不同实验条件下利用二氧化碳合成片钠铝石的固碳研究

曲希玉, 温竞凯, 袁勇, 施凯腾, 陈铁鑫. 不同实验条件下利用二氧化碳合成片钠铝石的固碳研究[J]. 海洋地质前沿, 2025, 41(3): 89-98. doi: 10.16028/j.1009-2722.2024.273
引用本文: 曲希玉, 温竞凯, 袁勇, 施凯腾, 陈铁鑫. 不同实验条件下利用二氧化碳合成片钠铝石的固碳研究[J]. 海洋地质前沿, 2025, 41(3): 89-98. doi: 10.16028/j.1009-2722.2024.273
QU Xiyu, WEN Jingkai, YUAN Yong, SHI Kaiteng, CHEN Tiexin. Carbon sequestration research of synthesizing dawsonite using CO2 under different experimental conditions[J]. Marine Geology Frontiers, 2025, 41(3): 89-98. doi: 10.16028/j.1009-2722.2024.273
Citation: QU Xiyu, WEN Jingkai, YUAN Yong, SHI Kaiteng, CHEN Tiexin. Carbon sequestration research of synthesizing dawsonite using CO2 under different experimental conditions[J]. Marine Geology Frontiers, 2025, 41(3): 89-98. doi: 10.16028/j.1009-2722.2024.273

不同实验条件下利用二氧化碳合成片钠铝石的固碳研究

  • 基金项目: 山东省自然科学基金“咸水层储集体CO2的固化过程及主要固碳矿物的富集条件研究”(ZR2024MD078);中国地质调查局项目“我国东部海域地质碳封存选区调查评价”(DD202503023);国家自然科学基金“南黄海CSDP-2井二叠系砂岩储层致密化过程及其对油气充注事件的响应”(42206234);自然资源部科技战略研究项目“海底地质碳封存战略研究”(2023-ZL-18)
详细信息
    通讯作者: 曲希玉(1977—),男,博士,副教授,主要从事流体-岩石相互作用、储层及沉积学方面的研究工作. E-mail:quxiyu@upc.edu.cn
  • 中图分类号: P744.4,P736

Carbon sequestration research of synthesizing dawsonite using CO2 under different experimental conditions

More Information
  • CO2的矿物捕获是最持久、最稳定的地质封存形式。片钠铝石作为一种天然的CO2示踪矿物,其形成与CO2注入密切相关,也是CO2地质封存的重要固碳矿物。片钠铝石在地质背景中大量稳定存在的条件是制约CO2矿化捕获的关键问题,也是寻找CO2地质埋藏地点的重要影响因素。为了探索利用CO2快速合成片钠铝石的条件,对pH(8.5/9/9.5/10/10.5)、温度(100/120/140/160/180/200 ℃)和反应时间(6/12 h)3个主要影响因素进行了比较实验,并基于扫描电镜、X射线衍射分析阐明了合成片钠铝石的最佳条件。实验表明:在pH 为8.5~10.5和温度为100~180 ℃的范围内,产物均为纯片钠铝石,合成量随pH和温度的升高呈先增加后减少的趋势,在200 ℃的温度下,片钠铝岩的结晶度降低,拟薄水铝石的含量增加。延长反应时间对产品质量没有明显的促进作用,在200 ℃下延长反应时间反而会加速片钠铝石的溶解。总的来说,140 ℃和pH 9.5是CO2合成片钠铝石的最佳条件,也可能是地质封存CO2的理想条件。

  • 加载中
  • 图 1  不同试剂配比条件下合成产物的XRD图谱

    Figure 1. 

    图 2  不同pH条件下合成片钠铝石晶体的XRD图谱

    Figure 2. 

    图 3  140 ℃不同pH值条件下反应12h合成片钠铝石晶体的SEM图

    Figure 3. 

    图 4  不同温度条件下合成片钠铝石晶体的XRD图谱

    Figure 4. 

    图 5  pH值为9.5时不同温度条件下反应12h合成片钠铝石晶体的SEM图

    Figure 5. 

    图 6  140 ℃不同pH值反应6 h合成片钠铝石晶体的SEM照片

    Figure 6. 

