Quality evaluation and prediction of low permeability fine-grained sandstone reservoir of shallow marine gravity flow: a case study of the First Member of Huangliu Formation in Dongfang A area of Yinggehai Basin
-
摘要:
莺歌海盆地东方A区高温高压低渗气藏尚未实现规模有效开发,寻找有利储层至关重要。通过激光粒度、铸体薄片、扫描电镜、高压压汞等岩芯测试分析手段,首先研究了储层微观差异特征,并对储层质量差异进行分类评价,然后通过分析储层质量差异与测井曲线间的响应关系,筛选能用于评价储层质量的测井曲线,利用主成分分析法构建了可反映储层质量好坏的敏感因子曲线,最后基于敏感因子曲线协同波形指示模拟方法对储层质量进行预测。结果表明,储层质量主要由泥质产出特征决定,当储层物性差异较大,但泥质含量与沉积粒度特征相近时,可根据其泥质产状特征将研究区低渗储层质量划分为3个级次:Ⅰ级储层的泥质产状以有序分布的泥质条带为主,发育粗粒粉砂岩,溶蚀作用强烈;Ⅱ级储层主要特征为泥质混杂分布,发育中—粗粒粉砂岩,溶蚀强度中—强;Ⅲ级储层的泥质产状呈杂基分散状态,沉积细粒粉砂岩,溶蚀发育较弱。其中,Ⅰ级与Ⅱ级储层属于优质储层。建立的储层质量分级评价模型累计方差贡献率可达98.1%,能够反映研究区储层质量差异;提出了基于储层质量敏感因子和地震波形指示模拟相协同的储层质量预测方法,预测结果与实钻资料吻合率高,能揭示有利储层的空间展布,对气田的开发决策和井位部署具有指导意义。
Abstract:The high-temperature and high-pressure low-permeability gas reservoirs in Dongfang A area of Yinggehai Basin have not yet achieved effective large-scale development, making the search for favorable reservoirs crucial. Utilizing rock core testing and analysis methods such as laser granulometry, thin section petrography, scanning electron microscopy, and high-pressure mercury injection, we first investigated the microscopic differences in reservoir characteristics, and classified and evaluated reservoir quality differences. Then, by analyzing the relationship between reservoir quality differences and well logging features, we selected well logging parameters suitable for evaluating reservoir quality. Using the principal component analysis method, we constructed sensitivity factor curves that reflect the quality of reservoirs. Finally, based on the co-simulation method of sensitivity factor curves and seismic waveform indicators, we predicted the reservoir quality. Results indicate that reservoir quality is mainly determined by mudstone production characteristics. When the mud content and the sediment grain size of the reservoirs are similar, the reservoir quality in the study area could be divided into three grade levels based on mudstone production characteristics. For Grade Ⅰ reservoirs, the mudstone production state is characterized by orderly distributed mudstone bands, with deposits of coarse-grained siltstone, and strong dissolution effects. Grade Ⅱ reservoirs are characterized by mixed distribution of mudstone, with medium to coarse-grained siltstone deposits, and moderate to strong dissolution intensity. Grade Ⅲ reservoirs exhibit scattered mudstone production in a dispersed state, with the deposition of fine-grained siltstone in weak dissolution intensity. Grade Ⅰ and Grade Ⅱ reservoirs are favorable reservoirs. The established reservoir quality grading model has a cumulative variance contribution rate of 98.1%, capable of reflecting reservoir quality differences in the study area. A reservoir quality prediction method based on the synergy of reservoir quality sensitivity factors and seismic waveform indicators was proposed. The predicted results are highly consistent with actual drilling data, revealing the spatial distribution of favorable reservoirs. This approach has significant implications for guiding development decisions and well deployment in gas fields.
-
-
表 1 莺歌海盆地东方A区黄一段储层质量分级特征
Table 1. The reservoirs quality grading based on mainly the mudstone texture of the First Member of Huangliu Formation in Dongfang A area, Yinggehai Basin
储层质量级次 粒度
/Φ泥质含量/% 泥质
产状孔隙度/% 渗透率/10−3 μm2 薄片照片 测井曲线响应 测井曲线特征描述 宏观 微观 Ⅰ 6.15 4~15 条带状 >16 >0.5 GR曲线呈高幅度箱形、钟形 Ⅱ 6.18 10~20 混杂分布 14~16 0.2~0.5 GR曲线呈中幅度箱形、钟形 Ⅲ 6.25 >15 杂基分散 <14 <0.2 GR曲线呈较为平直的微齿形 表 2 莺歌海盆地东方A区黄一段储层质量分级判别函数特征值信息统计
Table 2. Statistics of discriminant function eigenvalues for reservoir quality grading of the First Member of Huangliu Formation in Dongfang A area, Yinggehai Basin
判别函数 特征值 方差贡献率/% 累积方差百分比/% 典型相关性 1 7.325 98.1 98.1 0.938 2 0.142 1.9 100 0.353 -
[1] 贾承造,郑民,张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发,2012,39(2):129-136.
