热屏障井对地下水源热泵换热影响模拟

肖锐, 黄坚, 王小清. 热屏障井对地下水源热泵换热影响模拟[J]. 水文地质工程地质, 2021, 48(2): 190-198. doi: 10.16030/j.cnki.issn.1000-3665.202003036
引用本文: 肖锐, 黄坚, 王小清. 热屏障井对地下水源热泵换热影响模拟[J]. 水文地质工程地质, 2021, 48(2): 190-198. doi: 10.16030/j.cnki.issn.1000-3665.202003036
XIAO Rui, HUANG Jian, WANG Xiaoqing. Simulation study on the effect of thermal barrier well on the heat transfer of groundwater heat pump[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 190-198. doi: 10.16030/j.cnki.issn.1000-3665.202003036
Citation: XIAO Rui, HUANG Jian, WANG Xiaoqing. Simulation study on the effect of thermal barrier well on the heat transfer of groundwater heat pump[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 190-198. doi: 10.16030/j.cnki.issn.1000-3665.202003036

热屏障井对地下水源热泵换热影响模拟

  • 基金项目: 上海市科学技术委员会科研计划项目(13dz1203100)
详细信息
    作者简介: 肖锐(1989-),男,博士,工程师,主要从事水文地质方面研究。E-mail: zhhxr@live.com
  • 中图分类号: P641.73

Simulation study on the effect of thermal barrier well on the heat transfer of groundwater heat pump

  • 对于场地受限的地下水源热泵项目,随着系统运行时间的增加易引发热贯通现象进而降低机组运行效率。地下水源热泵设计中,在抽灌水井连线间布设热屏障井可改变地下水流场,降低热量在抽灌井间的运移速度,有利于延长热贯通发生时间并缓解热贯通程度。通过构建地下水换热模型,模拟计算夏季制冷工况条件下36组热泵运行场景,分析了热屏障井的位置,过滤管长度及回灌量对热贯通和含水层温度场的影响规律。结果表明:热屏障井回灌量的增加有利于提升热屏障效果,但提升幅度随回灌量的增加逐渐减弱;最大水位降深值随着热屏障井回灌量的增加呈线性增长;增加热屏障井滤管长度可提升热屏障效果,提升效果随屏障井回灌量的增加逐渐增强。通过模型多周期、长时间模拟计算发现,热屏障井的运行可促使回灌的冷热量集中在回灌井一侧,对于采用冬夏季抽灌井交换运行模式的热泵系统,可充分利用含水层储能,提升机组运行效率。

  • 加载中
  • 图 1  热量屏障井工作原理

    Figure 1. 

    图 2  计算模型示意图

    Figure 2. 

    图 3  不同屏障井位置条件下抽水温度及热贯通时间变化

    Figure 3. 

    图 4  不同热屏障井位置及回灌量条件下含水层温度场分布

    Figure 4. 

    图 5  不同屏障井位置及流量条件下地下水最大水位降深变化

    Figure 5. 

    图 6  不同屏障井滤管长度条件下抽水温度和热贯通时间变化

    Figure 6. 

    图 7  不同屏障井滤管长度及回灌量条件下含水层温度场剖面

    Figure 7. 

    图 8  抽灌井交换运行模式下屏障井运行示意图

    Figure 8. 

    图 9  不同系统情景下抽水温度变化

    Figure 9. 

    图 10  夏、冬季末期抽水温度对比

    Figure 10. 

