东海盆地西湖凹陷平湖斜坡带典型井平湖组微量元素古环境差异及控制因素

张锡楠, 王皖丽, 黄启彰. 东海盆地西湖凹陷平湖斜坡带典型井平湖组微量元素古环境差异及控制因素[J]. 海洋地质前沿, 2025, 41(7): 76-88. doi: 10.16028/j.1009-2722.2024.120
引用本文: 张锡楠, 王皖丽, 黄启彰. 东海盆地西湖凹陷平湖斜坡带典型井平湖组微量元素古环境差异及控制因素[J]. 海洋地质前沿, 2025, 41(7): 76-88. doi: 10.16028/j.1009-2722.2024.120
ZHANG Xinan, WANG Wanli, HUANG Qizhang. Paleoenvironmental difference and controlling factor of trace elements in Pinghu Formation of typical wells in Pinghu Slope Belt of the Xihu Sag, East China Sea Basin[J]. Marine Geology Frontiers, 2025, 41(7): 76-88. doi: 10.16028/j.1009-2722.2024.120
Citation: ZHANG Xinan, WANG Wanli, HUANG Qizhang. Paleoenvironmental difference and controlling factor of trace elements in Pinghu Formation of typical wells in Pinghu Slope Belt of the Xihu Sag, East China Sea Basin[J]. Marine Geology Frontiers, 2025, 41(7): 76-88. doi: 10.16028/j.1009-2722.2024.120

东海盆地西湖凹陷平湖斜坡带典型井平湖组微量元素古环境差异及控制因素

  • 基金项目: 中海石油重大科技专项“东海西湖凹陷大中型气田勘探方向及关键技术研究”(KJZX-2023-0101)
详细信息
    作者简介: 张锡楠(1990—),女,硕士,工程师,主要从事油气田地质方面的研究工作. E-mail:475604179@qq.com
  • 中图分类号: P744.4;P736

Paleoenvironmental difference and controlling factor of trace elements in Pinghu Formation of typical wells in Pinghu Slope Belt of the Xihu Sag, East China Sea Basin

  • 结合地质背景,对研究区的烃源岩进行了有机地球化学综合评价,对西湖凹陷平湖组烃源岩的形成环境等方面进行了系统研究,分析探讨不同沉积环境中平湖组烃源岩的发育特征,重点研究平湖组3个层段沉积物中微量元素的含量及其变化特征与沉积发育时的古盐度、古氧化还原条件、古气候的对应关系,再结合有机碳含量与元素的关系,厘清烃源岩的形成环境及主控因素。研究结果表明:①平湖组各层段多含煤,烃源岩有机质丰度高,为Ⅱ2—Ⅲ型有机质,处于成熟—高成熟阶段,有良好的生烃潜力,平湖组中段烃源岩好于上段与下段;②水体特征为淡水-半咸水,存在局部海侵过程,受到震荡式水体变化影响,平湖组沉积时,总体表现为氧化-还原沉积环境,古气候以温暖湿润为主,从早至晚逐渐向温暖湿润变化;③元素比值及有机碳含量分析表明,研究区烃源岩的发育主要受古气候与古生产力控制,温暖湿润的气候有利于平湖组烃源岩的发育,较高的古生产力主导平湖组中段有机质的富集。

  • 加载中
  • 图 1  西湖凹陷地质背景

    Figure 1. 

    图 2  西湖凹陷地层综合柱状图

    Figure 2. 

    图 3  研究区烃源岩TOC与S1+S2关系散点图

    Figure 3. 

    图 4  氢指数IHTmax值划分有机质类型

    Figure 4. 

    图 5  平湖组不同层段TmaxRO随深度变化

    Figure 5. 

    图 6  平湖组烃源岩沉积时古盐度特征

    Figure 6. 

    图 7  平湖组烃源岩沉积时古环境的氧化还原条件

    Figure 7. 

    图 8  平湖组烃源岩沉积时古气候特征

    Figure 8. 

    图 9  平湖组古盐度与有机碳含量协变图

    Figure 9. 

    图 10  平湖组古氧化还原条件与有机碳含量协变图

    Figure 10. 

    图 11  平湖组古气候与有机碳含量协变图

    Figure 11. 

