南汇南滩波致海床响应与液化研究

张敬邦, 范代读, 孟令鹏, 崔明慧, 徐昌伟, 涂俊彪. 南汇南滩波致海床响应与液化研究[J]. 海洋地质前沿, 2025, 41(4): 37-46. doi: 10.16028/j.1009-2722.2025.042
引用本文: 张敬邦, 范代读, 孟令鹏, 崔明慧, 徐昌伟, 涂俊彪. 南汇南滩波致海床响应与液化研究[J]. 海洋地质前沿, 2025, 41(4): 37-46. doi: 10.16028/j.1009-2722.2025.042
ZHANG Jingbang, FAN Daidu, MENG Lingpeng, CUI Minghui, XU Changwei, TU Junbiao. Study on seabed response and liquefaction induced by waves in the southern tidal flat of Nanhui, Shanghai[J]. Marine Geology Frontiers, 2025, 41(4): 37-46. doi: 10.16028/j.1009-2722.2025.042
Citation: ZHANG Jingbang, FAN Daidu, MENG Lingpeng, CUI Minghui, XU Changwei, TU Junbiao. Study on seabed response and liquefaction induced by waves in the southern tidal flat of Nanhui, Shanghai[J]. Marine Geology Frontiers, 2025, 41(4): 37-46. doi: 10.16028/j.1009-2722.2025.042

南汇南滩波致海床响应与液化研究

  • 基金项目: 国家自然科学基金重点项目(42330411);上海市教委科研创新计划自然科学重大项目(2021-01-07-00-07-E00093);亚洲合作资金项目“长江三角洲与红河三角洲海洋地质环境与灾害合作研究”
详细信息
    作者简介: 张敬邦(1998—),男,在读硕士,主要从事长江口海洋地质沉积学方面的研究工作. E-mail:2333181@tongji.edu.cn
    通讯作者: 范代读(1972—),男,博士,教授,主要从事海洋沉积学和沉积有机碳汇机制方面的研究工作. E-mail:ddfan@tongji.edu.cn
  • 中图分类号: P736.2

Study on seabed response and liquefaction induced by waves in the southern tidal flat of Nanhui, Shanghai

More Information
  • 海床液化是海洋地质灾害中的一种常见现象,不仅会造成海床侵蚀,还会对区内海底管线、海洋设施等产生重大危害。目前,对海床液化机制研究大多基于室内物理模型实验,基于现场观测的研究较欠缺。本研究在南汇南滩进行了为期1个月的现场观测,利用固定平台的声学多普勒流速仪获得流速和水压等高频数据,并使用自制的孔隙水压力探杆获取海床土体不同深度的孔隙水压力数据。同时,分析了一次冬季大风事件期间孔隙水压力对波浪荷载的响应特征,计算了海床液化的深度。结果表明,孔隙水压力响应特征受潮位和波高的影响。总孔隙水压力响应的趋势受潮位影响,波致孔隙水压力响应的振幅受有效波高影响;研究区海床液化程度随深度的增加而降低,由于观测期间有效波高较低,液化深度仅为十几厘米。

  • 加载中
  • 图 1  研究区概况及站位布设

    Figure 1. 

    图 2  孔隙水压力探杆(a)、探杆结构示意图(b) 、三脚架(c)

    Figure 2. 

    图 3  有效波高、水深、孔隙水压力变化的时程曲线

    Figure 3. 

    图 4  各层位相对孔隙水压力响应

    Figure 4. 

    图 5  有效波高及各层位超孔隙水压力响应

    Figure 5. 

    图 6  有效波高及各层位土体有效应力变化

    Figure 6. 

    图 7  超孔隙水压力与静水条件下土体的初始垂向有效应力的比值变化时程曲线

    Figure 7. 

    图 8  孔隙水压力响应的深度滞后

    Figure 8. 