    表 1  模型含水层计算参数

    Table 1.  The paraments of aquifer in model

    计算参数 数值
    地下水初始温度T/℃ 12
    渗透率k/cm2 3×10−7
    给水度u 0.2
    孔隙度n 0.3
    地下水动力黏度μ/(Pa·s) 1×10−3
    地下水比热容Cw/(kJ·kg−1·K−1 4.2
    含水层固体颗粒比热容Cs/(kJ·(kg−1·K−1 0.7
    地下水导热系数λw/(W·m−1·K−1 0.6
    含水层固体颗粒导热系数λs/(W·m−1·K−1 2.2
    地下水密度ρw/(kg·m−3 998.2
    含水层固体颗粒密度ρs/(kg·m−3 1 900
    下载: 导出CSV

    表 2  热屏障井参数

    Table 2.  The paraments of thermal barrier well

    运行参数 数值
    距回灌井长度S/m 15,30,45
    滤管长度L/m 5,10,15,20,25,30
    回灌水量Q/(m3·d−1 200,500,800,1100,1 400,1700
    下载: 导出CSV
  • [1]

    SANNER B, KARYTSAS C, MENDRINOS D, et al. Current status of ground source heat pumps and underground thermal energy storage in Europe[J]. Geothermics,2003,32(4):579 − 588.

    [2]

    周彦章, 周志芳, 吴蓉, 等. 地源热泵系统地下水热量运移阶段特性模拟研究[J]. 水文地质工程地质,2011,38(5):128 − 134. [ZHOU Yanzhang, ZHOU Zhifang, WU Rong, et al. Simulation study of the stage-characteristics of groundwater thermal transport in aquifer medium for GWHP System[J]. Hydrogeology & Engineering Geology,2011,38(5):128 − 134. (in Chinese with English abstract)

    [3]

    QI Z S, GAO Q, LIU Y, et al. Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries[J]. Renewable & Sustainable Energy Reviews,2014,29(7):37 − 51.

    [4]

    徐生恒, 彭涛, 王秉忱, 等. 地源热泵技术研究新进展[J]. 地下水,2016,38(2):1 − 8. [XU Shengheng, PENG Tao, WANG Bingchen, et al. The new developments of ground source heat pump research[J]. Ground Water,2016,38(2):1 − 8. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-1184.2016.02.001

    [5]

    刘洪战, 田源, 杨坡. 细颗粒沉积物分布区地下水源热泵抽灌井施工工艺探讨[J]. 水文地质工程地质,2017,44(1):36 − 40. [LIU Hongzhan, TIAN Yuan, YANG Po. A discussion of the construction technology of pumping and injection Wells in the fine particle sediment distribution area[J]. Hydrogeology & Engineering Geology,2017,44(1):36 − 40. (in Chinese with English abstract)

    [6]

    VERDA V, BACCINO G, SCIACOVELLI A, et al. Impact of district heating and groundwater heat pump systems on the primary energy needs in urban areas[J]. Applied Thermal Engineering,2012,40:18 − 26. doi: 10.1016/j.applthermaleng.2012.01.047

    [7]

    靳孟贵, 汤庆佳, 栗现文. 应用水热运移数值模拟优化地下水源热泵系统抽灌井布局[J]. 地质科技情报,2012,31(5):128 − 135. [JIN Menggui, TANG Qingjia, LI Xianwen. Optimum location of pumping and injection Wells of groundwater heat exchange system using numerical modeling of water and heat transport[J]. Geological Science and Technology Information,2012,31(5):128 − 135. (in Chinese with English abstract)

    [8]

    周强, 王楠. 基于FLOW HEAT的地下水源热泵一抽多灌井群优化布置数值研究[J]. 水电能源科学,2019,37(9):124 − 127. [ZHOU Qiang, WANG Nan. Numerical simulation of ground-water heat pump system of pumping with multi-irrigation based on FLOW HEAT[J]. Water Resources and Power,2019,37(9):124 − 127. (in Chinese with English abstract)

    [9]

    傅志敏, 向衍, 高西望. 井点布置对采能区地下水温度场的影响[J]. 华北水利水电大学学报(自然科学版),2010,31(6):34 − 38. [FU Zhimin, XIANG Yan, GAO Xiwang. Influences of well point arrangement on ground water temperature field in energy mining areas[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power,2010,31(6):34 − 38. (in Chinese with English abstract)

    [10]

    GALGARO A, CULTRERA M. Thermal short circuit on groundwater heat pump[J]. Applied Thermal Engineering,2013,57(1):107 − 115.