    图 7  pH值为9.5时不同温度下反应6 h合成片钠铝石晶体的SEM照片

    Figure 7. 

    表 1  NaCl对片钠铝石产物纯度的影响对比实验结果

    Table 1.  Comparative experimental results of the effect of NaCl on dawsonite purity

    序号温度/℃pH是否加入 NaCl片钠铝石的纯度/%
    11608.529.5
    21608.551.5
    31609.553.6
    41609.577.8
    下载: 导出CSV

    表 2  不同温度和pH值条件下反应12 h制得片钠铝石的质量

    Table 2.  Mass (g) of dawsonite prepared by 12 h reaction under different temperature and pH conditions

    pH值 片钠铝石的质量/g
    100 ℃ 120 ℃ 140 ℃ 160 ℃ 180 ℃ 200 ℃
    8.5 1.22 1.25 1.25 1.19 1.01 0.3
    9 1.35 1.45 1.48 1.39 1.19 0.4
    9.5 1.43 1.57 1.61 1.49 1.21 0.4
    10 1.31 1.36 1.38 1.38 0.96 0.35
    10.5 0.97 1.08 1.08 1.0 0.56 -
    注:“-”表示没有制得片钠铝石。
    下载: 导出CSV

    表 3  不同实验条件下片钠铝石对CO2的固化率

    Table 3.  Solidification rate of dawsonite on CO2 under different experimental conditions

    pH值 CO2固化率/%
    100 ℃ 120 ℃ 140 ℃ 160 ℃ 180 ℃ 200 ℃
    8.5 7.97 8.51 8.84 8.67 7.49 2.51
    9 8.81 9.82 10.20 10.07 9.18 2.97
    9.5 9.22 10.51 11.33 10.77 9.18 2.97
    10 8.60 9.17 9.76 10.10 7.25 2.72
    10.5 6.30 7.21 7.48 7.26 4.11 -
    注:“-”表示CO2固化率趋近于0。
    下载: 导出CSV
  • [1]

    DANIELS J. Accelerating CCS 2023-2027:five years plan[R]. Canberra:Global Carbon Capture and Storage Institute,2022.

    [2]

    ZERAI B,SAYLOR B Z,MATISOFF G. Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone,Ohio[J]. Applied Geochemistry,2006,21(2):223-240. doi: 10.1016/j.apgeochem.2005.11.002

    [3]

    BENSON S M,COLE D R. CO2 sequestration in deep sedimentary formations[J]. Elements,2008,4(5):325-331. doi: 10.2113/gselements.4.5.325

    [4]

    Intergovernmental Panel on Climate Change Global warming of 1.5 ℃[M]. Cambridge:Cambridge University Press,2022.

    [5]

    QIU Y,LAMERS P,DAIOGLOU V,et al. Environmental trade-offs of direct air capture technologies in climate change mitigation toward 2100[J]. Nature Communications,2022,13(1):3635. doi: 10.1038/s41467-022-31146-1

    [6]

    SHU D Y,DEUTZ S,WINTER B A,et al. The role of carbon capture and storage to achieve net-zero energy systems:trade-offs between economics and the environment[J]. Renewable and Sustainable Energy Reviews,2023,178:113246. doi: 10.1016/j.rser.2023.113246

    [7]

    International Energy Agency. Zero by 2050:a roadmap for global energy sector[R]. Paris:International Energy Agency,2011.

    [8]

    LIU S Q,LIU T,ZHENG S J,et al. Evaluation of carbon dioxide geological sequestration potential in coal mining area[J]. International Journal of Greenhouse Gas Control,2023,122:103814. doi: 10.1016/j.ijggc.2022.103814

    [9]

    LOHUIS J O. Carbon dioxide disposal and sustainable development in the Netherlands[J]. Energy Conversion and Management,1993,34(9/11):815-821. doi: 10.1016/0196-8904(93)90024-5

    [10]

    BACHU S,GUNTER W D,PERKINS E H. Aquifer disposal of CO2:hydrodynamic and mineral trapping[J]. Energy Conversion and Management,1994,35(4):269-279. doi: 10.1016/0196-8904(94)90060-4

    [11]

    WARD C R. Analysis and significance of mineral matter in coal seams[J]. International Journal of Coal Geology,2002,50(1/4):135-168.

