Fault structure and the oil and gas prospect of the Vøring Basin using gravity and magnetic data
-
摘要:
挪威中部近海的Vøring盆地油气地质条件良好,为了深入了解该区的断裂构造特征和油气勘探潜力,系统整理了现有的重磁数据。使用变纬度化极技术消除跨纬度变化对于磁力数据的影响,并运用位场边缘识别技术提取本区位场边缘识别信息。综合已有地质和地球物理认识,对研究区的重磁异常特征进行系统分析,确定了Vøring盆地的断裂构造特征,划分了油气勘探有利区。研究结果表明,Vøring盆地内次级断裂走向复杂,有NE、近SN向2组主要断裂,同时多被沿NW和近EW向发育的2组断裂切断。盆地还发育有4条大的边界断裂(F1—F4),这些断裂控制了本区次级构造的发育。在Vøring盆地内圈定了油气勘探有利区,在重力垂向二阶导数异常图上反映为异常幅值高、异常梯度变化大、有断裂控制的异常带及其侧翼。
Abstract:The Vøring Basin, in the Norwegian midland near the sea has favorable geological conditions for hydrocarbon accumulation. To gain a deeper understanding on the fault structure and hydrocarbon exploration potential in the basin, available gravity and magnetic data have been analyzed systematically. The Varimax transformation technique was applied to eliminate the influence of latitude changes on the magnetic data. Additionally, the edge detection technique for potential fields was utilized to delineate the edge of the local field in this area. By integrating existing geological and geophysical knowledge, a systematic analysis on the gravity and magnetic anomalies in the study area was conducted, and ultimately the fault structure features of the Vøring Basin were identified and the outlining favorable areas for hydrocarbon exploration were defined. Result indicates that the secondary faults in the Vøring Basin exhibit complex orientations, including mainly two sets of major faults in northeast and nearly north-south directions respectively. Additionally, there are other two sets of faults trending northwest and nearly east-west, and they often cut across the first two sets of faults. The basin is surrounded by four major boundary faults (F1~F4), which control the development of secondary structures in the area. Favorable hydrocarbon exploration areas in the Vøring Basin were delineated, represented by high-amplitude anomalies with clear gradients in the second-order vertical derivative anomalies, as well as anomalous bands controlled by faults and their flanks, as evidenced on the gravity gradient map.
-
Key words:
- Norway /
- Vøring Basin /
- gravity-magnetic anomalies /
- fault /
- exploration favorable zones
-
-
[1] 李江海,刘仲兰,王洛,等. 北极地区大地构造特征及其构造演化:北极地区大地构造编图研究进展[J]. 海洋学报,2016,38(7):85-96. doi: 10.3969/j.issn.0253-4193.2016.07.008
LI J H,LIU Z L,WANG L,et al. The tectonic setting and geological evolution of the Arctic :from compiling of tectonic map of the Arctic[J]. Haiyang Xuebao,2016,38(7):85-96. doi: 10.3969/j.issn.0253-4193.2016.07.008
[2] BIRD K J,CHARPENTIER R R,GAUTIER D L,et al. Circum-Arctic resource appraisal:estimates of undiscovered oil and gas north of the Arctic Circle[R]. U.S. Geological Survey,2008.
[3] 蒋德鑫,张厚和,李春荣,等. 全球深水-超深水油气勘探历程与发展趋势[J]. 海洋地质前沿,2022,38(10):1-12.
JIANG D X,ZHANG H H,LI C R,et al. Global deep- and ultra-deep-water oil and gas exploration:review and outlook[J]. Marine Geology Frontiers,2022,38(10):1-12.
[4] ZASTROZHNOV D,GERNIGON L,GOGIN I,et al. Regional structure and polyphased Cretaceous-Paleocene rift and basin development of the mid-Norwegian volcanic passive margin[J]. Marine and Petroleum Geology,2020,115:104-269.
[5] FALEIDE J I,BJORLYKKE K,GABRIELSEN R H. Geology of the Norwegian Continental Shelf//Bjørlykke,K. (Ed. ),Petroleum Geoscience:from Sedimentary Environments to Rock Physics[M]. Heidelberg:Springer,2015:603-637.