    表 1  土力学参数

    Table 1.  Parameters of soil mechanics

    参数平均粒径/μm密度/(g/cm3比重/(g/cm3含水率/%孔隙率/%
    范围24.32~132.461.59~2.281.93~2.7921~3314~27
    平均值77.292.142.572618
    下载: 导出CSV

    表 2  2个潮周期海床浮容重、最大超孔压、最大超孔压发生时间、液化深度

    Table 2.  Seabed floating volume weight, maximum excess pore pressure, occurrence time of maximum excess pore pressure, and liquefaction depth in two tidal cycles

    潮周期浮容重/(kN/m3Pmax/kPaPmax发生时刻液化深度/cm
    T110.721.1903:5616.7
    T210.720.9015:1912.6
    下载: 导出CSV
  • [1]

    MICHALLET H,MORY M,PIEDRA-CUEVA I. Wave-induced pore pressure measurements near a coastal structure[J]. Journal of Geophysical Research:Oceans,2009,114(C6).

    [2]

    FREDSOE J,SUMER B M. The Mechanics of Scour in the Marine Environment[M]. Singapore:World Scientific Publishing Company,2002.

    [3]

    JIA Y G,LIU X L,ZHANG S T,et al. Wave-forced Sediment Erosion and Resuspension in the Yellow River Delta[M]. Singapore:Springer,2020.

    [4]

    SONG Y P,SUN Y F,WANG Z H,et al. In situ observation of silt seabed pore pressure response to waves in the subaqueous Yellow River Delta[J]. Journal of Ocean University of China,2022,21(5):1154-1160. doi: 10.1007/s11802-022-4843-3

    [5]

    王栋,栾茂田,郭莹. 波浪作用下海床动力反应有限元数值模拟与液化分析[J]. 大连理工大学学报,2001,41(2):216-222. doi: 10.3321/j.issn:1000-8608.2001.02.020

    WANG D,LUAN M T,GUO Y. FEM-based numerical simulation of dynamic response and liquefaction analysis of seabed under wave-induced loading[J]. Journal of Dalian University of Technology,2001,41(2):216-222. doi: 10.3321/j.issn:1000-8608.2001.02.020

    [6]

    ZEN K,YAMAZAKI H. Mechanism of wave-induced liquefaction and densification in seabed[J]. Soils and Foundations,1990,30(4):90-104. doi: 10.3208/sandf1972.30.4_90

    [7]

    TZANG S Y,OU S H. Laboratory flume studies on monochromatic wave-fine sandy bed interactions:Part 1. soil fluidization[J]. Coastal Engineering,2006,53(11):965-982. doi: 10.1016/j.coastaleng.2006.06.003

    [8]

    SASSA S,SEKIGUCHI H. Wave-induced liquefaction of beds of sand in a centrifuge[J]. Geotechnique,1999,49(5):621-638. doi: 10.1680/geot.1999.49.5.621

    [9]

    MIYAMOTO J,SASSA S,SEKIGUCHI H. Progressive solidification of a liquefied sand layer during continued wave loading[J]. Geotechnique,2004,54(10):617-629. doi: 10.1680/geot.2004.54.10.617

    [10]

    LUAN M T,ZHANG C,WANG D. Numerical analysis of residual pore water pressure development and evaluation of liquefaction potential of seabed under wave loading[J]. Journal of Hydraulic Engineering,2004,35(2):94-100.

    [11]

    KIRCA V S O,SUMER B M,FREDSØE J. Residual liquefaction of seabed under standing waves[J]. Journal of Waterway,Port,Coastal,and Ocean Engineering,2013,139(6):489-501.

    [12]

    MORY M,MICHALLET H,BONJEAN D,et al. A field study of momentary liquefaction caused by waves around a coastal structure[J]. Journal of Waterway,Port,Coastal,and Ocean Engineering,2007,133(1):28-38.

    [13]

    ZEN K,YAMAZAKI H. Field observation and analysis of wave-induced liquefaction in seabed[J]. Soils and Foundations,1991,31(4):161-179. doi: 10.3208/sandf1972.31.4_161

    [14]

    YEH H,MASON H B. Sediment response to tsunami loading:mechanisms and estimates[J]. Géotechnique,2014,64(2):131-143.