    [12]

    ALCALDE J,FLUDE S,WILKINSON M,et al. Estimating geological CO2 storage security to deliver on climate mitigation[J]. Nature Communications,2018,9(1):2201. doi: 10.1038/s41467-018-04423-1

    [13]

    LANE J,GREIG C,GARNETT A. Uncertain storage prospects create a conundrum for carbon capture and storage ambitions[J]. Nature Climate Change,2021,11(11):925-936. doi: 10.1038/s41558-021-01175-7

    [14]

    ALSHAMMARI A,LAKSHMI V,BRANTLEY D,et al. Simulation of carbon dioxide mineralization and its effect on fault leakage rates in the South Georgia rift basin,southeastern US[J]. Heliyon,2022,8(6):e09635. doi: 10.1016/j.heliyon.2022.e09635

    [15]

    HEPBURN C,ADLEN E,BEDDINGTON J,et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature,2019,575(7781):87-97. doi: 10.1038/s41586-019-1681-6

    [16]

    SNÆBJÖRNSDÓTTIR S Ó,SIGFÚSSON B,MARIENI C,et al. Carbon dioxide storage through mineral carbonation[J]. Nature Reviews Earth & Environment,2020,1(2):90-102.

    [17]

    MADHAV D,COPPITTERS T,JI Y,et al. Amino acid promoted single-step carbon dioxide capture and mineralization integrated with polymer-mediated crystallization of carbonates[J]. Journal of Cleaner Production,2023,415:137845. doi: 10.1016/j.jclepro.2023.137845

    [18]

    ZHANG G R,LU P,HUANG Y,et al. Investigation of mineral trapping processes based on coherent front propagation theory:a dawsonite-rich natural CO2 reservoir as an example[J]. International Journal of Greenhouse Gas Control,2021,110:103400. doi: 10.1016/j.ijggc.2021.103400

    [19]

    XU T,APPS J A,PRUESS K. Numerical simulation to study mineral trapping for CO2 disposal in deep aquifer[J]. Applied Geochemistry,2004,19(6):917-936. doi: 10.1016/j.apgeochem.2003.11.003

    [20]

    XU T,APPS J A,PRUESS K. Mineral sequestration of carbon dioxide in a sandstone-shale system[J]. Chemical Geology,2005,217(3/4):295-318.

    [21]

    刘娜. 砂岩对CO2的矿物捕获能力:来自松辽盆地南部红岗地区含片钠铝石砂岩的约束[D]. 长春:吉林大学,2011.

    LIU N. Mineral trapping capacity estimation of CO2 in sandstones:constraints from the dawsonite-bearing sandstone in Honggang,southern part of Songliao Basin[D]. Changchun:Jilin University,2011.

    [22]

    周冰. 火山碎屑岩的CO2 矿物圈闭潜力研究:天然类似物与实验室实验约束[D].长春:吉林大学,2015.

    ZHOU B. The potential capacity of CO2 mineral trapping in pyroclastic rock:constraints from natural analogue and experiments[D]. Changchun:Jilin University,2015.

    [23]

    QU X L,LIU N L. Geology record of mantle-derived magmatogenetic CO2 gas in the northeastern China[J]. Acta Petrolei Sinica,2010,31(1):61-67.

    [24]

    QU X Y,CHEN X,YU M,et al. Mineral dating of mantle-derived CO2 charging and its application in the southern Songliao Basin,China[J]. Applied Geochemistry,2016,68:19-28. doi: 10.1016/j.apgeochem.2016.03.005

    [25]

    AHMAD A,WHEAT T A,CANADAY J D,et al. Processing and characterization of Na and (Na-K) beta-beta “alumina ceramics”[J]. Solid State Ionics,1994,68(3/4):233-241. doi: 10.1016/0167-2738(94)90181-3

    [26]

    范蕾蕾,叶俊伟,李鑫,等. NaAl(OH)2CO3阻燃晶须的水热合成及其阻燃性能[J]. 功能材料,2009,40(9):1580-1583.