JIA C Z,ZHENG M,ZHANG Y F. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development,2012,39(2):129-136.
[2] 李华,成涛,陈建华,等. 南海西部海域莺歌海盆地东方1-1气田开发认识及增产措施研究[J]. 天然气勘探与开发,2014,37(4):33-37. doi: 10.3969/j.issn.1673-3177.2014.04.008
LI H,CHENG T,CHEN J H,et al. Dongfang 1-1 Gas Field development and its stimulation measures,Yinggehai Basin,western South China Sea[J]. Natural Gas Exploration & Development,2014,37(4):33-37. doi: 10.3969/j.issn.1673-3177.2014.04.008
[3] 张冲,杨朝强,汪新光,等. 北部湾盆地复杂低渗储层品质分级表征[J]. 断块油气田,2022,29(4):483-488.
ZHANG C,YANG C Q,WANG X G,et al. Classification and characterization of complex low-permeability reservoir quality in Beibuwan Basin[J]. Fault-Block Oil & Gas Field,2022,29(4):483-488.
[4] 陈之贺,张冲,陈建,等. 基于微观孔喉差异性的低渗储层品质分类研究[J]. 山东石油化工学院学报,2023,37(3):14-20. doi: 10.3969/j.issn.2097-311X.2023.03.003
CHEN Z H,ZHANG C,CHEN J,et al. Study on quality classification of low permeability reservoir based on microscopic pore-throat difference[J]. Journal of Shandong Institute of Petroleum and Chemical Industry,2023,37(3):14-20. doi: 10.3969/j.issn.2097-311X.2023.03.003
[5] 邓猛,赵军寿,金宝强,等. 基于古地貌分析的中深层沉积储层质量评价:以渤海X油田沙二段为例[J]. 断块油气田,2019,26(2):147-152.
DENG M,ZHAO J S,JIN B Q,et al. Reservoir quality evaluation of middle-deep formations based on paleo-geomorphology analysis:a case study of Sha-2 Formation in X Oilfield of Bohai Bay[J]. Fault-Block Oil & Gas Field,2019,26(2):147-152.
[6] 张振宇,张立宽,罗晓容,等. 准噶尔盆地中部地区深层西山窑组砂岩成岩作用及其对储层质量评价的启示[J]. 天然气地球科学,2019,30(5):686-700. doi: 10.11764/j.issn.1672-1926.2019.04.002
ZHANG Z Y,ZHANG L K,LUO X R,et al. Diagenesis of sandstone and its implications for reservoir quality evaluation in the deep Xishanyao Formation in the central Junggar Basin[J]. Natural Gas Geoscience,2019,30(5):686-700. doi: 10.11764/j.issn.1672-1926.2019.04.002
[7] 虞兵, 冉晓军, 侯秋元, 等. 裂缝性致密砂岩储层品质评价[J]. 测井技术, 2019, 43(4): 405-415.
YU B, RAN X J, HOU Q Y, et al. Reservoir quality evaluation of fractured tight sandstone.[J]. Well Logging Technology, 2019, 43(4): 405-415.
