渤海曹妃甸海域表层沉积物常量元素特征及其对源区风化特征的指示意义

远继东, 褚宏宪, 冯永财, 冯兵辉, 陈玉海, 李佳林, 姜文钦, 黄杏, 贾濮硕, 曹凡凡, 李玉彦. 渤海曹妃甸海域表层沉积物常量元素特征及其对源区风化特征的指示意义[J]. 海洋地质前沿, 2024, 40(11): 80-90. doi: 10.16028/j.1009-2722.2024.167
引用本文: 远继东, 褚宏宪, 冯永财, 冯兵辉, 陈玉海, 李佳林, 姜文钦, 黄杏, 贾濮硕, 曹凡凡, 李玉彦. 渤海曹妃甸海域表层沉积物常量元素特征及其对源区风化特征的指示意义[J]. 海洋地质前沿, 2024, 40(11): 80-90. doi: 10.16028/j.1009-2722.2024.167
YUAN Jidong, CHU Hongxian, FENG Yongcai, FENG Binghui, CHEN Yuhai, LI Jialin, JIANG Wenqin, HUANG Xing, JIA Pushuo, CAO Fanfan, LI Yuyan. Geochemical characteristics of major elements in surface sediments of Caofeidian offshore area in the Bohai Sea: implications for the weathering characteristics of the source area[J]. Marine Geology Frontiers, 2024, 40(11): 80-90. doi: 10.16028/j.1009-2722.2024.167
Citation: YUAN Jidong, CHU Hongxian, FENG Yongcai, FENG Binghui, CHEN Yuhai, LI Jialin, JIANG Wenqin, HUANG Xing, JIA Pushuo, CAO Fanfan, LI Yuyan. Geochemical characteristics of major elements in surface sediments of Caofeidian offshore area in the Bohai Sea: implications for the weathering characteristics of the source area[J]. Marine Geology Frontiers, 2024, 40(11): 80-90. doi: 10.16028/j.1009-2722.2024.167

渤海曹妃甸海域表层沉积物常量元素特征及其对源区风化特征的指示意义

  • 基金项目: 中国地质调查局项目(DD20211553,DD20230412)
详细信息
    作者简介: 远继东(1993—),男,硕士,工程师,主要从事海洋地质方面的研究工作. E-mail:787312820@qq.com
    通讯作者: 褚宏宪(1973—),男,硕士,正高级工程师,主要从事海洋地质与海岸带地质方面的研究工作. E-mail:chx-8@163.com
  • 中图分类号: P736.4

Geochemical characteristics of major elements in surface sediments of Caofeidian offshore area in the Bohai Sea: implications for the weathering characteristics of the source area

More Information
  • 通过对渤海曹妃甸海域的161个表层沉积物样品和环渤海湾主要河流的30个表层沉积物样品进行常量元素测试,研究常量元素组合特征及其影响因素,并运用化学蚀变指数(CIA),探讨沉积物风化特征及其物源指示意义。结果表明,曹妃甸附近海域表层沉积物常量元素氧化物组分以SiO2和Al2O3为主,Si、Al、Fe、K、Mg、P、Ti 7种元素“粒度效应”显著,受沉积物粒径影响,除Si外,其他6种元素在研究区基本呈现南高北低、西高东低的分布格局。元素Ca、Na受物源的影响显著,Mn的分布与氧化还原条件相关。风化程度研究表明,曹妃甸海域砂粒级和粉砂粒级沉积物CIA分别为48.4和57.2,CIA与沉积物粒径呈正相关性,与周边水系沉积物同处于初级风化阶段,其源岩成分接近二长花岗岩。地形和气候差异是影响滦河水系和海河水系沉积物风化程度差异不可忽视的重要因素。

  • 加载中
  • 图 1  研究区位置及采样站位

    Figure 1. 

    图 2  Folk分类三角图(a)和沉积物类型分布图(b)

    Figure 2. 

    图 3  沉积物常量元素标准化模式图(a)及富集因子图(b)

    Figure 3. 

    图 4  表层沉积物常量元素、平均粒径(Mz)及CIA分布

    Figure 4. 

    图 5  表层沉积物常量元素含量R型聚类分析谱系图

    Figure 5. 

    图 6  沉积物A-CN-K图解

    Figure 6. 