    [15]

    HOLTZ R D,KOVACS W D,SHEAHAN T C. An Introduction to Geotechnical Engineering[M]. Englewood Cliffs,NJ:Prentice-hall,1981.

    [16]

    SAKAI T,HATANAKA K,MASE H. Wave-induced effective stress in seabed and its momentary liquefaction[J]. Journal of Waterway,Port,Coastal,and Ocean Engineering,1992,118(2):202-206.

    [17]

    王刚,许国辉,刘志钦,等. 波致粉质土液化过程中物理力学性态变化试验研究[J]. 海洋地质与第四纪地质,2017,37(1):176-183.

    WANG G,XU G H,LIU Z Q,et al. Experimental study on the physical and mechanical characteristics changes of wave induced liquefied silt[J]. Marine Geology & Quaternary Geology,2017,37(1):176-183.

    [18]

    SASSA S,TAKAYAMA T,MIZUTANI M,et al. Field observations of the build-up and dissipation of residual pore water pressures in seabed sands under the passage of storm waves[J]. Journal of Coastal Research,2006:410-414.

    [19]

    KIRCA V S O,SUMER B M,FREDSØE J. Influence of clay content on wave-induced liquefaction[J]. Journal of Waterway,Port,Coastal,and Ocean Engineering,2014,140(6):04014024.

    [20]

    许国辉,刘会欣,刘锦昆,等. 黏粒含量对粉质土液化发生的作用机制[J]. 海洋地质与第四纪地质,2012,32(3):31-35.

    XU G H,LIU H X,LIU J K,et al. Role of clay content in silty soil liquefaction[J]. Marine Geology & Quaternary Geology,2012,32(3):31-35.

    [21]

    DUAN L,JENG D S,WANG S,et al. Numerical investigation of the wave/current–induced responses of transient soil around a square mono-pile foundation[J]. Journal of Coastal Research,2019,35(3):625-636. doi: 10.2112/JCOASTRES-D-18-00072.1

    [22]

    许国辉,孙永福,于月倩,等. 黄河水下三角洲浅表土体的风暴液化问题[J]. 海洋地质与第四纪地质,2011,31(2):37-42.

    XU G H,SUN Y F,YU Y Q,et al. Storm induced liquefaction of the surficial sediments in the Yellow River subaqueous delta[J]. Marine Geology & Quaternary Geology,2011,31(2):37-42.

    [23]

    刘晓磊,张淑玉,郑杰文,等. 黄河三角洲极端风暴诱发地质灾害研究进展及对策[J]. 海洋地质前沿,2022,38(11):28-39.

    LIU X L,ZHANG S Y,ZHENG J W,et al. Research progress and countermeasures on geological hazards induced by extreme storms in the Yellow River[J]. Marine Geology Frontiers,2022,38(11):28-39.

    [24]

    常方强,贾永刚. 黄河水下三角洲液化引起的灾害研究现状[J]. 海洋地质与第四纪地质,2010,30(5):145-151.

    CHANG F Q,JIA Y G. Review of the studies on geo-hazards induced by liquefaction at the Yellow River subaqueous delta[J]. Marine Geology & Quaternary Geology,2010,30(5):145-151.

    [25]

    王颖,朱大奎. 中国的潮滩[J]. 第四纪研究,1990(4):291-300. doi: 10.3321/j.issn:1001-7410.1990.04.001

    WANG Y,ZHU D K. Tidal flats of China[J]. Quaternary Sciences,1990(4):291-300. doi: 10.3321/j.issn:1001-7410.1990.04.001

    [26]

    李九发,戴志军,刘新成,等. 长江河口南汇嘴潮滩圈围工程前后水沙运动和冲淤演变研究[J]. 泥沙研究,2010(3):31-37.

    LI J F,DAI Z J,LIU X C,et al. Research on the movement of water and suspend sediment and sedimentation in Nanhui spit of the Yangtze Estuary before and after the construction of reclamation projects on the tidal flat[J]. Journal of Sediment Research,2010(3):31-37.

