日本砂层型天然气水合物研发工作最新进展

张炜, 邵明娟, 王海华, 姚树青. 日本砂层型天然气水合物研发工作最新进展[J]. 海洋地质前沿, 2025, 41(2): 1-11. doi: 10.16028/j.1009-2722.2024.058
引用本文: 张炜, 邵明娟, 王海华, 姚树青. 日本砂层型天然气水合物研发工作最新进展[J]. 海洋地质前沿, 2025, 41(2): 1-11. doi: 10.16028/j.1009-2722.2024.058
ZHANG Wei, SHAO Mingjuan, WANG Haihua, YAO Shuqing. The latest progress in the research and development of pore-filling type gas hydrate in Japan[J]. Marine Geology Frontiers, 2025, 41(2): 1-11. doi: 10.16028/j.1009-2722.2024.058
Citation: ZHANG Wei, SHAO Mingjuan, WANG Haihua, YAO Shuqing. The latest progress in the research and development of pore-filling type gas hydrate in Japan[J]. Marine Geology Frontiers, 2025, 41(2): 1-11. doi: 10.16028/j.1009-2722.2024.058

日本砂层型天然气水合物研发工作最新进展

  • 基金项目: 中国地质调查局项目“地球科学文献知识服务与决策支撑”(DD20230139),“清洁能源情报跟踪与研究”(DD20230602)
详细信息
    作者简介: 张炜(1981—),男,博士,正高级工程师,主要从事地质科技战略情报方面的研究工作. E-mail:zhgwei@mail.cgs.gov.cn
  • 中图分类号: P744.4;P736

The latest progress in the research and development of pore-filling type gas hydrate in Japan

  • 随着常规油藏的枯竭以及对煤炭碳排放日益增加的担忧,天然气将在可持续经济增长中发挥更大作用。水合物作为一种资源丰富的甲烷气体来源,引起了学术界和工业界的极大兴趣。日本作为最早启动国家级水合物研发计划的国家之一,在历经全球20余年的水合物勘查试采热潮后,是目前资金投入巨大且仍在坚持产业化开发目标的少数国家之一,在水合物资源勘查开发相关领域取得了前所未有的成就。因此,在笔者针对日本水合物开发计划2001—2018财政年研发(试采)阶段发展历程的已有研究基础上,系统总结2019—2023财政年产业化前过渡阶段的砂层型水合物研发工作进展,梳理分析日本对实现水合物产业化开发目标的设想和思考,以期为中国推进水合物产业化开发进程提供借鉴。

  • 加载中
  • 图 1  日本第3次海域试采生产作业设计[6]

    Figure 1. 

    图 2  B1砂层(a)和D1砂层(b)穿过7-11-12井和Hydrate-01井的横截面

    Figure 2. 

    图 3  井群生产系统示意图[35]

    Figure 3. 

    图 4  日本砂层型水合物产业化开发前过渡阶段主要研发工作内容和评价标准[5]

    Figure 4. 

    表 1  SM2-P1和SM1-P1R生产井产气试验情况[9]

    Table 1.  Hydrate production test results of SM2-P1 and SM1-P1R production wells

    SM2-P1 SM1-P1R
    产气试验起止时间 7月8日04:00—7月13日00:40 7月22日18:00—7月23日00:15
    总计时长 4 d 20 h 40 min 6 h 15 min
    目标井底压力 5 MPa 7 MPa
    实际井底最低压力 约5.7 MPa 约16 MPa
    累计生产量 产气量442.5 m3,产水量168 m3 未实现产气,产水量1.3 m3
    主要事件 GeoFORM内外压差显著
    电潜泵气锁
    钻探后在举升管内发现存在游离气
    电潜泵气锁
    下载: 导出CSV

    表 2  日本3次水合物试采工作对比[11-12]