[6] FAZLIKHAN H,FOSSEN H,GAWTHORPE R L,et al. Basement structure and its influence on the structural configuration of the northern North Sea rift[J]. Tectonics,2017,36(6):1151-1177. doi: 10.1002/2017TC004514
[7] FARSET R B. Structural geology and basin development of the Norwegian Sea[J]. Norwegian Journal of Geology,2020,100(4):1-60.
[8] PLANKE S,SKOGSEID J,ELDHOLM O. Crustal structure off Norway,62° to 70° north[J]. Tectonophysics,1991,189(1/4):91-107.
[9] BJORLYKKE K,AVSRTH P. Petroleum Geoscience:from Sedimentary Environments to Rock Physics[M]. Berlin:Springer,2015.
[10] ZEHNDER C M,MUTTER J C,BUHL P. Deep seismic and geochemical constraints on the nature of rift-induced magmatism during breakup of the North Atlantic[J]. Tectonophysics,1990,173(1/4):545-565.
[11] SKOGSEID J,PEDERSEN T,ELDHOLM O,et al. Tectonism and magmatism during NE Atlantic continental break-up:the Vøring Margin[C]//Geological Society,London:Special Publications,1992:305-320.
[12] ASCH K. Geology without national boundaries the 1:5 million international geological map of Europe and adjacent areas IG-ME 5000[J]. Episodes,2006,29(1):39-42.
[13] 卢景美,李爱山,赵阳,等. 北大西洋段演化特征和海相烃源岩研究[J]. 中国石油勘探,2014,19(4):80-88.
LU J M,LI A S,ZHAO Y,et al. Tectonic evolution characterize of North Atlantic and marine source rock study[J]. 2014,19(4):80-88.
[14] 范玉海,屈红军,王辉,等. 挪威中部陆架油气地质特征及勘探潜力[J]. 世界地质,2015,34(3):690-696. doi: 10.3969/j.issn.1004-5589.2015.03.013
FAN Y H,QU H J,WANG H,et al. Petroleum geology and exploration potential of mid-Norway continental margin[J]. World Geology,2015,34(3):690-696 doi: 10.3969/j.issn.1004-5589.2015.03.013
[15] 刘怡君. 挪威陆缘盆地形成演化及其成藏过程分析[D]. 西安:西安石油大学,2017.
LIU Y J. Formation evolution and oil and gas generation accumulation of continental marginal basin in Norway[D]. Xi'an:Xi'an Shiyou University,2017.
[16] 张明华,张家强. 现代卫星测高重力异常分辨能力分析及在海洋资源调查中应用[J]. 物探与化探,2005,29(4):295-298,303-379.
ZHANG M H,ZHANG J Q. Resolution of modern satellite altimetric gravity anomaly and its application to marine geological survey[J]. Geophysical and Geochemical Exploration,2005,29(4):295-298,303-379.
[17] 张春灌,袁炳强,张国利. 最新全球重力数据库V23中陆域重力资料质量评估[J]. 地球科学进展,2017,32(1):75-82.
ZHANG C G,YUAN B Q,ZHANG G L. Quality evaluation of land gravity data in the latest global gravity database V23[J]. Progress in Geophysics,2017,32(1):75-82.
[18] 刘兵,吴世敏,龙根元,等. 重力水平梯度矢量法在琼东南盆地基底断裂划分上的应用[J]. 热带海洋学报,2011,30(5):74-80. doi: 10.3969/j.issn.1009-5470.2011.05.010
LIU B,WU S M,LONG G Y,et al. Studying basement fault division in Southeast Hainan Basin of the South China Sea using gravity horizontal gradient vector method[J]. Journal of Tropical Oceanography,2011,30(5):74-80. doi: 10.3969/j.issn.1009-5470.2011.05.010
[19] 韩梅,张春灌,李想,等. 地球磁异常网格第3版(EMAG2v3)海平面数据质量评估:以东南亚Sulu海及北极Kolbeinsey脊南段为例[J]. 地球物理学进展,2023,38(4):1466-1472. doi: 10.6038/pg2023GG0331
HAN M,ZHANG C G,LI X,et al. Quality evaluation of sea level data in the Earth Magnetic Anomaly Grid at 2 Arc Minute Resolution Version 3 (EMAG2v3):taking the Sulu Sea in Southeast Asia and the southern section of the Kolbeinsey Ridge in the Arctic as an example[J]. Progress in Geophysics,2023,38(4):1466-1472. doi: 10.6038/pg2023GG0331
[20] 张冕,张春灌,段祎乐,等. Aegir脊及邻区重磁异常及构造特征[J]. 海洋地质前沿,2023,39(5):64-72.
