东海陆架盆地X凹陷中央背斜带Y构造深层低渗-特低渗天然气形成条件及成藏模式

李宁, 于仲坤, 刁慧, 王皖丽, 丁飞, 余箐. 东海陆架盆地X凹陷中央背斜带Y构造深层低渗-特低渗天然气形成条件及成藏模式[J]. 海洋地质前沿, 2025, 41(5): 22-31. doi: 10.16028/j.1009-2722.2024.181
引用本文: 李宁, 于仲坤, 刁慧, 王皖丽, 丁飞, 余箐. 东海陆架盆地X凹陷中央背斜带Y构造深层低渗-特低渗天然气形成条件及成藏模式[J]. 海洋地质前沿, 2025, 41(5): 22-31. doi: 10.16028/j.1009-2722.2024.181
LI Ning, YU Zhongkun, DIAO Hui, WANG Wanli, DING Fei, YU Qing. Formation conditions and hydrocarbon accumulation model of deep low to ultra-low permeability gas reservoirs of Y Structure in Central Anticline Belt, X Sag, East China Sea Shelf Basin[J]. Marine Geology Frontiers, 2025, 41(5): 22-31. doi: 10.16028/j.1009-2722.2024.181
Citation: LI Ning, YU Zhongkun, DIAO Hui, WANG Wanli, DING Fei, YU Qing. Formation conditions and hydrocarbon accumulation model of deep low to ultra-low permeability gas reservoirs of Y Structure in Central Anticline Belt, X Sag, East China Sea Shelf Basin[J]. Marine Geology Frontiers, 2025, 41(5): 22-31. doi: 10.16028/j.1009-2722.2024.181

东海陆架盆地X凹陷中央背斜带Y构造深层低渗-特低渗天然气形成条件及成藏模式

  • 基金项目: “十四五”全国油气资源评价项目 “中海油矿业权区及周边空白区油气资源评价”(QGYQZYPJ2022-3);中海石油(中国)有限公司重大科技专项“东海西湖凹陷大中型气田勘探方向及关键技术研究”(KJZX-2023-0101)
详细信息
    作者简介: 李宁(1983—),男,硕士,高级工程师,主要从事海上油气勘探方面的研究与管理工作. E-mail:lining2@cnooc.com.cn
  • 中图分类号: P618.13;P736

Formation conditions and hydrocarbon accumulation model of deep low to ultra-low permeability gas reservoirs of Y Structure in Central Anticline Belt, X Sag, East China Sea Shelf Basin

  • 油气勘探证实东海X凹陷中央背斜带深层低渗-特低渗砂岩储层蕴含丰富的天然气资源,而针对低渗-特低渗储层油气资源的地质认识尚不深入,极大地制约了东海油气增储上产。Y构造是X凹陷最大反转背斜构造,通过对烃源岩特征、储层物性和成岩作用等的深入分析研究,并结合其热史-埋藏史,重点阐明了气藏主力产层花港组砂岩的低渗-特低渗演化过程、低渗-特低渗化影响因素与储层成岩-成藏耦合关系。研究表明,Y构造在龙井运动反转期剥蚀量超过1 200 m,说明花港组砂岩储层13 Ma曾经历历史最大埋深与最高温度,易形成低渗-特低渗砂岩储层。根据研究区砂岩储层致密化程度及演化特征,可以将气藏划分为花港组H3砂层组成藏未特低渗气藏、H4—H5边成藏边特低渗气藏和H8—H12先特低渗后成藏之气藏。在此基础上,结合油气成藏过程分析,建立了中央背斜带“花港组垂向两期充注、龙井组调整运移”成藏模式。

  • 加载中
  • 图 1  X凹陷区域及研究区位置

    Figure 1. 

    图 2  X凹陷构造纲要与地层综合柱状图

    Figure 2. 

    图 3  Y构造储层物性与埋深关系

    Figure 3. 

    图 4  Y构造储层压实-胶结关系

    Figure 4. 

    图 5  Y构造YY-1井储层典型微观特征

    Figure 5. 

