 等. 渤海湾曹妃甸潮汐汊道系统的现代沉积作用[J]. 海洋地质与第四纪地质, 2009, 29(6): 25-34.

    ZHANG N, YIN Y, PAN S M, et al. Modern sedimentation of tidal inlet tidal basin system in Caofeidian coastal area, BoHai Bay, northeastern China.[J]. Marine Geology &Quaternary Geology, 2009, 29(6): 25-34.

    [20]

    贾玉连,柯贤坤,许叶华,等. 渤海湾曹妃甸沙坝-泻湖海岸沉积物搬运趋势[J]. 海洋科学,1999(3):56-60.

    JIA Y L,KE X K,XU Y H,et al. Sedimentary transport trends of within a sand bar/lagoon system in the Bohai Bay[J]. Marine Science,1999(3):56-60.

    [21]

    DONG H,JIA L,HE Z,et al. Application of parameters and paradigms of the erosion and deposition for cohesive sediment transport modelling in the Lingdingyang Estuary,China[J]. Applied Ocean Research,2020,94:101999. doi: 10.1016/j.apor.2019.101999

    [22]

    李东,侯西勇,张华. 曹妃甸围填海工程对近海环境的影响综述[J]. 海洋科学,2019,43(2):82-90.

    LI D,HOU X Y,ZHANG H. A review of the impacts of the Caofeidian reclamation project on the offshore environment[J]. Marine Science,2019,43(2):82-90.

    [23]

    方中华,褚宏宪. 曹妃甸深槽斜坡稳定性影响因素敏感性分析[J]. 海岸工程,2016,35(3):23-31.

    FANG Z H,CHU H X. Sensitivity analysis of the factors affecting slope stability in the Caofeidian deep groove[J]. Coastal Engineering,2016,35(3):23-31.

    [24]

    祝贺,孙志高,衣华鹏,等. 曹妃甸近岸表层沉积物粒度和粘土矿物分布特征研究[J]. 地球与环境,2017,45(3):306-313.

    ZHU H,SUN Z G,YI H P,et al. Research on distribution characteristics of sediment grain size and clay mineral in Caofeidian inshore,China[J]. Earth and Environment,2017,45(3):306-313.

    [25]

    王文辉,王相玉,袁本坤. 曹妃甸邻近海域的海冰状况与特征[J]. 海岸工程,2005,24(3):50-57.

    WANG W H,WANG X Y,YUAN B K. Conditions and characteristics of sea lce in the sea area adiacent to Caofeidian[J]. Coastal Engineering,2005,24(3):50-57.

    [26]

    闫新兴,霍吉亮. 河北曹妃甸近海区地貌与沉积特征分析[J]. 水道港口,2007,28(3):164-168.

    YAN X X,HUO J L. Analysis for characteristics of physiognomy and sedimentint in offshore area of Caofedian, Hebei [J]. Journal of Waterway and Harbor,2007,28(3):164-168.

    [27]

    吴澎,姜俊杰. 曹妃甸港区选址研究[J]. 水运工程,2011(9):68-74.

    WU P,JIANG J J. Site selection of Caofeidian port area[J]. Port Waterway Engineering,2011(9):68-74.

    [28]

    XU K,CORBETT D R,WALSH J P,et al. Seabed erodibility variations on the Louisiana continental shelf before and after the 2011 Mississippi River flood[J]. Estuarine,Coastal and Shelf Science,2014,149:283-293. doi: 10.1016/j.ecss.2014.09.002

    [29]

    LO E L,BENTLEY S J,XU K. Experimental study of cohesive sediment consolidation and resuspension identifies approaches for coastal restoration:Lake Lery,Louisiana[J]. Geo-Marine Letters,2014,34:499-509. doi: 10.1007/s00367-014-0381-3

    [30]

    WENTWORTH C K. A scale of grade and class terms for clastic sediments[J]. The Journal of Geology,1922,30(5):377-392. doi: 10.1086/622910

    [31]

    FOLK RL W W C. A study in the significance of grain size parameters[J]. Journal Sedimentary Petrology,1957,27:3-27. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D

    [32]

    FOLK R L,ANDREWS P B,LEWIS D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics,1970,13(4):937-968. doi: 10.1080/00288306.1970.10418211

    [33]

    费成鹏,胡日军,雒敏义,等. 龙口湾水动力特征及其对人工岛群建设的响应[J]. 海洋地质与第四纪地质,2022,42(1):81-95.

    FEI C P,HU R J,LUO M Y,et al. Hydrodynamic characteristics of Longkou Bay and its response to artificial island groups[J]. Marine Geology &Quaternary Geology,2022,42(1):81-95.