    [27]

    夏海峰,张玮. 南汇东滩及浦东国际机场外沿围海造地工程潮流数学模型研究[J]. 水道港口,2008,29(1):25-30. doi: 10.3969/j.issn.1005-8443.2008.01.005

    XIA H F,ZHANG W. Tidal current simulation model for shoal reclamation at eastern tidal flat of Nanhui and east side of Pudong International Airport[J]. Journal of Waterway and Harbor,2008,29(1):25-30. doi: 10.3969/j.issn.1005-8443.2008.01.005

    [28]

    左书华,李蓓,杨华. 南汇嘴边滩地形演变及其分析[J]. 水道港口,2007(2):108-112. doi: 10.3969/j.issn.1005-8443.2007.02.007

    ZUO S H,LI B,YANG H. Topography evolution and analysis of Nanhui nearshore[J]. Journal of Waterway and Harbor,2007(2):108-112. doi: 10.3969/j.issn.1005-8443.2007.02.007

    [29]

    赵建春,李九发,李占海,等. 长江口南汇嘴潮滩短期冲淤演变及其动力机制研究[J]. 海洋学报(中文版),2009,31(4):103-111.

    ZHAO J C,LI J F,LI Z H,et al. Researches on characteristics and dynamic mechanism of short-term scouring and silting changes of the tidal flat on Nanhui Spit in the Changjiang Estuary in China[J]. Acta Oceanologica Sinica,2009,31(4):103-111.

    [30]

    左书华,时连强. 南汇嘴潮滩沉积物粒度特征研究[J]. 水道港口,2008(2):88-93. doi: 10.3969/j.issn.1005-8443.2008.02.003

    ZUO S H,SHI L Q. Hydrodynamic explanation and characteristic of sediment granularity of Nanhuizui foreland in Changjiang Estuary[J]. Journal of Waterway and Harbor,2008(2):88-93. doi: 10.3969/j.issn.1005-8443.2008.02.003

    [31]

    WANG T,LIU G P,GAO L,et al. Biological and nutrient responses to a typhoon in the Yangtze Estuary and the adjacent sea[J]. Journal of Coastal Research,2016,32(2):323-332.

    [32]

    MENG L P,TU J B,WU X D,et al. Wave,flow,and suspended sediment dynamics under strong winds on a tidal beach[J]. Estuarine,Coastal and Shelf Science,2024,303:108799. doi: 10.1016/j.ecss.2024.108799

    [33]

    戴志军,陈建勇,路海亭. 长江河口南汇东滩与南滩沉积物空间相关特征分析[J]. 海洋湖沼通报,2008(2):46-52. doi: 10.3969/j.issn.1003-6482.2008.02.007

    DAI Z J,CHEN J Y,LU H T. Analysis on the spatial distribution of deposition fields between the east bank and the south bank,in the Yangtze River Estuary[J]. Transactions of Oceanology and Limnology,2008(2):46-52. doi: 10.3969/j.issn.1003-6482.2008.02.007

    [34]

    GORDON L,LOHRMANN A. Near-shore Doppler Current Meter Wave Spectra[M]. Virginia:Ocean Wave Measurement and Analysis,2002:33-43.

    [35]

    XU X B,XU G H,YANG J J,et al. Field observation of the wave-induced pore pressure response in a silty soil seabed[J]. Geo-Marine Letters,2021,41:1-12. doi: 10.1007/s00367-020-00681-5

    [36]

    QI W G,GAO F P. Wave induced instantaneously-liquefied soil depth in a non-cohesive seabed[J]. Ocean Engineering,2018,153:412-423. doi: 10.1016/j.oceaneng.2018.01.107

    [37]

    刘晓磊,贾永刚,郑杰文. 波浪导致黄河口海床沉积物超孔压响应现场试验研究[J]. 岩土力学,2015,36(11):3055-3062.

    LIU X L,JIA Y G,ZHENG J W. In situ experiment of wave-induced excess pore pressure in the seabed sediment in Yellow River Estuary[J]. Rock and Soil Mechanics,2015,36(11):3055-3062.

  • 加载中

(8)

(2)

计量
  • 文章访问数:  41
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2025-02-24
刊出日期:  2025-04-28

目录