    图 6  Y构造黏土矿物含量与埋深关系

    Figure 6. 

    图 7  YY-1井H3取芯段包裹体荧光特征

    Figure 7. 

    图 8  YY-1井花港组包裹体均一温度特征

    Figure 8. 

    图 9  Y构造埋藏史-热史-油气充注史

    Figure 9. 

    图 10  Y构造天然气碳同位素运移

    Figure 10. 

    图 11  Y构造油气运移成藏模式

    Figure 11. 

    表 1  Y构造天然气甲烷稳定碳同位素及成熟度表

    Table 1.  Stable carbon isotope and maturity of natural gas methane in Y Structure

    井号 深度/m 层位 样品 δ13C1/‰ δ13C2/‰ δ13C3/‰ 天然气成熟度
    甲烷 乙烷 丙烷
    YY-14 085~4 105花下段H7DST−34.4−28.3−27.11.48
    2 933~2 938.5花上段H2DST−32.1−25.4−23.41.62
    YY-3d3 008花上段H3MDT−32.5−25.6−23.01.59
    3 269花上段H4MDT−31.9−25.9−23.81.24
    1 393.98龙井组MDT−39.6−25−23.61.08
    1 482.72龙井组MDT−38.1−25.0−23.61.27
    H井3 873~3 903花上段DST−30.5−24.7−23.51.72
    3 462~3 491
    3 493~3 507
    花上段DST−30.7−24.0−23.11.71
    Z井3 769~3 799花上段H3DST−30.9−24.0−24.01.69
    3 709~3 739花上段H3DST−29.8−23.8−23.61.77
    3 447.2~3 456.1花上段H2DST−29.2−23.3−22.31.81
    3 1773 181/
    3 186~3 199
    花上段H1DST−29.9−23.5−22.71.76
    4 240~4 352.76花上段H5DST−30.4−25.3−23.31.73
    3 673~3 705花上段H3DST−31.3−26.0−25.51.67
    3 570花上段H2DST−29.6−23.4−22.31.78
    注:*天然气成熟度计算公式:δ13C1(‰)≈58.67×lnRo-44.37[20]
    下载: 导出CSV
  • [1]

    周心怀. 西湖凹陷地质认识创新与油气勘探领域突破[J]. 中国海上油气,2020,32(1):1-12.

    ZHOU X H. Geological understanding and innovation in Xihu Sag and breakthroughs in oil and gas exploration[J]. China Offshore Oil and Gas,2020,32(1):1-12.

    [2]

    张迎朝,邹玮,陈忠云,等. 东海陆架盆地西湖凹陷中央反转构造带古近系花港组气藏“先汇后聚”机制及地质意义[J]. 石油与天然气地质,2023,44(5):1256-1269. doi: 10.11743/ogg20230514

    ZHANG Y Z,Zou W,CHENG Z Y,et al. The mechanism of “convergence ahead of accumulation” and its geological significance for gas reservoirs in Paleogene Huagang Formation across the central inverted structural zone of Xihu Depression,East China Sea Shelf Basin[J]. Oil & Gas Geology,2023,44(5):1256-1269. doi: 10.11743/ogg20230514

    [3]

    刘金水,张国栋,刘云. 西湖凹陷A洼陷异常高压封存箱成因机制与控藏作用[J]. 中国海上油气,2023,35(3):25-33.

    LIU J S,ZHANG G D,LIU Y. Origin mechanism of abnormal high-pressure compartment in A sub-sag of Xihu Sag and its controlling effect on reservoir formation[J]. China Offshore Oil and Gas,2023,35(3):25-33.

    [4]

    倪智勇,张紫东,李思澎,等. 西湖凹陷平湖斜坡构造带油藏成藏期次厘定[J]. 石油科学通报,2022,7(3):281-293. doi: 10.3969/j.issn.2096-1693.2022.03.026

    NI Z Y,ZHANG Z D,LI S P,et al. The oil accumulation period in the Pinghu slope tectonic belt of the Xihu Sag[J]. Petroleum Science Bulletin,2022,7(3):281-293. doi: 10.3969/j.issn.2096-1693.2022.03.026

    [5]

    王欣,李峰,沈娇,等. 西湖凹陷杭州斜坡带平湖组沉积体系及演化[J]. 油气地质与采收率,2022,29(4):57-68.