    Table 2.  Comparison of three hydrate production tests in Japan

    第1次 第2次 第3次(短期) 第3次相较于前两次试采的特点(括号内为实际实施过程中出现的问题)
    实施年份/区域 2013年/南海海槽 2017年/南海海槽 2023年/志摩半岛
    生产井数量/水深 1口/约1 000 m 2口/约1 000 m 2口/约1 200 m(SM2-P1)和约1 400 m(SM1-P1R) 深度更大
    计划时长/日均产气量/
    /日均产水量
    2周/10×104 m3/500 m3 1个月/10×104 m3/500 m3 5 d/5×104 m3/250 m3 以确认产气和获取数据为目的
    实际日均产气量/日均产水量 约2×104 m3/150~200 m3 3 000~15 000 m3/
    100~500 m3
    约100 m3/约30 m3
    降压方式/泵类型/安装位置 间接降压/电潜泵/井内 间接降压/电潜泵/井内 直接降压/电潜泵/切断装置上 简化
    (水合物二次形成)
    生产管线/气水分离 2条(气/水分开)/井内 2条(气/水分开)/井内 1条(气/水共用)/船上
    防止水合物二次形成 加热装置 抑制剂注入
    (乙二醇)
    抑制剂连续注入
    (动力学水合物抑制剂)
    适度、设备紧凑
    切断装置 防喷器+水下测试树
    (300 t)
    修井立管
    (80 t)
    海底断开/中断系统
    (40 t)
    轻量化、简化、省时
    (夹持器开关困难)
    立管 21”钻井立管(出砂) 9.625”套管 6.625”和3.5”双钻杆 轻量化、简化、省时
    防砂对策装置 裸眼砾石充填
    (发生出砂)
    已活化的GeoFORM/未活化的GeoFORM 未活化的GeoFORM防砂筛管 (硬化/堵塞)
    传感器位置 井内/电潜泵 井内/切断装置/电潜泵 筛管外侧/井内/切断装置/电潜泵 可测量井内外压差
    下载: 导出CSV

    表 3  日本水合物产业化开发路线图方案

    Table 3.  Japan's hydrate industrial development roadmap

    时间 至2018财政年 4~6 a 4~5 a 5 a
    阶段技术示范阶段产业化
    示范阶段
    产业化
    生产阶段
    产气可能性
    验证
    稳定生产验证
    (主要在陆上验证)
    稳定生产验证
    (海上多井验证)
    产气
    试验
    第2次海域试采:
    产气试验→弃井、分析评价等→针对问题解决的技术研究
    长期陆域试采:
    准备→钻探→研究准备→产气试验(单井)→分析评价等
    其他国家海域试采的技术应用(提供技术支持):
    产气试验的研究、实施与验证
    中长期海域多井试采:
    产气试验的研究、实施与验证(之后的海域试采将考虑符合产业化要求的水合物富集区)
    针对产业化的示范性试验向商用过渡
    资源量
    评价
    原地资源量评价勘探:
    根据面向问题解决的研究工作进展以及陆域试采情况进行判断→三维地震调查→钻探
    继续开展
    生产
    系统
    海洋技术开发的全面实施
    实施
    体系
    日本国家石油天然气和金属公司及日本产业技术综合研究所基于未来试采结果等,建立能够尽可能多地吸纳先进认识的管理体系
    下载: 导出CSV
  • [1]

    张炜,邵明娟,王铭晗,等. 全球首次近海甲烷水合物试采:从选址到实施[J]. 中国矿业,2017,26(2):143-151.

    ZHANG W,SHAO M J,WANG M H,et al. First offshore methane hydrate production test in the world:from site selection to implementation[J]. China Mining Magazine,2017,26(2):143-151.

    [2]

    张炜,邵明娟,田黔宁. 日本海域天然气水合物开发技术进展[J]. 石油钻探技术,2017,45(5):98-102.

    ZHANG W,SHAO M J,TIAN Q N. Technical progress of a pilot project to produce natural gas hydrate in Japanese waters[J]. Petroleum Drilling Techniques,2017,45(5):98-102.

    [3]

    张炜,白凤龙,邵明娟,等. 日本海域天然气水合物试采进展及其对我国的启示[J]. 海洋地质与第四纪地质,2017,37(5):27-33.

    ZHANG W,BAI F L,SHAO M J,et al. Progress of offshore natural gas hydrate production tests in Japan and implications[J]. Marine Geology & Quaternary Geology,2017,37(5):27-33.

    [4]

    経済産業省. 砂層型メタンハイドレートの研究開発フェーズ4(2019~2022年度)実行計画[EB/OL]. (2019-12-06)[2024-03-18]. https://www.meti.go.jp/shingikai/energy_environment/methane_hydrate/pdf/035_02_00.pdf.

    [5]

    経済産業省. メタンハイドレート研究開発の実施スケジュールについて[EB/OL]. (2023-11-06)[2024-03-18]. https://www.meti.go.jp/shingikai/energy_environment/methane_hydrate/pdf/042_06_00.pdf.

    [6]

    経済産業省. 事前調査及び試掘・簡易生産実験概要[EB/OL]. (2023-02-08)[2024-03-18]. https://www.meti.go.jp/shingikai/energy_environment/methane_hydrate/pdf/040_03_01_02.pdf.

    [7]

    経済産業省. 事前調査及び簡易生産実験を含む試掘の状況について[EB/OL]. (2022-06-23)[2024-03-18]. https://www.meti.go.jp/shingikai/energy_environment/methane_hydrate/pdf/039_03_00.pdf.