    表 1  研究区表层沉积物粒度参数

    Table 1.  Grain size parameters of surface sediments in the study area

    黏土/% 粉砂/% 砂/% 平均粒径/Φ 分选系数 偏态 峰态
    最大值 51.1 79.0 98.6 8.2 2.9 0.7 2.4
    最小值 0.5 0.9 0.0 1.4 0.7 −0.2 0.7
    平均值 21.5 50.4 28.2 5.7 2.0 0.3 1.0
    下载: 导出CSV

    表 2  沉积物常量元素含量统计

    Table 2.  Contents of major elements in the sediments

    区域SiO2Al2O3Fe2O3CaOK2OMgONa2OTiO2P2O5MnO
    曹妃甸海域均值/%62.5011.775.135.823.112.342.000.5890.1240.081
    极大值/%78.6013.377.2511.693.392.714.450.8040.1530.311
    极小值/%58.726.250.361.102.430.601.380.1220.0570.021
    标准差3.411.251.572.110.190.360.610.1230.0120.029
    变异系数0.050.110.310.360.060.150.310.2100.0900.351
    黄河均值/%61.3210.524.316.881.991.981.900.8700.1880.074
    极大值/%66.1512.419.328.472.352.502.152.3000.3040.142
    极小值/%53.119.603.256.041.631.701.300.5850.1540.051
    标准差4.600.891.830.810.200.280.250.5160.0470.027
    变异系数0.070.080.420.120.100.140.130.5930.2490.371
    海河水系均值/%56.3512.824.645.902.522.311.650.6230.1740.089
    极大值/%61.9415.236.647.272.982.882.220.6990.2150.136
    极小值/%51.7310.813.253.322.191.721.170.5190.1440.062
    标准差3.821.511.211.140.280.350.410.0610.0240.022
    变异系数0.070.120.260.190.110.150.250.0970.1370.249
    滦河水系均值/%61.9311.004.494.532.582.072.340.4960.1840.098
    极大值/%76.8313.7112.5410.592.923.962.800.8940.3820.185
    极小值/%47.828.301.461.461.670.701.430.1960.0730.056
    标准差8.981.823.302.730.391.060.500.2060.0950.041
    变异系数0.150.170.740.600.150.510.210.4160.5150.417
    中国浅海[27]平均值/%62.6111.094.435.312.321.821.990.5840.1150.068
    黄土[28]平均值/%59.8911.884.197.802.252.351.770.5970.1470.065
    渤海[27]平均值/%62.3612.014.323.472.771.892.410.550.120.07
    UCC[29]平均值/%65.8915.175.004.193.392.203.890.500.160.07
    下载: 导出CSV

    表 3  表层沉积物的常量元素、平均粒径和CIA相关性分析(n=161)

    Table 3.  Analysis of correlation between major elements, average particle size, and chemical index of alteration (CIA) in surface sediments (n=161)

    SiO2 Al2O3 Fe2O3 CaO K2O MgO Na2O TiO2 P2O5 MnO Mz CIA
    SiO2 1.00
    Al2O3 −0.913** 1.00
    Fe2O3 −0.903** 0.936** 1.00
    CaO −0.795** 0.550** 0.642** 1.00
    K2O −0.822** 0.918** 0.885** 0.518** 1.00
    MgO −0.965** 0.960** 0.928** 0.658** 0.853** 1.00
    Na2O 0.596** −0.583** −0.522** −0.638** −0.575** −0.562** 1.00
    TiO2 −0.900** 0.978** 0.962** 0.565** 0.877** 0.946** −0.551** 1.00
    P2O5 −0.888** 0.816** 0.782** 0.701** 0.685** 0.837** −0.613** 0.810** 1.00
    MnO −0.392** 0.325** 0.418** 0.296** 0.249** 0.351** −0.170* 0.375** 0.405** 1.00
    Mz −0.777** 0.776** 0.883** 0.647** 0.748** 0.798** −0.428** 0.827** 0.625** 0.303** 1.00
    CIA −0.771** 0.783** 0.738** 0.706** 0.760** 0.757** −0.948** 0.762** 0.738** 0.263** 0.631** 1.00
    注:n为样品数量;**在 0.01 水平(双侧)上显著相关;*在 0.05 水平(双侧)上显著相关。
    下载: 导出CSV

    表 4  研究区元素因子载荷矩阵

    Table 4.  Element factor-loading matrix of the study area

    因子 F1 F2 F3
    SiO2 −0.779 −0.530 −0.234
    Al2O3 0.920 0.320 0.114
    Fe2O3 0.901 0.310 0.233
    CaO 0.351 0.814 0.206
    K2O 0.884 0.292 0.013
    MgO 0.873 0.392 0.171
    Na2O −0.298 −0.847 0.041
    TiO2 0.919 0.296 0.179
    P2O5 0.628 0.581 0.282
    MnO 0.183 0.098 0.961
    平均粒径/Φ 0.809 0.275 0.150
    累计贡献率/% 54.08 77.80 89.20
    下载: 导出CSV
  • [1]

    中国科学院海洋研究所. 渤海地质[M]. 北京:科学出版社,1985.