    WANG X,LI F,SHEN J,et al. Evolution of sedimentary system of Pinghu Formation in Hangzhou slope belt,Xihu Sag[J]. Petroleum Geology and Recovery Efficiency,2022,29(4):57-68.

    [6]

    沈文超,邵龙义,周倩羽,等. 西湖凹陷古近系平湖组泥质岩地球化学特征及其地质意义[J]. 地质学报,2022,96(6):2078-2093.

    SHEN W C,SHAO L Y,ZHOU Q Y,et al. Geochemistry of argillaceous rocks of the Eocene Pinghu Formation from Xihu Depression in East China Sea Basin and its geological significance[J]. Acta Geologica Sinica,96(6):2078-2093.

    [7]

    蒋一鸣,何新建,唐贤君,等. 钓鱼岛隆褶带物质构成及东海西湖凹陷原型盆地东边界再认识[J]. 地球科学,2019,44(3):773-783.

    JIANG Y M,HE X J,TANG X J,et al. Material composition of Diaoyu Islands folded zone and reanalysis of eastern boundary of prototype basin of Xihu Sag in East China Sea[J]. Earth Science,2019,44(3):773-783.

    [8]

    刁慧,邹玮,李宁,等. 东海盆地西湖凹陷武云亭构造油气来源与成藏模式[J]. 地质科技通报,2020,39(3):110-119.

    DIAO H,ZOU W,LI N,et al. Hydrocarbon origin and reservoir forming model of Wuyunting Structure in Xihu Depression,East China Sea Basin[J]. Bulletin of Geological Science and Technology,2020,39(3):110-119.

    [9]

    张宙,何新建,唐贤君,等. 东海盆地西湖凹陷构造圈闭特征及其油气藏类型[J]. 海洋地质前沿,2022,38(3):27-35.

    ZHANG Z,HE X J,TANG X J,et al. Structural trap characteristics and reservoir types in Xihu Sag,East China Sea Basin[J]. Marine Geology Frontiers,2022,38(3):27-35.

    [10]

    李天军,黄志龙,郭小波,等. 东海盆地西湖凹陷平北斜坡带平湖组煤系原油地球化学特征与油-源精细对比[J]. 石油与天然气地质,2022,43(2):432-444. doi: 10.11743/ogg20220215

    LI T J,HUANG Z L,GUO X B,et al. Geochemical characteristics of crude oil from coal measure source rocks and fine oil-source correlation in the Pinghu Formation in Pingbei slope belt,Xihu Sag,East China Sea Shelf Basin[J]. Oil & Gas Geology,2022,43(2):432-444. doi: 10.11743/ogg20220215

    [11]

    蒋一鸣,刁慧,曾文倩. 东海盆地西湖凹陷平湖组煤系烃源岩条件及成烃模式[J]. 地质科技通报,2020,39(3):30-39.

    JIANG Y M,DIAO H,ZENG W Q. Coal source rock conditions and hydrocarbon generation model of Pinghu Formation in Xihu Depression,East China Sea Shelf Basin[J]. Bulletin of Geological Science and Technology,2020,39(3):30-39.

    [12]

    刘英辉,蔡华,段冬平,等. 西湖凹陷平湖地区平湖组海侵体系域潮控三角洲-潮坪沉积特征及模式[J]. 海洋地质前沿,2022,38(1):33-40.

    LIU Y H,CAI H,DUAN D P,et al. The sedimentary characteristics of tidal delta and tidal flat in transgressive system tract of Pinghu Formation in Pinghu area,Xihu Sag[J]. Marine Geology Frontiers,2022,38(1):33-40.