    [8]

    経済産業省. 事前調査井掘削結果及および:令和5年度試掘・簡易生産実験位置選定[EB/OL]. (2023-02-08)[2024-03-18]. https://www.meti.go.jp/shingikai/energy_environment/methane_hydrate/pdf/040_03_01_01.pdf.

    [9]

    経済産業省. 試掘・簡易生産実験の暫定結果について[EB/OL]. (2023-12-21)[2024-03-18]. https://www.meti.go.jp/shingikai/energy_environment/methane_hydrate/pdf/043_03_00.pdf.

    [10]

    経済産業省. 試掘・簡易生産実験の概要と現場作業[EB/OL]. (2023-11-06)[2024-03-18]. https://www.meti.go.jp/shingikai/energy_environment/methane_hydrate/pdf/042_03_00.pdf.

    [11]

    MH21-S研究開発コンソーシアム. 試掘・簡易生産実験では何をするのか?[EB/OL]. (2022-12-07)[2024-03-18]. https://www.mh21japan.gr.jp/pdf/mh21form2022/doc05.pdf.

    [12]

    YAMAMOTO K,BOSWELL R,COLLETT T S,et al. Review of past gas production attempts from subsurface gas hydrate deposits and necessity of long-term production testing[J]. Energy Fuels,2022,36(10):5047-5062. doi: 10.1021/acs.energyfuels.1c04119

    [13]

    COLLETT T,BOSWELL R,LEE M,et al. Evaluation of long-term gas-hydrate production testing locations on the Alaska North Slope[J]. SPE Reservoir Evaluation & Engineering,2012,15(2):243-264.

    [14]

    OKINAKA N,BOSWELL R,COLLETT T S,et al. Progress toward the establishment of an extended duration gas hydrate reservoir response test on the Alaska North Slope[C]∥Proceedings of the 10th International Conference on Gas Hydrates (ICGH10),Singapore,June 21-26,2020.

    [15]

    COLLETT T S,ZYRIANOVA M V,OKINAKA N,et al. Planning and operations of the Hydrate 01 stratigraphic test well,Prudhoe Bay Unit,Alaska North Slope[J]. Energy Fuels,2022,36(6):3016-3039. doi: 10.1021/acs.energyfuels.1c04087

    [16]

    TAMAKI M,FUJIMOTO A,BOSWELL R,et al. Geological reservoir characterization of a gas hydrate prospect associated with the Hydrate-01 stratigraphic test well,Alaska North Slope[J]. Energy Fuels,2022,36(15):8128-8149. doi: 10.1021/acs.energyfuels.2c00336

    [17]

    张炜,邵明娟,姚树青. 美国阿拉斯加长期陆域天然气水合物试采进展及对我国的启示[J]. 地质与资源,2024,33(5):680-689,724.

    ZHANG W,SHAO M J,YAO S Q. Long-term onshore production test of natural gas hydrate in Alaska,US:progress and enlightenment for China[J]. Geology and Resources,2024,33(5):680-689,724.

    [18]

    YOUNG C,SHRAGGE J,SCHULTZ W,et al. Advanced distributed acoustic sensing vertical seismic profile imaging of an Alaska North Slope Gas Hydrate Field[J]. Energy Fuels,2022,36(7):3481-3495. doi: 10.1021/acs.energyfuels.1c04102

    [19]

    U. S. Department of Energy. U. S. Department of Energy and partners to test gas hydrates reservoir response on Alaska North Slope[EB/OL]. (2022-08-30) [2024-03-18]. https://www.energy.gov/fecm/articles/us-department-energy-and-partners-test-gas-hydrates-reservoir-response-alaska-north.

    [20]

    経済産業省. アラスカ長期陸上産出試験プロジェクト進捗状況ついて[EB/OL]. (2022-06-23)[2024-03-18]. https://www.meti.go.jp/shingikai/energy_environment/methane_hydrate/pdf/039_04_00.pdf.

    [21]

    経済産業省. アラスカ陸上産出試験プロジェクト進捗状況について[EB/OL]. (2023-01-08)[2024-03-18]. https://www.meti.go.jp/shingikai/energy_environment/methane_hydrate/pdf/040_04_00.pdf.

    [22]

    経済産業省. アラスカ長期陸上産出試験 現場作業の進捗と試験状況[EB/OL]. (2023-11-06)[2024-03-18]. https://www.meti.go.jp/shingikai/energy_environment/methane_hydrate/pdf/042_04_00.pdf.

