-
摘要:
悬浮石英颗粒表面在不同的水动力环境中会形成一些特有的表面结构,对这些特点的研究有助于理解微小颗粒在水中的行为以及沉积环境的变化。基于对在不同海区采取表层和不同深度的悬浮石英颗粒表面结构的扫描电镜的观察, 发现在水动力较强的南海海域石英颗粒表面大多呈现出机械作用成因的结构,化学溶蚀痕迹不明显;马六甲海峡、孟加拉湾南部海域、阿拉伯海东部海域站位石英颗粒表面开始出现明显的化学溶蚀痕迹,为机械-化学溶蚀作用的结果;莫克兰海沟站位表层样品石英颗粒表面化学溶蚀作用强烈,随着深度的增加,溶蚀作用减弱,200m水深以下,石英颗粒表面的结构主要为机械-化学溶蚀作用的结果。中国南海西南部3号站位、马六甲海峡北部7号站位以及孟加拉湾南部的11号站位的表层石英悬浮体颗粒较大,可以达到10μm左右,大于其他海区的石英颗粒(3~4μm)。研究海区海水中悬浮体石英颗粒大都呈现棱角状,表现为近源沉积,偶尔可见磨圆度较好且表面有新月形撞击坑,推测可能为风尘沉积。
-
关键词:
- 石英悬浮体颗粒 /
- 表面微结构 /
- Image-Pro-Plus
Abstract:Some unique surface textures may be formed on the surface of suspended quartz particles under different hydrodynamic environments. The study of these characteristics is helpful to understand the dynamic behavior of small particles in water and the changes in sedimentary environment. Based on the observation of the surface textures of suspended quartz particles in different sea areas and different depths, it is found that most of the quartz particles in the South China Sea area, where occur strong hydrodynamic force, exhibit mechanically formed textures. The trace of chemical dissolution is not obvious. Obvious chemical dissolution marks on quartz surface appear in the southern part of the Bay of Bengal, the eastern part of the Arabian Sea and the Strait of Malacca; The surface chemical dissolution of quartz particles in the surface samples of the Mokland trench station is strong. With the increase in depth, the dissolution effect weakens. Below 200 m of water depth, the surface texture of quartz particles is mainly the result of mechanical-chemical dissolution. The surface quartz suspensions at station 3 in the southwest of the South China Sea, station 7 in the north of Malacca Strait and station 11 in the south of the Bay of Bengal are about 10 μm, which are larger than those in other sea areas (3~4 μm). Most of the suspended quartz particles in the sea water of the study areas are angular in shape and occasionally with better roundness, suggesting a kind of near-source deposition. Sometimes, there are crescent impact pits on the grain surface, and it is inferred that it may be of aeolian deposition.
-
Key words:
- suspended quartz particles /
- surface microtexture /
- Image-Pro-Plus
-
-
[1] 任明达,缪昕.石英砂表面的微结构——一种沉积环境标志[J].地质论评,1984,30(1):36-41,97-98. doi: 10.3321/j.issn:0371-5736.1984.01.005
[2] 徐文强,黄求获,董太禄,等.北部湾北部沉积物中石英砂表面的微结构[J].海洋科学,1989,13(4):25-27,73-76. http://www.cnki.com.cn/Article/CJFDTotal-HYKX198904004.htm
[3] 周伟,王琦,曹立华.渤海南部碎屑石英表面微结构特征等沉积环境[J].海洋湖沼通报,1991(3):27-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005266860
[4] 徐文强,陈丽蓉,黄求获,等.冲绳海槽沉积物中火山型石英颗粒表面的微结构[J].海洋科学,1989,13(1):26-28,76-77. http://www.cnki.com.cn/Article/CJFDTotal-HYKX198901005.htm
[5] 朱潇,蒋富清,冯旭光,等.菲律宾海沉积物中石英的来源及其搬运方式[J].海洋与湖沼,2018,49(6):1190-1202. http://d.old.wanfangdata.com.cn/Periodical/hyyhz201806007