[8] 钟高明,石磊,赵向原,等. 松辽盆地南部长岭断陷蚀变火山碎屑岩储层质量评价[J]. 天然气工业,2023,43(12):25-36. doi: 10.3787/j.issn.1000-0976.2023.12.003
ZHONG G M,SHI L,ZHAO X Y,et al. Quality evaluation of altered volcaniclastic rock reservoirs in the Changling Fault depression of the southern Songliao Basin[J]. Natural Gas Industry,2023,43(12):25-36. doi: 10.3787/j.issn.1000-0976.2023.12.003
[9] 王锦,冯国奇,王鑫. 东营凹陷湖盆陡坡带砂砾岩储层评价方法及应用:以LA区块沙四上亚段为例[J]. 石油地质与工程,2022,36(3):61-68. doi: 10.3969/j.issn.1673-8217.2022.03.011
WANG J,FENG G Q,WANG X. Evaluation method and application of glutenite reservoir in steep slope zone of lacustrine basin in Dongying Depression:by taking E2s41 in LA block as an example[J]. Petroleum Geology & Engineering,2022,36(3):61-68. doi: 10.3969/j.issn.1673-8217.2022.03.011
[10] 姜涛,解习农. 莺歌海盆地高温超压环境下储层物性影响因素[J]. 地球科学,2005,30(2):215-220. doi: 10.3321/j.issn:1000-2383.2005.02.015
JIANG T,JIE X N. Effects of high temperature and overpressure on reservoir quality in the Yinggehai Basin,South China Sea[J]. Earth Science,2005,30(2):215-220. doi: 10.3321/j.issn:1000-2383.2005.02.015
[11] 毛倩茹,范彩伟,罗静兰,等. 超压背景下中深层砂岩储集层沉积-成岩演化差异性分析:以南海莺歌海盆地中新统黄流组为例[J]. 古地理学报,2022,24(2):344-360. doi: 10.7605/gdlxb.2022.02.024
MAO Q R,FAN C W,LUO J L,et al. Analysis of sedimentary-diagenetic evolution difference on middle-deep buried sandstone reservoirs under overpressure background:a case study of the Miocene Huangliu Formation in Yinggehai Basin,South China Sea[J]. Journal of Palaeogeography(Chinese Edition),2022,24(2):344-360. doi: 10.7605/gdlxb.2022.02.024
[12] 黄志龙,朱建成,马剑,等. 莺歌海盆地东方区高温高压带黄流组储层特征及高孔低渗成因[J]. 石油与天然气地质,2015,36(2):288-296. doi: 10.11743/ogg20150214
HUANG Z L,ZHU J C,MA J,et al. Characteristics and genesis of high-porosity and low-permeability reservoirs in the Huangliu Formation of high temperature and high pressure zone in Dongfang area,Yinggehai Basin[J]. Oil & Gas Geology,2015,36(2):288-296. doi: 10.11743/ogg20150214
[13] 郇金来,漆智,杨朝强,等. 莺歌海盆地东方区黄流组一段储层成岩作用机理及孔隙演化[J]. 地质科技情报,2016,35(1):87-93.
HUAN J L,QI Z,YANG C Q,et al. Diagenesis mechanism and pore evolution of the first member of the Huangliu Formation in the eastern area of Yinggehai Basin[J]. Geological Science and Technology Information,2016,35(1):87-93.
[14] 张伙兰,裴健翔,张迎朝,等. 莺歌海盆地东方区中深层黄流组超压储集层特征[J]. 石油勘探与开发,2013,40(3):284-293. doi: 10.11698/PED.2013.03.04
ZHANG H L,PEI J X,ZHANG Y Z,et al. Overpressure reservoirs in the mid-deep Huangliu Formation of the Dongfang area,Yinggehai Basin,South China Sea[J]. Petroleum Exploration and Development,2013,40(3):284-293. doi: 10.11698/PED.2013.03.04
[15] 刘为,杨希冰,张秀苹,等. 莺歌海盆地东部黄流组重力流沉积特征及其控制因素[J]. 岩性油气藏,2019,31(2):75-82. doi: 10.12108/yxyqc.20190209
LIU W,YANG X B. ZHANG X P,et al. Characteristics and controlling factors of gravity flow deposits of Huangliu Forma tion in eastern Yinggehai Basin[J]. Lithologic Reservoirs,2019,31(2):75-82. doi: 10.12108/yxyqc.20190209
[16] 杨朝强,周伟,王玉,等. 莺歌海盆地东方区黄流组一段小层划分及海底扇沉积演化主控因素[J]. 中国海上油气,2022,34(1):55-65. doi: 10.11935/j.issn.1673-1506.2022.01.007
YANG C Q,ZHOU W,WANG Y,et al. Subdivision of the first member of Huangliu Formation in Dongfang area of Yinggehai Basin and the main factors controlling the sedimentary evolution of submarine fan[J]. China Offshore Oil and Gas,2022,34(1):55-65 doi: 10.11935/j.issn.1673-1506.2022.01.007
[17] 周伟,张辉,杨朝强,等. 莺歌海盆地东方气田砂质碎屑流沉积相研究[J]. 科学技术与工程,2022,22(34):15062-15073. doi: 10.3969/j.issn.1671-1815.2022.34.010