    [13]

    江东辉,杜学斌,李昆,等. 东海西湖凹陷保俶斜坡带平湖组“古地貌-古水系-古坡折”特征及其对沉积体系的控制[J]. 石油实验地质,2022,44(5):771-779,789. doi: 10.11781/sysydz202205771

    JIANG D H,DU X B,LI K,et al. Distribution of sedimentary system multi-controlled by palaeo-geomorphology,water system and break during the deposition of Pinghu Formation,Baochu slope belt,Xihu Sag,East China Sea Shelf Basin[J]. Petroleum Geology & Experiment,2022,44(5):771-779,789. doi: 10.11781/sysydz202205771

    [14]

    陈春峰,徐东浩,张银国,等. 西湖凹陷中北部花港组上段浅水辫状河三角洲发育特征[J]. 海洋地质前沿,2024,40(10):39-48.

    CHEN C F,XU D H,ZHANG Y G,et al. Shallow braided river delta in the upper Huagang Formation in the central-northern part of Xihu Sag,East China Sea Basin[J]. Marine Geology Frontiers,2024,40(10):39-48.

    [15]

    张迎朝,胡森清,刘金水,等. 东海盆地X凹陷天然气成藏条件与成藏模式[J]. 中国海上油气,2022,34(1):27-35. doi: 10.11935/j.issn.1673-1506.2022.01.004

    ZHANG Y Z,HU S Q,LIU J S,et al. Gas accumulation conditions and mode in X Sag of East China Sea Basin[J]. China Offshore Oil and Gas,2022,34(1):27-35. doi: 10.11935/j.issn.1673-1506.2022.01.004

    [16]

    周心怀,徐国盛,崔恒远,等. 东海西湖凹陷中央反转构造带古近系花港组致密砂岩储集层裂缝发育特征与油气成藏关系[J]. 石油勘探与开发,2020,47(3):462-475. doi: 10.11698/PED.2020.03.03

    ZHOU X H,XU G S,CUI H Y,et al. Fracture development and hydrocarbon accumulation in tight sandstone reservoirs of the Paleogene Huagang Formation in the central reversal tectonic belt of the Xihu Sag,East China Sea[J]. Petroleum Exploration and Development,2020,47(3):462-475. doi: 10.11698/PED.2020.03.03

    [17]

    李宁,徐振中,钟荣全,等. 西湖凹陷深层致密砂岩裂缝控制因素及发育模式:以中部洼陷带中南部W构造为例[J]. 海洋地质前沿,2024,40(10):19-28.

    LI N,XU Z Z,ZHONG R Q,et al. Controlling factors and development patterns of fractures in deep tight sandstone in Xihu Sag,East China Sea Shelf Basin:a case study from W Structure in south central region of Central Depression Belt[J]. Marine Geology Frontiers,2024,40(10):19-28.

    [18]

    张武,邹玮,侯国伟,等. 西湖凹陷中部深层甜点气藏发育条件与分布预测[J]. 中国海上油气,2024,36(5):83-93.

    ZHANG W,ZOU W,HOU G W,et al. Development conditions and distribution prediction of deep sweet spot gas reservoirs in the middle of Xihu Sag[J]. China Offshore Oil and Gas,2024,36(5):83-93.

    [19]

    沈伟锋,于仲坤,刁慧,等. 西湖凹陷热流演化史模拟及成藏意义[J]. 中国海上油气,2020,32(1):42-53.

    SHEN W F,YU Z K,DIAO H,et al. Simulation of heat flow evolution history in Xihu Sag and its significance for hydrocarbon accumulation[J]. China Offshore Oil and Gas,2020,32(1):42-53.

    [20]

    程熊,侯读杰,赵喆,等. 西湖凹陷天然气成因及来源分析[J]. 中国海上油,2019,31(3):50-60.

    CHENG X,HOU D J,ZHAO Z,et al. Analysis on the genesis and source of natural gas in Xihu Sag,East China Sea Basin[J]. China Offshore Oil and Gas,2019,31(3):50-60.

  • 加载中

(11)

(1)

计量
  • 文章访问数:  37
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2024-07-22
刊出日期:  2025-05-28

目录