    图 12  A1、B1、C1井平湖组有机地化指标与沉积环境恢复

    Figure 12. 

    图 13  平湖组不同区段烃源岩发育模式

    Figure 13. 

  • [1]

    刁慧,刘金水,侯读杰,等. 中国近海断-坳转换期煤系烃源岩特征:以西湖凹陷平湖组烃源岩为例[J]. 海洋地质与第四纪地质,2019,39(6):102-114.

    DIAO H,LIU J S,HOU D J,et al. Coal-bearing source rocks formed in the transitional stage from faulting to depression nearshore China:a case from the Pinghu Formation in the Xihu Sag[J]. Marine Geology & Quaternary Geology,2019,39(6):102-114.

    [2]

    周心怀,徐国盛,崔恒远,等. 东海西湖凹陷中央反转构造带古近系花港组致密砂岩储集层裂缝发育特征与油气成藏关系[J]. 石油勘探与开发,2020,47(3):462-475. doi: 10.11698/PED.2020.03.03

    ZHOU X H,XU G S,CUI H Y,et al. Fracture development and hydrocarbon accumulation in tight sandstone reservoirs of the Paleogene Huagang Formation in the central reversal tectonic belt of the Xihu Sag,East China Sea[J]. Petroleum Exploration and Development,2020,47(3):462-475. doi: 10.11698/PED.2020.03.03

    [3]

    孙伯强,陈剑新. 东海西湖凹陷保俶斜坡下第三系煤成油的研究[J]. 海洋石油,2000(1):1-7.

    SUN B Q,CHEN J X. Preliminary study on coal-generation oil of Eogene system in the Baochu Slope of Xihu Sag,East China Sea[J]. Offshore Oil,2000(1):1-7.

    [4]

    李上卿,李纯洁. 东海西湖凹陷油气资源分布及勘探潜力分析[J]. 石油实验地质,2003,25(6):721-728. doi: 10.3969/j.issn.1001-6112.2003.06.015

    LI S Q,LI C J. Analysis on the petroleum resource distribution and exploration potential of the Xihu Depression,the East China Sea[J]. Petroleum Geology & Experiment,2003,25(6):721-728. doi: 10.3969/j.issn.1001-6112.2003.06.015

    [5]

    QUAN Y B,CHEN Z Y,JIANG Y M,et al. Hydrocarbon generation potential,geochemical characteristics,and accumulation contribution of coal-bearing source rocks in the Xihu Sag,East China Sea shelf basin[J]. Marine and Petroleum Geology,2022,136:105465. doi: 10.1016/j.marpetgeo.2021.105465

    [6]

    LIU J S,KANG S L,SHEN W C,et al. Petrology and hydrocarbon significance of the coaly source rocks from the Pinghu Formation in the Xihu Sag,East China Sea shelf basin[J]. Energy Exploration & Exploitation,2020,38(5):1295-1319.

    [7]

    KANG S L,SHAO L Y,QIN L Z,et al. Hydrocarbon generation potential and depositional setting of Eocene oil-prone coaly source rocks in the Xihu Sag,East China Sea shelf basin[J]. ACS Omega,2020,5(50):32267-32285. doi: 10.1021/acsomega.0c04109

    [8]

    徐波. 东海盆地西湖凹陷天台反转带花港组地层水地球化学特征及其成因[J]. 海洋地质与第四纪地质,2021,41(3):62-71.

    XU B,Geochemistry and genesis of the formation water in Huagang Formation of the Tiantai Inversion Zone,the Xihu Depression of the East China Sea Basin[J]. Marine Geology & Quaternary Geology,2021,41(3):62-71.

    [9]

    田杨,叶加仁,雷闯,等. 断陷盆地海陆过渡相烃源岩发育模式:以西湖凹陷平湖组为例[J]. 地球科学,2019,44(3):898-908.

    TIAN Y,YE J C,LEI C,et al. Development model for source rock of marine-continental transitional facies in faulted basins:a case study of Pinghu Formation in Xihu Sag[J]. Earth Science,2019,44(3):898-908.

    [10]

    徐波,胡碧瑶,顾智鹏,等. 西湖凹陷平湖斜坡带平湖组微量元素和稀土元素地球化学特征及其地质意义[J]. 西安石油大学学报(自然科学版),2021,36(2):28-37.