ZHOU W,ZHANG H,YANG C Q,et al. Sedimentary facies of sandy debris flow in Dongfang Gas Field in Yinggehai Basin[J]. Science Technology and Engineering,2022,22(34):15062-15073 doi: 10.3969/j.issn.1671-1815.2022.34.010
[18] 范彩伟. 莺歌海大型走滑盆地构造变形特征及其地质意义[J]. 石油勘探与开发,2018,45(2):190-198. doi: 10.11698/PED.2018.02.02
FAN C W. Structural deformation characteristics and geological significance of Yinggehai large strike slip Basin[J]. Petroleum Exploration and Development,2018,45(2):190-198. doi: 10.11698/PED.2018.02.02
[19] 童传新,王振峰,李绪深,等. 莺歌海盆地东方1-1气田成藏条件及其启示[J]. 天然气工业,2012,32(8):11-15. doi: 10.3787/j.issn.1000-0976.2012.08.003
TONG C X,WANG Z F,LI X S,et al. Reservoir forming conditions and enlightenment of Dongfang 1-1 Gas Field in Yinggehai Basin[J]. Natural Gas Industry,2012,32(8):11-15. doi: 10.3787/j.issn.1000-0976.2012.08.003
[20] 谢玉洪,范彩伟. 莺歌海盆地东方区黄流组储层成因新认识[J]. 中国海上油气,2010,22(6):355-359. doi: 10.3969/j.issn.1673-1506.2010.06.001
XIE Y H,FAN C W. Some new knowledge about the origin of Huangliu Formation reservoirs in Dongfang area,Yinggehai Basin[J]. China Offshore Oil and Gas,2010,22(6):355-359. doi: 10.3969/j.issn.1673-1506.2010.06.001
[21] 王华,陈思,甘华军,等. 浅海背景下大型浊积扇研究进展及堆积机制探讨:以莺歌海盆地黄流组重力流为例[J]. 地学前 缘,2015,22(1):21-34.
WANG H,CHEN S,GAN H J,et al. Accumulation mechanism of large shallow marine turbidite deposits:a case study of gravity flow deposits of the Huangliu Formation in Yinggehai Basin[J]. Earth Science Frontiers,2015,22(1):21-34.
[22] 郇金来,王玉,漆智,等. 莺歌海盆地高温高压D气田浅海重力流沉积特征及地质意义[J]. 海洋地质前沿,2020,36(7):40-48.
HUAN J L,WANG Y,QI Z,et al. Sedimentary characteristics and geological significance of shallow sea gravity flow deposits in the Gas Field D,Yinggehai Basin[J]. Marine Geology Frontiers,2020,36(7):40-48.
[23] 李华,杨朝强,周伟,等. 莺歌海盆地东方1-1气田中新统黄流组浅海多级海底扇形成机理及储层分布[J]. 石油与天然气地质,2023,44(2):429-440. doi: 10.11743/ogg20230214
LI H,YANG C Q,ZHOU W,et al. Genetic mechanism and reservoir distribution of shallow-marine multi-stepped submarine fans in the Miocene Huangliu Formation of Dongfang 1-1 Gas Field,Yinggehai Basin[J]. Oil & Gas Geology,2023,44(2):429-440. doi: 10.11743/ogg20230214
[24] ZHANG Q,ZHU X M,CHEN X,et al. Distribution of diagenetic facies and prediction of high-quality reservoirs in the Lower Cretaceous of the Tanzhuang Sag,the southern North China Basin[J]. Oil& Gas Geology,2010,31(4):472-480.
[25] LAI J,WANG G W,WANG S A,et al. Overview and research progress in logging recognition method of clastic reservoir diagenetic facies[J]. Journal of Central South University (Science and Technology),2013,44(12):4942-4953.
[26] 邹才能,陶士振,周慧,等. 成岩相的形成、分类与定量评价方法[J]. 石油勘探与开发,2008,35(5):526-540. doi: 10.3321/j.issn:1000-0747.2008.05.002
ZOU C N, TAO S Z, ZHOU H,et al. Genesis,classification and evaluation method of diagenetic facies[J]. Petroleum Exploration and Development,2008,35(5):526-540. doi: 10.3321/j.issn:1000-0747.2008.05.002
[27] 张海涛,时卓,石玉江,等. 低渗透致密砂岩储层成岩相类型及测井识别方法:以鄂尔多斯盆地苏里格气田下石盒子组8段为例[J]. 石油与天然气地质,2012,33(2):256-264. doi: 10.11743/ogg20120212
ZHANG H T,SHI Z,SHI Y J,et al. Diagenetic facies types and logging identification methods for low-permeability tight sandstone reservoirs:a case study on the 8th Member of Xiashihezi Formation in Sulige Gas Field,Ordos Basin[J]. Oil & Gas Geology,2012,33(2):256-264. doi: 10.11743/ogg20120212
[28] 刘龙龙,孙中强,张金亮,等. 丽水凹陷古新统储层成岩相测井识别与预测[J]. 中国海上油气,2021,33(1):64-75.