ZHANG M,ZHANG C G,DUAN Y L,et al. Gravity,magnetic anomalies,and tectonic features of the Aegir Ridge and adjacent areas[J]. Marine Geology Frontiers,2023,39(5):64-72.
[21] 张春灌,赵敏,袁炳强,等. 利用重磁资料研究北极地区扬马延微陆块中南部断裂构造与油气远景[J]. 石油物探,2023,62(1):173-182.
ZHANG C G,ZHAO M,YUAN B Q,et al. Fault structure and hydrocarbon prospects of the central-south Jan Mayen microcontinent in the Arctic region based on gravity and magnetic data[J]. Geophysical Prospecting for Petroleum. 2023,62(1):173-182.
[22] 张明华,王成锡,黄金明,等. 基于GIS的重磁电数据处理解释软件系统[C]. 北京:中国地球物理学会第二十七届年会论文集,2011:580.
ZHANG M H,WANG C X,HUANG J M,et al. Gravity magnetic and electrie data processing system based on GIS[C]. Beijing:Proceedings of the 27th Annual Meeting of the Chinese Geophysical Society, 2011: 580.
[23] PERON-PINVIDIC G,AKERMOEN T,LEIVESTAD L I. The North-East Atlantic mid-Norwegian rifted margin:insights from the deep imaging Geoex MCG RDI19 dataset[J]. Tectonophysics,2022,824:229225. doi: 10.1016/j.tecto.2022.229225
[24] ZASTROZHNOV D,GERNIGON L,GOGIN I,et al. Cretaceous-Paleocene evolution and crustal structure of the northern Vøring Margin (offshore mid-Norway):results from integrated geological and geophysical study[J]. Tectonics,2018,37(2):497-528. doi: 10.1002/2017TC004655
[25] EBBING J,GERNIGON L,PASCAL C,et al. A discussion of structural and thermal control of magnetic anomalies on the mid-Norwegian margin[J]. Geophysical Prospecting,2009,57(4):665-681. doi: 10.1111/j.1365-2478.2009.00800.x
[26] LUNDIN E R,DORE A G. Hyperextension,serpentinization,and weakening:a new paradigm for rifted margin compressional deformation[J]. Geology,2011,39(4):347-350. doi: 10.1130/G31499.1
[27] GERNIGON L,FRANKE D,GEOFFROY L,et al. Crustal fragmentation,magmatism,and the diachronous opening of the Norwegian-Greenland Sea[J]. Earth-Science Reviews,2020,206:102839. doi: 10.1016/j.earscirev.2019.04.011
[28] BREKKE H,DAHLGREN S,NYLAND B,et al. The prospectivity of the Vøring and Møre basins on the Norwegian Sea continental margin[C]//Geological Society,Petroleum Geology Conference series. London:The Geological Society of London,1999,5(1):261-274.
[29] DORE A G. The structural foundation and evolution of Mesozoic seaways between Europe and the Arctic[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,1991,87(1/4):441-492.
[30] 谭丽娟,蒋有录. 渤海湾盆地东营:惠民凹陷油气成藏模式和油气富集控制因素[J]. 石油实验地质,2003,25(4):366-370. doi: 10.3969/j.issn.1001-6112.2003.04.010
TAN L J,JIANG Y L. Pool-forming patterns of hydrocarbon and controlling factors of hydrocarbon enrichment in the Dongying and the Huimin sags[J]. Petroleum Geology & Experiment,2003,25(4):366-370. doi: 10.3969/j.issn.1001-6112.2003.04.010
[31] 付广,王宇鹏. 断裂密集带及附近下生上储式油气富集的控制因素[J]. 岩性油气藏,2018,30(2):23-29.
FU G,WANG Y P. Controlling factors of hydrocarbon enrichment with the type of “below source and upper reservoir” in fault concentrated zones and nearby[J]. Lithologic Reservoirs,2018,30(2):23-29.
[32] 张春灌. 渤海海域重力异常特征及油气分布规律探讨[J]. 断块油气田,2010,17(2):169-172.
ZHANG C G. Features of gravity anomaly and oil-gas distribution rules in Bohai Sea area[J]. Fault-Block Oil & Gas Field,2010,17(2):169-172.
-