注水工艺对海域咸水层二氧化碳封存能力的影响

杨浦, 方小宇, 王子雯, 黄仕锐, 吕言新, 杨博. 注水工艺对海域咸水层二氧化碳封存能力的影响[J]. 海洋地质前沿, 2025, 41(3): 99-106. doi: 10.16028/j.1009-2722.2024.237
引用本文: 杨浦, 方小宇, 王子雯, 黄仕锐, 吕言新, 杨博. 注水工艺对海域咸水层二氧化碳封存能力的影响[J]. 海洋地质前沿, 2025, 41(3): 99-106. doi: 10.16028/j.1009-2722.2024.237
YANG Pu, FANG Xiaoyu, WANG Ziwen, HUANG Shirui, LYU Yanxin, YANG Bo. The impact of water injection simulation on CO2 storage capacity in offshore saline aquifers[J]. Marine Geology Frontiers, 2025, 41(3): 99-106. doi: 10.16028/j.1009-2722.2024.237
Citation: YANG Pu, FANG Xiaoyu, WANG Ziwen, HUANG Shirui, LYU Yanxin, YANG Bo. The impact of water injection simulation on CO2 storage capacity in offshore saline aquifers[J]. Marine Geology Frontiers, 2025, 41(3): 99-106. doi: 10.16028/j.1009-2722.2024.237

注水工艺对海域咸水层二氧化碳封存能力的影响

  • 基金项目: 湛江市科技计划项目“粤西近海盆地规模化CO2封存场址优选及工程规划方案研究”(2022A01061);海南省重点研发项目“琼东南盆地天然气水合物资源评价与目标优选”(ZDYF2023GXJS008)
详细信息
    作者简介: 杨浦(1996—),男,硕士,主要从事海洋油气开发工程和CO2地质封存方面的研究工作. E-mail:stu_yp@163.com
    通讯作者: 方小宇(1982—),男,硕士,正高级工程师,主要从事油气地质与CO2地质封存方面的研究工作. E-mail:fangxy@zjblab.com
  • 中图分类号: P736, TE53

The impact of water injection simulation on CO2 storage capacity in offshore saline aquifers

More Information
  • 连续或交替向咸水层注水能够加速CO2溶解并提高CO2咸水层封存安全性,同时也会干扰CO2羽流空间发展从而间接影响地层实际封存能力,目前,工程方案对此问题的考虑还较少。本文模拟了开放式咸水层单井注气作业条件下,多种注水方案以及关键工艺参数对封存安全性和地层实际封存能力的影响。结果表明,注气开始后一段时间内通过在注气井段上方持续注水能够显著提高CO2封存强度,增加地层实际封存能力,开始注水时刻越晚,封存强度提升作用越小;同步注水速率越大,实际封存能力提升越明显;停止注气后继续延长注水时间对实际封存能力的影响需要结合实际工况讨论;在注水总量一定的前提下,注气阶段高速率注水比低速率延长时间注水对实际封存能力的提升效果更好;随着注水层位与底部注气层位间距的减小,注水对实际封存能力的提升作用增强;注水还能够有效降低注入井附近地层中CO2的饱和度,有利于降低井筒泄露风险。

  • 加载中
  • 图 1  咸水层中CO2羽流发展演变过程

    Figure 1. 

    图 2  数值模型及网格剖分

    Figure 2. 

    图 3  基准工况不同时刻羽流分布范围对比

    Figure 3. 

    图 4  不同注水方案的封存强度变化

    Figure 4. 

    图 5  停止注气100 a后不同注水方案封存机理对比

    Figure 5. 

    图 6  方案1停止注气100 a后的羽流分布

    Figure 6. 

    图 7  方案1注气20 a并封存100 a后的羽流分布

    Figure 7. 

    图 8  不同注水参数下封存强度变化

    Figure 8. 

    图 9  溶解封存量随时间变化曲线

    Figure 9. 

    图 10  储层顶部羽流面积增长曲线

    Figure 10. 

    图 11  停止注气时过井剖面的羽流分布对比

    Figure 11. 

    表 1  注水方案对比

    Table 1.  Water injection schemes for simulation

    方案
    编号
    注水速率
    (水气质量比)
    注水段 注水时机 注水时长/a
    1 10 1 同步持续注水 10
    2 10 1 注气1 a开始注水 10
    3 10 1 注气2 a开始注水 10
    4 10 1 注气5 a开始注水 10
    5 10 1 停止注气开始注水 10
    6 10 2 停止注气开始注水 10
    下载: 导出CSV

    表 2  注水工艺参数设置

    Table 2.  Parameter setting for the simulation of water injection

    方案
    编号
    注水速率
    (水气质量比)
    注水段位置注水时长/a
    71同方案110
    85同方案110
    95同方案120
    1010同方案120
    1110减小10 m10
    1210减小20 m10
    下载: 导出CSV
  • [1]

    叶航,郝宁,刘琦. CO2咸水层封存关键参数及其实验表征技术研究进展[J]. 发电技术,2022,43(4):562-573. doi: 10.12096/j.2096-4528.pgt.22090

    YE H,HAO N,LIU Q. Review on key parameters and characterization technology of CO2 sequestration mechanism in saline aquifers[J]. Power Generation Technology,2022,43(4):562-573. doi: 10.12096/j.2096-4528.pgt.22090

    [2]

    张贤,杨晓亮,鲁玺,等. 中国CO2捕集利用与封存(CCUS)年度报告(2023)[R]. 北京:中国21世纪议程管理中心,全球碳捕集与封存研究院,清华大学,2023.