    Chinese Academy of Sciences Institute of Oceanography. Geology of the Bohai Sea[M]. Beijing:Science Press,1985.

    [2]

    薛春汀. 滦河冲积扇-三角洲的范围和类型及其演化[J]. 海洋地质与第四纪地质,2016,36(6):13-22.

    XUE Chunting. Extenxts,type and evolution of Luanhe River fan-delta system,China[J]. Marine Geology & Quaternary Geology,2016,36(6):13-22.

    [3]

    张连杰. 渤海湾现代沉积特征及5 000年以来沉积环境演化[D]. 青岛:中国海洋大学,2018.

    ZHANG Lianjie. Modern sedimentary characteristics of the Bohai Bay and its sedimentary environment evolution during the past 5 000 years[D]. Qingdao:Ocean University of China,2018.

    [4]

    赵保仁,庄国文,曹德明,等. 渤海的环流,潮余流及其对沉积物分布的影响[J]. 海洋与湖沼,1995,26(5):466-473.

    ZHAO Baoren,ZHUANG Guowen,CAO Deming,et al. Circulation,tidal residual currents and their effects on the sedimentations in the Bohai Sea[J]. Oceanologia et Limnologia Sinica,1995,26(5):466-473.

    [5]

    陈丹婷. 洞庭湖“四水”入湖沉积物主量元素地球化学特征及意义[D]. 长沙:湖南师范大学,2021.

    CHEN Danting. Geochemistry of major elements in bed sediments from inlets of the Four Rivers to Dongting Lake,China[D]. Changsha:Hunan Normal University,2021.

    [6]

    NESBITT H W,YOUNG G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta,1984,48(7):1523-1534.

    [7]

    NESBITT H W,YOUNG G M,MCLENNAN S M,et al. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments,with implications for provenance studies[J]. The Journal of Geology,1996,104(5):525-542.

    [8]

    OHTA T,ARAI H. Statistical empirical index of chemical weathering in igneous rocks:a new tool for evaluating the degree of weathering[J]. Chemical Geology,2007,240(3):280-297.

    [9]

    NESBITT H W,YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,1982,299(5885):715-717.

    [10]

    HARNOIS L. The CIW index:a new chemical index of weathering[J]. Sedimentary Geology,1988,55(3):319-322.

    [11]

    FEDO C M,WAYNE NESBITT H,YOUNG G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols,with implications for paleoweathering conditions and provenance[J]. Geology,1995,23(10):921-924.

    [12]

    冯连君,储雪蕾,张启锐,等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘,2003,10(4):539-544.

    FENG Lianjun,CHU Xuelei,ZHANG Qirui,et al. CIA (chemical index of alteration) and its applications in the Neoproterozoic clastic rock[J]. Earth Science Frontiers,2003,10(4):539-544.

    [13]

    邵菁清,杨守业. 化学蚀变指数(CIA)反映长江流域的硅酸盐岩化学风化与季风气候?[J]. 科学通报,2012,57(11):933-942.

    SHAO Jingqing,YANG Shouye. Does chemical index of alteration (CIA) reflect silicate weathering and monsoonal climate in the Changjiang River Basin?[J]. Chinese Science Bulletin,2012,57(11):933-942.

    [14]

    成海燕,姜胜辉,张超,等. 渤海海峡表层沉积物地球化学特征[J]. 海洋地质前沿,2020,36(8):19-28.

    CHENG Haiyan,JIANG Shenghui,ZHANG Chao,et al. Geochemical characteristics of surface sedimens in Bohai Strait and controlling factors[J]. Marine Geology Frontiers,2020,36(8):19-28.

    [15]

    宁泽,张勇,林学辉,等. 闽北近岸海域表层沉积物的风化特征及物源指示[J]. 海洋地质前沿,2020,36(10):12-21.