LIU L L,SUN Z Q,ZHANG J L,et al. Logging identification of Paleocene reservoir diagenetic facies in Lishui Sag[J]. China Offshore Oil and Gas,2021,33(1):64-75.
[29] 张冲,叶青,周伟,等. 基于力学层划分的火成岩潜山裂缝分形维变识别方法[J]. 地球科学,2025,50(2):521-534.
ZHANG C ,YE Q ,ZHOU W ,et al. Fractal dimension identifica-tion method of fractures in igneous buried hill based on mechanical layer division[J]. Earth Science,2025,50(2):521-534.
[30] 李嘉奇,鲜本忠,王剑,等. 四棵树凹陷清水河组测井成岩相识别与储层评价[J]. 东北石油大学学报,2022,46(1):1-14.
LI J Q,XIAN B Z,WANG J,et al. Identification of logging diagenetic facies and reservoir evaluation of Qingshuihe Formation in Sikeshu Sag[J]. Journal of Northeast Petroleum University,2022,46(1):1-14.
[31] 祝鹏, 林承焰, 吴鹏, 等. 基于主成分分析法的成岩相测井定量识别: 以五号桩油田桩62-66块沙三下Ⅰ油组储层为例[J]. 地球物理学进展, 2015, 30(5): 2360-2365. doi: 10.6038/pg20150551
ZHU P, LIN C Y, WU P, et al. Logging quantitative identification of diagenetic facies by using principal component analysis: a case of Es3x1 in Zhuang 62-66 area, Wu Hao-zhuang Oilfield[J]. Progress in Geophysics, 2015, 30(5): 2360-2365. doi: 10.6038/pg20150551
[32] 叶青,张冲,周伟,等. 火成岩基岩潜山复杂岩性识别与预测方法:以琼东南盆地松南低凸起基岩潜山为例[J]. 中国海上油气,2023,35(2):65-77.
YE Q,ZHANG C,ZHOU W,et al. Identification and prediction method of complex lithology of igneous bed rock buried hill:a case study of bed rock buried hill in Songnan low uplift,Qiongdongnan Basin[J]. China Offshore Oil and Gas,2023,35(2):65-77.
[33] 赵丽娜. Fisher判别法的研究及应用[D]. 哈尔滨:东北林业大学,2013.
ZHAO L. Research and improvement of Fisher discriminant analysis method[D]. Haerbin:Northeast Forestry University,2013.
[34] XU S Y. Comprehensive log interpretation and evaluation of low resistivity reservoirs for SQ oil field[J]. Petroleum Exploration and Development,2000,27(6):74-76.
[35] 高君,毕建军,赵海山,等. 地震波形指示反演薄储层预测技术及其应用[J]. 地球物理学进展,2017,32(1):142-145. doi: 10.6038/pg20170119
GAO J,BI J J,ZHAO H S,et al. Seismic waveform inversion technology and application of thinner reservoir prediction[J]. Progress in Geophysics,2017,32(1):142-145. doi: 10.6038/pg20170119
[36] 盛述超,毕建军,李维振,等. 关于地震波形指示模拟反演(SMI)方法的研究[J]. 内蒙古石油化工,2015,41(21):147-151. doi: 10.3969/j.issn.1006-7981.2015.21.058
SHENG S C,BI J J,LI W Z,et al. Research on the seismic waveform indication simulation inversion (SMI) method[J]. Inner Mongolia Petrochemical Industry,2015,41(21):147-151. doi: 10.3969/j.issn.1006-7981.2015.21.058
[37] 杜佳,刘彦成,白洁玢,等. 基于波形指示模拟的致密砂岩储层预测[J]. 地质科技通报,2022,41(5):94-100.
DU J,LIU Y C,BAI J B,et al. Prediction of tight sandstone reservoir based on waveform indication simulation[J]. Bulletin of Geological Science and Technology,2022,41(5):94-100.
[38] 杜伟维,金兆军,邸永香. 地震波形指示反演及特征参数模拟在薄储层预测中的应用[J]. 工程地球物理学报,2017,14(1):56-61. doi: 10.3969/j.issn.1672-7940.2017.01.010
DU W W,JIN Z J,DI Y X. The application of seismic waveform indicator inversion and characteristic parameter simulation to thin reservoir prediction[J]. Chinese Journal of Engineering Geophysics,2017,14(1):56-61. doi: 10.3969/j.issn.1672-7940.2017.01.010
-