    XU B,HU B Y,GU Z P,et al. Geochemical characteristics of trace elements and rare earth elements of Pinghu Formation in Pinghu Slope Belt of Xihu Sag and their geological significance[J]. Journal of Xi'an Shiyou University (Natural Science Edition),2021,36(2):28-37.

    [11]

    徐博,曾文倩,刁慧,等. 东海盆地西湖凹陷平湖组微量稀土元素对古生产环境的指示意义[J]. 海洋地质与第四纪地质,2021,41(3):72-84.

    XU B,ZENG W Q,DIAO H,et al. Trace rare earth elements in the Pinghu Formation of Xihu Sag and its implications for paleo-production environment[J]. Marine Geology & Quaternary Geology,2021,41(3):72-84.

    [12]

    魏恒飞,陈践发,陈晓东,等. 西湖凹陷平湖组滨海型煤系烃源岩发育环境及其控制因素[J]. 中国地质,2013,40(2):487-497. doi: 10.3969/j.issn.1000-3657.2013.02.013

    WEI H F,CHEN J F,CHEN X D,et al. The controlling factors and sedimentary environment for developing coastal coal-bearing source rock of Pinghu Formation in Xihu Depression[J]. Geology in China,2013,40(2):487-497. doi: 10.3969/j.issn.1000-3657.2013.02.013

    [13]

    严云奎. 鄂尔多斯盆地延长油区上古生界沉积相及储层微观特征研究[D]. 西安:西北大学,2010.

    YAN Y K. A study on the sedimentary facies and microscopic characteristics of reservoirs in the Upper Paleozoic of the Changqing Oilfield,Ordos Basin[D]. Xi'an:Northwest University,2010.

    [14]

    WEI W,ALGEO J T. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks[J]. Geochimica et Cosmochimica Acta,2020,287:341-366

    [15]

    韦恒叶. 古海洋生产力与氧化还原指标:元素地球化学综述[J]. 沉积与特提斯地质,2012(2):76-88. doi: 10.3969/j.issn.1009-3850.2012.02.012

    WEI H Y. Productivity and redox proxies of palaeo-oceans:an overview of elementary geochemistry[J]. Sedimentary Geology and Tethyan Geology,2012(2):76-88. doi: 10.3969/j.issn.1009-3850.2012.02.012

    [16]

    欧阳思琪,吕修祥,薛楠,等. 早中寒武世古环境特征与烃源岩发育模式:以塔里木盆地柯坪-巴楚地区为例[J]. 中国矿业大学学报,2022(2):293-310. doi: 10.3969/j.issn.1000-1964.2022.2.zgkydxxb202202009

    OUYANG S Q,LYU X X,XUE N,et al. Paleoenvironmental characteristics and source rock development model of the Early-Middle Cambrian:a case of the Keping-Bachu area in the Tarim Basin[J]. Journal of China University of Mining and Technology,2022(2):293-310. doi: 10.3969/j.issn.1000-1964.2022.2.zgkydxxb202202009

    [17]

    樊秋爽,夏国清,李高杰,等. 古海洋氧化还原条件分析方法与研究进展[J]. 沉积学报,2022,40(5):1150-1171.

    FAN Q S,XIA G Q,LI G J,et al. Analytical methods and research progress of redox conditions in the paleo-ocean[J]. Acta Sedimentologica Sinica. 2022,40(5):1150-1171.

    [18]

    张迎朝,陈忠云,刁慧,等. 东海盆地X凹陷油气成藏模式与勘探突破[J]. 中国海上油气,2024,36(2):1-12.

    ZHANG Y Z,CHEN Z Y,DIAO H,et al. Reservoir-forming models and exploration breakthroughs in the X Sag of the East China Sea basin[J]. China Offshore Oil and Gas. 2024,36(2):1-12.

    [19]

    赵丽娜. 东海陆架盆地西湖凹陷平湖构造带沉积相研究[D]. 长春:吉林大学,2007.

    ZHAO L N. The study on sedimentary facies of Pinghu Zone in Xihu Sag in the East China Sea shelf basin[D]. Changchun:Jilin University.