    FAN L L,YE J W,LI X,et al. Hydrothermal synthesis and flame-retardant properties of NaAl(OH)2CO3 whiskers[J]. Journal of Functional Materials,2009,40(9):1580-1583.

    [27]

    STOICA G,ABELLÓ S O N,PÉREZ-RAMÍREZ J. Na-dawsonite derived aluminates for DMC production by transesterification of ethylene carbonate[J]. Applied Catalysis A:General,2009,365(2):252-260. doi: 10.1016/j.apcata.2009.06.022

    [28]

    JUN C,SONG Y W,SHAN D Y,et al. Properties of dawsonite conversion film on AZ31 magnesium alloy[J]. Transactions of Nonferrous Metals Society of China,2011,21(4):936-942. doi: 10.1016/S1003-6326(11)60804-2

    [29]

    LI X B,LIU N,ZHOU Q S,et al. Dawsonite preparation by deep carbonation decomposition of spent liquor from carbonation of sodium aluminate solutions[J]. Journal of Central South University (Science and Technology),2016,47(1):20-25.

    [30]

    HERNANDEZ M J,ULIBARRI M A,CORNEJO J,et al. Thermal stability of aluminium hydroxycarbonates with monovalent cations[J]. Thermochimica Acta,1985,94(2):257-266. doi: 10.1016/0040-6031(85)85269-2

    [31]

    KEENAN F J,HOWATSON J,SMITH J W. Thermal behavior of dawsonite[R]. Laramie:Laramie Energy Technology Center,1980.

    [32]

    STOICA G,PÉREZ-RAMÍREZ J. Stability and inter-conversion of synthetic dawsonites in aqueous media[J]. Geochimica et Cosmochimica Acta,2010,74(24):7048-7058. doi: 10.1016/j.gca.2010.09.013

    [33]

    PITSCH I,GEßNER W,BRÜCKNER A,et al. Synthesis and characterization of Fe2O3 containing aluminas by thermal decomposition of modified ammonium dawsonite[J]. Journal of Materials Chemistry,2001,11(10):2498-2503. doi: 10.1039/b101466h

    [34]

    WU H T,SONG B,SUN Y,et al. Data mining technology in novel method for synthesis of sodium aluminium carbonate hydroxide[J]. CIESC Journal,2006,57(5):1236-1241.

    [35]

    姜求宇,吴文伟,廖森,等. 室温固相合成纳米碱式碳酸钠铝[J]. 应用化工,2005,34(2):99-101.

    JIANG Q Y,WU W W,LIAO S,et al. Preparation of nano basic sodium aluminum carbonate by room temperature solid state reaction[J]. Applied Chemical Industry,2005,34(2):99-101.

    [36]

    BÉNÉZETH P,PALMER D A,ANOVITZ L M,et al. Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements:implications for mineral trapping of CO2[J]. Geochimica et Cosmochimica Acta,2007,71(18):4438-4455. doi: 10.1016/j.gca.2007.07.003

    [37]

    YANG Q H,LI D D,ZHUANG F C,et al. Transformation mechanism in preparation of pseudo-boehmite by NaAlO2 -CO2 method[J]. Chinese Journal of Catalysis,1997,18(6):478-482.

    [38]

    曲希玉,李倩,闫振,等. 固碳矿物—片钠铝石的最佳水热合成条件[J]. 中国石油大学学报(自然科学版),2023,47(3):27-34.

    QU X Y,LI Q,YAN Z,et al. Optimum hydrothermal synthesis conditions of carbon fixing mineral-dawsonite[J]. Journal of China University of Petroleum (Edition of Natural Science),2023,47(3):27-34.

    [39]

    范泓澈,黄志龙,袁剑,等. 高温高压条件下甲烷和二氧化碳溶解度试验[J]. 中国石油大学学报(自然科学版),2011,35(2):6-11,19.

    FAN H C,HUANG Z L,YUAN J,et al. Experiment on solubility of CH4 and CO2 at high temperature and high pressure[J]. Journal of China University of Petroleum (Edition of Natural Science),2011,35(2):6-11,19.

  • 加载中

(7)

(3)

计量
  • 文章访问数:  38
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2024-12-02
刊出日期:  2025-03-28

目录