    [23]

    独立行政法人 エネルギー・金属鉱物資源機構. 令和3年度石油天然ガス開発技術本部年報[EB/OL]. (2023-05-01)[2024-03-18]. https://www.jogmec.go.jp/content/300380081.pdf.

    [24]

    経済産業省. アラスカにおける陸上産出試験プロジェクト進捗状況について[EB/OL]. (2021-11-17)[2024-03-18]. https://www.meti.go.jp/shingikai/energy_environment/methane_hydrate/pdf/038_03_00.pdf.

    [25]

    経済産業省. アラスカ長期陸上産出試験 現場作業の進捗と試験状況[EB/OL]. (2023-12-21)[2024-03-18]. https://www.meti.go.jp/shingikai/energy_environment/methane_hydrate/pdf/043_04_00.pdf.

    [26]

    MH21-S研究開発コンソーシアム. アラスカ長期陸上産出試験の進捗 -試験開始!-[EB/OL]. (2024-02-27)[2024-03-18]. https://www.mh21japan.gr.jp/pdf/mh21form2023/doc04.pdf.

    [27]

    独立行政法人 エネルギー・金属鉱物資源機構. 令和2年度石油天然ガス開発技術本部年報[EB/OL]. (2021-06-01)[2024-03-18]. https://www.jogmec.go.jp/content/300374001.pdf.

    [28]

    独立行政法人 エネルギー・金属鉱物資源機構. 令和4年度エネルギー事業本部技術年報[EB/OL]. (2023-09-01)[2024-03-18]. https://www.jogmec.go.jp/content/300380081.pdf.

    [29]

    ITO T,XU T F,TANAK H,et al. Possibility to remedy CO2 leakage from geological reservoir using CO2 reactive grout[J]. International Journal of Greenhouse Gas Control,2014,20:310-323.

    [30]

    安部俊吾,伊藤高敏,田村怜,等. メタンハイドレート生産中の出水トラブルに対する水ガラス系遮水剤の適用性検討[J]. 石油技術協会誌,2023,88(1):48-54.

    [31]

    SAKURAI S,NORRIS B,HOSKIN B,et al. Development of a model and simulation tool to predict hydrate growth in flowlines for gas hydrate production[C]∥SPE Asia Pacific Oil & Gas Conference and Exhibition,Virtual,November 2020.

    [32]

    SAKURAI S,HOSKIN B,NORRIS B,et al. Investigating hydrate formation rate and the viscosity of hydrate slurries in water-dominant flow:flowloop experiments and modelling[J]. Fuel,2021(292):120193.

    [33]

    KUWABARA S,TAKASHIMA R,ORIHASHI Y,et al. Preliminary tephrochronological study of the Yezo Group (uppermost Albian-basal Campanian) in north Japan[J]. Cretaceous Research,2019(103):104158.

    [34]

    今井利矩. メタンハイドレートの事前掘削調査と掘削調査井データの活用について[EB/OL]. (2022-10-27)[2024-03-18]. https://oilgas-info.jogmec.go.jp/info_reports/1009226/1009515.html.

    [35]

    Research Consortium for Methane Hydrate Resources in Japan. Comprehensive report of Phase 2&3 research results[EB/OL]. [2024-03-18]https://www.mh21japan.gr.jp/report/report.html.

    [36]

    経済産業省. 中間評価技術評価報告書について[EB/OL]. (2022-06-23)[2024-03-18]. https://www.meti.go.jp/shingikai/energy_environment/methane_hydrate/pdf/039_06_00.pdf.

    [37]

    张炜,范久达,吴西顺. 日本天然气水合物研发进展及对中国的启示[J]. 国土资源情报,2014(11):20-25.

    ZHANG W,FAN J D,WU X S. Progress in research and development of natural gas hydrate in Japan and its inspiration to China[J]. Land and Resources Information,2014(11):20-25.

    [38]

    邵明娟,王平康,吴庐山,等. 日本海域天然气水合物试采结果对比分析[J]. 海洋地质前沿,2022,38(12):8-15.

    SHAO M J,WANG P K,WU L S,et al. A comparative analysis of offshore gas hydrates production test in Japan[J]. Marine Geology Frontiers,2022,38(12):8-15.

    [39]

    张炜,邵明娟,姚树青. 日本天然气水合物开发工作发展历程分析及对我国的启示[J]. 中外能源,2023,28(8):15-22.

    ZHANG W,SHAO M J,YAO S Q. Analysis of development process of natural gas hydrate in Japan and its enlightenment to China[J]. Sino-Global Energy,2023,28(8):15-22.

  • 加载中

(4)

(3)

计量
  • 文章访问数:  76
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2024-03-08
刊出日期:  2025-02-28

目录