    [20]

    周心怀. 西湖凹陷地质认识创新与油气勘探领域突破[J]. 中国海上油气,2020,32(1):1-12.

    ZHOU X H. Geological understanding and innovation in Xihu Sag and breakthroughs in oil and gas exploration[J]. China Offshore Oil and Gas,2020,32(1):1-12.

    [21]

    蒋一鸣,何新建,张绍亮. 东海陆架盆地“反转-改造”构造迁移演化特征:以西湖凹陷边缘构造为例[J]. 长江大学学报(自科版),2016,13(26):1-7.

    JIANG Y M,HE X J,ZHANG S L. The Characteristics of “inverse-transform” tectonic migration evolution of the East China Sea shelf basin:by taking the marginal structure of Xihu Sag for example[J]. Journal of Yangtze University (Natural Science Edition),2016,13(26):1-7.

    [22]

    刘伟. 沉积物元素地球化学特征的古环境学意义:以西湖凹陷古近纪地层为例[D]. 北京:中国地质大学 (北京),2008.

    LIU W. The paleoenvironmental significance of characteristic of element Geochemistry in sediments:taking the Paleogene strata of the Xihu Depression as an example[D]. Beijing:China University of Geosciences(Beijing),2008.

    [23]

    徐国盛. 石油与天然气地质学[M]. 北京:地质出版社,2021.

    XU G S. Petroleum and Natural Gas Geology[M]. Beijing:Geological Publishing House,2021.

    [24]

    WANG C Y,LIN G S,WEI Y Q,et al. Major factors influencing boron adsorption in sediments:a case study of modern sediments in Qinghai Lake[J]. Environmental Earth Sciences,2017,76(4):1-12.

    [25]

    CALVERT S E,PEDERSEN T F. Geochemistry of recent oxic and anoxic marine sediments:implications for the geological record[J]. Marine Geology,1993,113(1/2):67-88. doi: 10.1016/0025-3227(93)90150-T

    [26]

    胡晓峰,刘招君,柳蓉,等. 桦甸盆地始新统桦甸组黏土矿物和无机地球化学特征及其古环境意义[J]. 煤炭学报,2012,37(3):416-423.

    HU X F,LIU Z J,LIU R,et al. Clay mineral and inorganic geochemical characteristics of Eocene Huadian Formation in Huadian Basin and their paleoenvironment implications[J]. Journal of China Coal Society,2012,37(3):416-423.

    [27]

    刘英俊. 元素地球化学[M]. 北京:科学出版社,1984.

    LIU Y J. Elemental Geochemistry[M]. Beijing:Science Press,1984.

    [28]

    WEI W,ALGEO T J. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks[J]. Geochimica et Cosmochimica Acta,2020,287:341-366. doi: 10.1016/j.gca.2019.06.034

    [29]

    郑荣才,杨梅青. 鄂尔多斯盆地长6油层组古盐度研究[J]. 石油与天然气地质,1999,20(1):20-25. doi: 10.3321/j.issn:0253-9985.1999.01.005

    ZHENG R C,YANG M Q. Study on palaeosalinity of Chang-6 Oil reservoir set in Ordos Basin[J]. Oil And Gas Geology,1999,20(1):20-25. doi: 10.3321/j.issn:0253-9985.1999.01.005

    [30]

    钱凯,时华星. 资源评价工作中古盐度测定法的选择[J]. 石油勘探与开发,1982(3):35-41.

    QIAN K,SHI H X. The choice of the method of paleosalinity determination in resources evaluation[J]. Petroleum Exploration and Development,1982(3):35-41.

    [31]

    郑一丁,雷裕红,张立强,等. 鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义[J]. 天然气地球科学,2015,26(7):1395-1404.

    ZHENG Y D,LEI Y H,ZHANG L Q,et al. Characteristics of element geochemistry and paleosedimentary environment evolution of Zhangjiatan Shale in the southeast of Ordos Basin and its geological significance for oil and gas[J]. Natural Gas Geoscience,2015,26(7):1395-1404.

    [32]

    HATCH J R,LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone,Wabaunsee County,Kansas,USA[J]. Chemical Geology,1992,99(1/3):65-82.