    ZHANG X,YANG X L,LU X,et al. Annual report on carbon capture,utilization and storage (CCUS) in China (2023)[R]. Beijing:The Administrative Center for China’s Agenda 21,Global CCS Institute,Tsinghua University,2023.

    [3]

    ZHANG D X,SONG J. Mechanisms for geological carbon sequestration[J]. Procedia IUTAM,2014,10:319-327. doi: 10.1016/j.piutam.2014.01.027

    [4]

    ABIDOYE L K,KHUDAIDA K J,DAS D B. Geological carbon sequestration in the context of two-phase flow in porous media: a review[J]. Critical Reviews in Environmental Science and Technology,2015,45:1105-1147. doi: 10.1080/10643389.2014.924184

    [5]

    ANDREANI M,LUQUOT L,GOUZE P,et al. Experimental study of carbon sequestration reactions controlled by the percolation of CO2-rich brine through peridotites[J]. Environmental Science & Technology,2009,43(4):1226-1231.

    [6]

    KUMAR S,FOROOZESH J,EDLMANN K,et al. A comprehensive review of value-added CO2 sequestration in subsurface saline aquifers[J]. Journal of Natural Gas Science and Engineering,2020,81:103437. doi: 10.1016/j.jngse.2020.103437

    [7]

    SIFUENTES W,BLUNT M J,GIDDINS M A. Modeling CO2 storage in aquifers:assessing the key contributors to uncertainty[C]//Society of Petroleum Engineers Offshore Europe Conference and Exhibition. Society of Petroleum Engineers,2009:SPE-123582-MS.

    [8]

    LI X,AKBARABADI M,KARPYN Z T,et al. Experimental investigation of carbon dioxide trapping due to capillary retention in saline aquifers[J]. Geofluids,2015,15(4):563-576.

    [9]

    LEONENKO Y,KEITH D W. Reservoir engineering to accelerate the dissolution of CO2 stored in aquifers[J]. Environmental Science & Technology,2008,42(8):2742-2747.

    [10]

    HASSAN H,MEHRAN P,DAVID W K. Accelerating CO2 dissolution in saline aquifers for geological storages mechanistic and sensitivity studies[J]. Energy & Fuels,2009,23:3328-3336.

    [11]

    王涛,于海洋,朱旭晨,等. 水气交替CO2咸水层地质封存数值模拟研究[J]. 中国海上油气,2023,35(4):198-204.

    WANG T,YU H Y,ZHU X C,et al. Numerical simulation study on geological storage of CO2 insaline aquifer sassisted by water alternating gas[J]. China Offshore Oil and Gas,2023,35(4):198-204.

    [12]

    SHARIATIPOUR S M,MACKAY E J,PICKUP G E. An engineering solution for CO2 injection in saline aquifers[J]. International Journal of Greenhouse Gas Control,2016,53:98-105. doi: 10.1016/j.ijggc.2016.06.006

    [13]

    RATHNAWEERA T D,RANJITH P G,PERERA M S A,et al. Influence of CO2-brine co-injection on CO2 storage capacity enhancement in deep saline aquifers:an experimental study on Hawkesbury sandstone formation[J]. Energy & Fuels,2016,30(5):4229-4243.

    [14]

    CHADWICK R A,NOY D,ARTS R,et al. Latest time-lapse seismic data from Sleipner yield new insights into CO2 plume development[J]. Energy Procedia,2009,1(1):2103-2110. doi: 10.1016/j.egypro.2009.01.274

    [15]

    BACHU S,BONIJOLY D,BRADSHAW J,et al. CO2 storage capacity estimation:methodology and gaps[J]. International Journal of Greenhouse Gas Control,2007,1(4):430-443. doi: 10.1016/S1750-5836(07)00086-2

    [16]

    ZHOU Q,BIRKHOLZER J T,TSANG C F,et al. A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations[J]. International Journal of Greenhouse gas control,2008,2(4):626-639. doi: 10.1016/j.ijggc.2008.02.004

    [17]

    RINGROSE P S,MECKEL T A. Maturing global CO2 storage resources on offshore continental margins to achieve 2DS emissions reductions[J]. Scientific Reports,2019,9(1):1-10. doi: 10.1038/s41598-018-37186-2

    [18]

    GRUDE S,LANDRø M,DVORKIN J. Pressure effects caused by CO2 injection in the Tubåen Fm. ,the Snøhvit field[J]. International Journal of Greenhouse Gas Control,2014,27:178-187.

    [19]

    米立军. 全球海上CO2封存现状及中国近海机遇与挑战[J]. 中国海上油气,2023,35(1):123-135.

    MI L J. Current status of global CO2 ocean sequestration and opportunities and challenges in China offshore areas[J]. China Offshore Oil and Gas,2023,35(1):123-135.

    [20]

    李小春,梅开元,蔡雨娜,等. 提高CO2封存强度的多层协同抽注技术[J]. 工程科学与技术,2022,54(1):167-176.

    LI X C,MEI K Y,CAI Y N,et al. Improvement of CO2 sequestration intension with collaborative pumping-injection technologies in multi-formations[J]. Advanced Engineering Sciences,2022,54(1):167-176.

    [21]

    EDEM D E,ABBA M K,NOURIAN A,et al. Experimental study on the interplay between different brine types/concentrations and CO2 injectivity for effective CO2 storage in deep saline aquifers[J]. Sustainability,2022,14(2):986. doi: 10.3390/su14020986

  • 加载中

(11)

(2)

计量
  • 文章访问数:  46
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2024-10-11
刊出日期:  2025-03-28

目录