[6] 陈丽蓉,董太禄,黄求获,等.闽南-台湾浅滩陆架沉积砂中石英颗粒表面的微结构[J].沉积学报,1985,3(3):45-49,139-140. http://www.cnki.com.cn/Article/CJFD1985-CJXB198503004.htm
[7] 黄求获,徐文强.我国不同海区沉积物石英颗粒表面的微结构[J].海洋科学,1997,21(2):43-47. http://www.cnki.com.cn/Article/CJFDTotal-HYKX199702015.htm
[8] 程涌,文义明,吴伟,等.场发射扫描电镜在现代河流沉积石英颗粒表面形态特征研究中的应用[J].电子显微学报,2017,36(5):457-465. doi: 10.3969/j.issn.1000-6281.2017.05.006
[9] 董晓芳,曲希玉,尤丽,等.乐东—陵水凹陷古近系黄流组峡谷水道碎屑岩的源区分析[J].海洋地质前沿,2018,34(10):12-22. http://www.cnki.com.cn/Article/CJFDTotal-HYDT201810002.htm
[10] 陈国祥,董治宝,李超,等.察尔汗盐湖北侧沙丘沉积物颗粒微结构特征[J].中国沙漠,2018,38(5):954-962. http://d.old.wanfangdata.com.cn/Periodical/zgsm201805007
[11] 胡兆国,冯金良,鞠建廷.成都粘土中石英的粒度分布及其表面微结构特征[J].山地学报,2010,28(4):392-406. doi: 10.3969/j.issn.1008-2786.2010.04.002
[12] 孙有斌,安芷生.风尘堆积物中石英颗粒表面微结构特征及其沉积学指示[J].沉积学报,2000,18(4):506-509,652. http://d.old.wanfangdata.com.cn/Periodical/cjxb200004004
[13] 张素新,李振锋.广东某地石英颗粒表面特征与沉积环境[J].电子显微学报,2000,19(4):525-526. doi: 10.3969/j.issn.1000-6281.2000.04.067
[14] 王永焱,滕志宏,岳乐平.黄土中石英颗粒表面结构与中国黄土的成因[J].地理学报,1982,37(1):35-40. doi: 10.3321/j.issn:0375-5444.1982.01.005
[15] 徐文强,黄求获.辽东湾晚更新世末期陆相沉积石英砂表面的微结构[J].海洋科学,1994,18(2):51-55. http://www.cnki.com.cn/Article/CJFDTotal-HYKX199402018.htm
[16] 徐洪阳,郑祥民,周立旻,等.南京周家山下蜀黄土石英颗粒特征及其物源意义[J].沉积学报,2016,34(6):1176-1186. http://d.old.wanfangdata.com.cn/Periodical/cjxb201606016
[17] 章顺利,吕正祥,熊晨皓,等.岐口凹陷侏罗系微晶石英包壳特征及形成机制[J].新疆石油地质,2018,39(5):537-541. http://d.old.wanfangdata.com.cn/Periodical/xjsydz201805006
[18] 高存海,穆桂金,闫顺,等.塔克拉玛干沙漠深部石英砂微结构特征及其环境意义[J].地质论评,1995,41(2):152-158,197-198. doi: 10.3321/j.issn:0371-5736.1995.02.007
[19] 朱潇.中新世以来奄美三角盆地风尘石英对构造尺度东亚古气候变化的指示[D].青岛:中国科学院大学(中国科学院海洋研究所),2018.
https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&filename=1019913056.nh [20] MoralCardonaJP,GutiérrezMasJM,SánchezBellónA,etal.Surface textures of heavy-mineralgrains:a new contribution to provenance studies[J].SedimentaryGeology,2005,174(3):223-235. https://cn.bing.com/academic/profile?id=dad644f74c84a5d56394cf5abe7bd6f9&encoded=0&v=paper_preview&mkt=zh-cn
[21] MargolisSV,KrinsleyDH.Submicroscopic frosting on eolian and subaqueous quartz sand grains[J].Geological Society of America Bulletin,1971,82(12):3395. doi: 10.1130/0016-7606(1971)82[3395:SFOEAS]2.0.CO;2
[22] SetlowLW,KarpovichRP."Glacial"microtextures on quartz and heavy mineral sand grains from the littoral en-vironment[J].Journal of Sedimentary Geology,1972,42(4),864-875. https://link.springer.com/article/10.1007/s10987-005-0040-x
[23] VosK,VandenbergheN,ElsenJ.Surface textural analy-sis of quartz grains by scanning electron microscopy(SEM):From sample preparation to environmental inter-pretation[J].Earth-ScienceReviews,2014,128:93-104. https://www.sciencedirect.com/science/article/abs/pii/0037073888900218
[24] 张思亭,刘耘.不同pH值条件下石英溶解的分子机理[J].地球化学,2009,38(6):549-557. doi: 10.3321/j.issn:0379-1726.2009.06.004
-