    [33]

    LIU P,LIU C,GUO R L. Depositional environment and organic matter enrichment of the Lower Cambrian Niutitang shale in western Hubei Province,South China[J]. Marine and Petroleum Geology,2019,109:381-393. doi: 10.1016/j.marpetgeo.2019.06.039

    [34]

    JONES B,MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology,1994,111(1/4):111-129.

    [35]

    腾格尔,刘文汇,徐永昌,等. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展,2005,20(2):193-200.

    TENG G E,LIU W H,XU Y C,et al. Correlative study on parameters of inorganic geochemistry and hydrocarbon source rocks formative environment[J]. Advances in Earth Science,2005,20(2):193-200.

    [36]

    胡俊杰,马寅生,王宗秀,等. 地球化学记录揭示的柴达木盆地北缘地区中—晚侏罗世古环境与古气候[J]. 古地理学报,2017,19(3):480-490. doi: 10.7605/gdlxb.2017.03.037

    HU J J,MA Y S,WANG Z X,et al. Palaeoenvironment and palaeoclimate of the Middle to Late Jurassic revealed by geochemical records in northern margin of Qaidam Basin[J]. Journal of Palaeogeography,2017,19(3):480-490. doi: 10.7605/gdlxb.2017.03.037

    [37]

    HIROTO K,YOSHIO W. Oceanic anoxia at the Precambrian-Cambrian boundary[J]. Geology,2001,29(11):995-998. doi: 10.1130/0091-7613(2001)029<0995:OAATPC>2.0.CO;2

    [38]

    梅水泉. 岩石化学在湖南前震旦系沉积环境及铀来源研究中的应用[J]. 湖南地质,1988(3):25-31.

    MEI S Q. Application of rock chemistry in the study of Presinian sedimentary environment and the source of uranium mineralization in Hunan Province[J]. Hunan Geology,1988(3):25-31.

    [39]

    关有志. 科尔沁沙地的元素、黏土矿物与沉积环境[J]. 中国沙漠,1992,12(1):12-18.

    GUAN Y Z. The element,clay mineral and depositional environment in Horqin sand land[J]. Journal of Desert Research,1992,12(1):12-18.

    [40]

    杨万芹,蒋有录,王勇. 东营凹陷沙三下—沙四上亚段泥页岩岩相沉积环境分析[J]. 中国石油大学学报(自然科学版),2015(4):19-26.

    YANG W Q,JIANG Y L,WANG Y. Study on shale facies sedimentary environment of lower Es3 - upper Es4 in Dongying Sag[J]. Journal of China University of Petroleum,2015(4):19-26.

    [41]

    王随继,黄杏珍. 泌阳凹陷核桃园组微量元素演化特征及其古气候意义[J]. 沉积学报,1997,15(1):66-71.

    WANG S J,HUANG X Z. Evolutional characteristics and their paleoclimate significance of trace elements in the Hetaoyuan Formation,Biyang Depression[J]. Acta Sedimentologica Sinica,1997,15(1):66-71.

    [42]

    张天福,孙立新,张云,等. 鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义[J]. 地质学报,2016,90(12):3454-3472. doi: 10.3969/j.issn.0001-5717.2016.12.013

    ZHANG T F,SUN L X,ZHANG Y,et al. Geochemical characteristics of the Jurassic Yan'an and Zhiluo Formations in the northern margin of Ordos Basin and their paleoenvironmental implications[J]. Acta Geologica Sinica,2016,90(12):3454-3472. doi: 10.3969/j.issn.0001-5717.2016.12.013

    [43]

    金中国,刘辰生,邹林,等. 贵州务-正-道地区二叠纪铝土矿沉积环境地球化学证据[J]. 地质学报,2018,92(4):817-827. doi: 10.3969/j.issn.0001-5717.2018.04.011

    JIN Z G,LIU C S,ZOU L,et al. Geochemical evidence of sedimentary environment of Permian bauxite in the Wuchuan-Zheng'an-Daozhen area,Guizhou Province[J]. Acta Geologica Sinica,2018,92(4):817-827. doi: 10.3969/j.issn.0001-5717.2018.04.011

  • 加载中

(13)

计量
  • 文章访问数:  28
  • PDF下载数:  13
  • 施引文献:  0
出版历程
收稿日期:  2024-05-15
刊出日期:  2025-07-28

目录