    [34]

    ZHU L H,HU R J,ZHU H J,et al. Modeling studies of tidal dynamics and the associated responses to coastline changes in the Bohai Sea,China[J]. Ocean Dynamics,2018,68:1625-1648. doi: 10.1007/s10236-018-1212-2

    [35]

    SALEHI M,STROM K. Measurement of critical shear stress for mud mixtures in the San Jacinto estuary under different wave and current combinations[J]. Continental Shelf Research,2012,47:78-92. doi: 10.1016/j.csr.2012.07.004

    [36]

    宋敬泰. 黄河三角洲岸滩沉积物临界侵蚀剪应力研究[D]. 青岛:中国海洋大学,2009.

    SONG J T. Study on sediment critical erosion stress on the tidal flat along the Yellow River Delta[D]. Qingdao:Ocean University of China,2009.

    [37]

    吕纪轩,胡日军,李毅,等. 烟台北部近岸海域表层沉积物粒度分布及沉积动力环境特征[J]. 海洋地质前沿,2020,36(4):27-36.

    LYV J X,HU R J,LI Y,et al. Grain size distribution pattern of surface sediments in the northern YanTai coastal waters and its bearing on hydrodynamic environment[J]. Marine Geology Frontiers,2020,36(4):27-36.

    [38]

    窦国仁. 再论泥沙起动流速[J]. 泥沙研究. 1999,24(6):1-9.

    DOU G R. Re-discussion on sediment incipient velocity[J]. Journal of Sediment Research,1999,24(6):1-9.

    [39]

    LEGOUT C,DROPPO I G,COUTAZ J,et al. Assessment of erosion and settling properties of fine sediments stored in cobble bed rivers:the Arc and Isère alpine rivers before and after reservoir flushing[J]. Earth Surface Processes and Landforms,2018,43(6):1295-1309. doi: 10.1002/esp.4314

    [40]

    REID T,VANMENSEL D,DROPPO I G,et al. The symbiotic relationship of sediment and biofilm dynamics at the sediment water interface of oil sands industrial tailings ponds[J]. Water research,2016,100:337-347. doi: 10.1016/j.watres.2016.05.025

    [41]

    PATERSON D M,TOLHURST T J,KELLY J A,et al. Variations in sediment properties,Skeffling mudflat,Humber Estuary,UK[J]. Continental Shelf Research,2000,20(10):1373-1396.

    [42]

    BALE A J,WIDDOWS J,HARRIS C B,et al. Measurements of the critical erosion threshold of surface sediments along the Tamar Estuary using a mini-annular flume[J]. Continental Shelf Research,2006,26(10):1206-1216. doi: 10.1016/j.csr.2006.04.003

    [43]

    肖天葆. 数值模拟中海床临界冲刷切应力的计算方法[J]. 水道港口,2016,37(3):231-236.

    XIAO T B. Calculation method of seabed critical shear stress for erosion in numerica simulation[J]. Journal of Waterway and Harbor,2016,37(3):231-236.

    [44]

    陆永军,季荣耀,左利钦. 曹妃甸深水大港滩槽稳定及工程效应研究[J]. 水利水运工程学报. 2009(4):33-46.

    LU Y J,JI R Y,ZUO L Q. Stability and engineering effect of shoals and channels in Caofeidian deepwater harbor area[J]. Hydro Science and Engineering,2009(4):33-46.

    [45]

    褚宏宪,史慧杰,宗欣,等. 渤海湾曹妃甸深槽海区地形地貌特征及控制因素[J]. 海洋科学,2016,40(3):128-137.

    CHU H X,SHI H J,ZONG X,et al. Characteristic geomorphology and controlling factors of Caofeidian Channel in the Bohai Bay[J]. Marine Science,2016,40(3):128-137.

    [46]

    孙丽艳,孙钦帮,张冲,等. 曹妃甸围填海工程对海床冲淤的影响预测分析[J]. 珠江水运. 2019(14):73-76.

    SUN L Y,SUN Q B,ZHANG C,et al. Prediction and analysis of the influence of Caofeidian reclamation project on seabed erosion and deposition[J]. Pearl River Water Transport,2019(14):73-76.

    [47]

    龚政,葛冉,冯骞,等. 泥沙颗粒间黏结力作用及其对泥沙起动影响研究进展[J]. 水科学进展,2021,32(5):801-812.

    GONG Z,GE R,FENG Q,et al. Cohesive forces between sediment particles and its impact on incipientmotion of sediment:a review[J]. Advances in Water Science,2021,32(5):801-812.

  • 加载中

(12)

(2)

计量
  • 文章访问数:  25
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2024-02-05
刊出日期:  2025-02-28

目录