    NING Ze,ZHANG Yong,LIN Xuehui,et al. Weathering characteristics and provenance of the surface sediments in the offshore of northern Fujian[J]. Marine Geology Frontiers,2020,36(10):12-21.

    [16]

    段云莹,裴绍峰,廖名稳,等. 渤海莱州湾沉积物REE与重金属污染特征及物源判别[J]. 海洋地质前沿,2021,37(10):8-24.

    DUAN Yunying,PEI Shaofeng,LIAO Mingwen,et al. Characteristics of REE and heavy metals in the surficial sediments of Laizhou Bay,Bohai Sea and their implications for provenance[J]. Marine Geology Frontiers,2021,37(10):8-24.

    [17]

    褚宏宪,史慧杰,宗欣,等. 渤海湾曹妃甸深槽海区地形地貌特征及控制因素[J]. 海洋科学,2016,40(3):128-137.

    CHU Hongxian,SHI Huijie,ZONG Xin,et al. Characteristic geomorphology and controlling factors of Caofeidian Channel in the Bohai Bay[J]. Marine Sciences,2016,40(3):128-137.

    [18]

    祝贺. 曹妃甸近岸海区沉积物特征研究[D]. 烟台:鲁东大学,2016.

    ZHU He. Research of the sedimentary characteristics in Caofeidian inshore[D]. Yantai:Ludong University,2016.

    [19]

    杨娅敏,张礼中,沈睿文,等. 渤海湾唐山港海域表层沉积物粒度和黏土矿物分布特征及其物源指示[J]. 海洋地质与第四纪地质,2023,43(5):136-147.

    YANG Yamin,ZHANG Lizhong,SHEN Ruiwen,et al. Characteristics of grain size and clay mineral distribution of surface sediments and their provenance implication in Tangshan Harbor,Bohai Bay[J]. Marine Geology & Quaternary Geology,2023,43(5):136-147.

    [20]

    JIANG W Q,CHU H X,LIU Y Y,et al. Distribution of heavy metals in coastal sediments under the influence of multiple factors:a case study from the south coast of an industrialized harbor city (Tangshan,China)[J]. Science of the Total Environment,2023,889:164208.

    [21]

    张连杰,朱龙海,张盼,等. 渤海湾表层沉积物元素地球化学分布特征与影响因素[J]. 海洋科学,2019,43(6):78-87.

    ZHANG Lianjie,ZHU Longhai,ZHANG Pan,et al. Geochemical distribution and its controlling factors of the surface sediments in the Bohai Bay[J]. Marine Sciences,2019,43(6):78-87.

    [22]

    蓝先洪,李日辉,王中波,等. 渤海西部表层沉积物的地球化学记录[J]. 海洋地质与第四纪地质,2017,37(3):75-85.

    LAN Xianhong,LI Rihui,WANG Zhongbo,et al. Geochemical records of surface sediments in the western Bohai Sea[J]. Marine Geology & Quaternary Geology,2017,37(3):75-85.

    [23]

    FOLK R L,ANDREWS P B. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics,1970,13(4):937-968.

    [24]

    ZOLLER W H,GLADNEY E S,DUCE R A. Atmospheric concentrations and sources of trace metals at the South Pole[J]. Science,1974,183(4121):198-200.

    [25]

    MCLENNAN S M. Weathering and global denudation[J]. The Journal of Geology,1993,101(2):295-303.

    [26]

    COX R,LOWE D R,CULLERS R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in southwestern United States[J]. Geochimica et Cosmochimica Acta,1995,59(14):1940-2919.

    [27]

    赵一阳,鄢明才. 中国浅海沉积物地球化学[M]. 北京:科学出版社,1994.

    ZHAO Yiyang,YAN Mingcai. Geochemistry of Sediments of the China Shelf Sea[M]. Beijing:Science Press,1994.

    [28]

    文启忠,吴明清. 黄土高原黄土的平均化学成分与地壳克拉克值的类比[J]. 土壤学报,1996,33(3):227-231.

    WEN Qizhong,WU Mingqing. Comparison of average chemical composition of loess in loess plateau with Clark values of crust[J]. Acta Pedologica Sinica,1996,33(3):227-231.

    [29]

    TAYLOR S R,MCLENNAN S M. The Continental Crust:Its Composition and Evolution[M]. Oxford:Blackwell Scientific Publication,1985.

    [30]

    邹建军,石学法,李双林. 北黄海浅表层沉积物微量元素的分布及其早期成岩作用探讨[J]. 海洋地质与第四纪地质,2007,27(3):43-50.

    ZOU Jianjun,SHI Xuefa,LI Shuanglin. Distributions of minor elements in near surface sediments in North Yellow Sea and the early diagenesis[J]. Marine Geology & Quaternary Geology,2007,27(3):43-50.

    [31]

    杨守业,李从先. 长江与黄河现代表层沉积物元素组成及其示踪作用[J]. 自然科学进展,1999,9(10):930-937.

    YANG Shouye,LI Congxian. Elemental composition and tracer in modern surface sediments of Yangtze River and Yellow River[J]. Progress in Natural Science,1999,9(10):930-937.

    [32]

    宋金明. 黄河口邻近海域沉积物中可转化的磷[J]. 海洋科学,2000,24(7):42-45.

    SONG Jinming. Transferable phosphorus in sediments of the Huanghe River Estuary adjacent waters[J]. Marine Sciences,2000,24(7):42-45.

    [33]

    宋金明,李学刚,邵君波,等. 南黄海沉积物中氮、磷的生物地球化学行为[J]. 海洋与湖沼,2006(4):370-376.

    SONG Jinming,LI Xuegang,SHAO Junbo,et al. Biogeochemical characteristics of nitrogen and phosphorus in the South Yellow Sea sediments[J]. Oceanologia et Limnologia Sinica,2006(4):370-376.

    [34]

    吴金浩,刘桂英,王年斌,等. 辽东湾北部海域表层沉积物氧化还原电位及其主要影响因素[J]. 沉积学报,2012,30(2):333-339.

    WU Jinhao,LIU Guiying,WANG Nianbin,et al. The Eh in surface sediments in the northern of Liaodong Bay and its main influencing factors[J]. Acta Sedimentologica Sinica,2012,30(2):333-339.

    [35]

    傅寒晶,简星,梁杭海. 硅酸盐化学风化强度评估的沉积物指标与方法研究进展[J]. 古地理学报,2021,23(6):1192-1209.

    FU Hanjing,JIAN Xing,LIANG Hanghai. Research progress of sediment indicators and methods for evaluation of silicate chemical weathering intensity[J]. Journal of Palaeogeography,2021,23(6):1192-1209.

    [36]

    杨作升,赵晓辉,乔淑卿,等. 长江和黄河入海沉积物不同粒级中长石/石英比值及化学风化程度评价[J]. 中国海洋大学学报(自然科学版),2008,38(2):244-250.

    YANG Zuosheng,ZHAO Xiaohui,QIAO Shuqing,et al. Feldspar/Quartz(F/Q) ratios as a chemical weathering intensity indicator in different grain size-fractions of sediments from the Changjiang and Huanghe Rivers to the seas[J]. Periodical of Ocean University of China,2008,38(2):244-250.

    [37]

    王艳君. 海河尾闾沉积物特征分析兼与黄河尾闾沉积物比较[D]. 烟台:鲁东大学,2017.

    WANG Yanjun. Analysis of sediment characteristics in the tail section of Haihe River and compared with the tail section of Yellow River[D]. Yantai:Ludong University,2017.

    [38]

    陈垚. 黄河泥沙沉积物演化特征及物源示踪[D]. 西安:长安大学,2020.

    CHEN Yao. Spatial evolution characteristics of the Yellow River sediments and the significance of provenance tracing[D]. Xi’an:Chang’an University,2020.

    [39]

    PANG H L,PAN B T,GARZANTI E,et al. Mineralogy and geochemistry of modern Yellow River sediments:implications for weathering and provenance[J]. Chemical Geology,2018,488:76-86.

    [40]

    迟清华,马生明. 流域上游基岩与下游冲积平原土壤化学组成的对比[J]. 地质通报,2008,27(2):188-195.

    CHI Qinghua,MA Shengming. Comparison between the chemical composition of bedrocks in the upper reaches and that of alluvial plain soils in the lower reaches of a drainage area[J]. Geological Bulletin of China,2008,27(2):188-195.

  • 加载中

(6)

(4)

计量
  • 文章访问数:  145
  • PDF下载数:  25
  • 施引文献:  0
出版历程
收稿日期:  2024-07-15
刊出日期:  2024-11-28

目录