    [11]

    PAKSOY H, ANDERSSON O, ABACI S, et al. Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in an aquifer[J]. Renewable Energy,2000,19(1):117 − 122.

    [12]

    吕天奇, 张延军, 于子望, 等. 地下水源热泵系统和太阳能辅助热源系统的地温场数值模拟研究[J]. 探矿工程(岩土钻掘工程),2018,45(1):79 − 83. [LYU Tianqi, ZHANG Yanjun, YU Ziwang, et al. Numerical simulation study on geothermal field of ground water heat pump system and solar assisted heat source system[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2018,45(1):79 − 83. (in Chinese with English abstract)

    [13]

    朱小波, 李幽铮, 周彦章. 地源热泵系统冷负荷设计方案变化地下水热量运移模拟[J]. 勘察科学技术,2010(5):13 − 17. [ZHU Xiaobo, LI Youzheng, ZHOU Yanzhang. Simulation of groundwater thermal migration for GWHP system with different cooling load design[J]. Site Investigation Science and Technology,2010(5):13 − 17. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-3946.2010.05.003

    [14]

    RUSSO S L, TADDIA G, BACCINO G, et al. Different design scenarios related to an open loop groundwater heat pump in a large building: Impact on subsurface and primary energy consumption[J]. Energy & Buildings,2011,43(2):347 − 357.

    [15]

    NORIO T, KASUMI Y, GEORGE Z. Model study of the thermal storage system by FEHM code[J]. Geothermics,2003,32(4):603 − 607.

    [16]

    王洋, 王小清, 吕亮. 基于监测数据的地下水源热泵系统运行策略优化[J]. 水利与建筑工程学报,2019,17(5):153 − 158. [WANG Yang, WANG Xiaoqing, LYU Liang. Operation strategy optimization of groundwater source heat pump based on monitoring data[J]. Journal of Water Resources and Architectural Engineering,2019,17(5):153 − 158. (in Chinese with English abstract)

    [17]

    SHELDON H A, SCHAUBS P M, RACHAKONDA P K, et al. Groundwater cooling of a supercomputer in Perth, Western Australia: hydrogeological simulations and thermal sustainability[J]. Hydrogeology Journal,2015,23(8):1831 − 1849. doi: 10.1007/s10040-015-1280-z

    [18]

    彭涛, 孙铁, 王秉忱, 等. 地下水人工流场能效增强技术在浅层地热能开发中的应用[J]. 水文地质工程地质,2017,44(6):169 − 174. [PENG Tao, SUN Tie, WANG Bingchen, et al. The energy efficiency enhancement technique of soil source heat pump system through groundwater artificial flow field[J]. Hydrogeology & Engineering Geology,2017,44(6):169 − 174. (in Chinese with English abstract)

    [19]

    赵军, 张志英, 刘九龙, 等. 人工流场影响下地埋管管群换热的模拟研究[J]. 天津大学学报(自然科学与工程技术版),2016,49(8):835 − 840. [ZHAO Jun, ZHANG Zhiying, LIU Jiulong, et al. Simulation study on heat transfer of buried pipe banks under the influence of artificial flow field[J]. Journal of Tianjin University(Science and Technology),2016,49(8):835 − 840. (in Chinese with English abstract)

    [20]

    杨露梅, 鄂建, 朱明君, 等. 典型地埋管系统模拟工况地温场特征研究[J]. 水文地质工程地质,2017,44(2):178 − 183. [YANG Lumei, E Jian, ZHU Mingjun, et al. Characteristics of the ground temperature of the typical Ground-Source Heat Pumps system in Nanjing[J]. Hydrogeology & Engineering Geology,2017,44(2):178 − 183. (in Chinese with English abstract)

    [21]

    岳丽燕, 孟令军, 赵苏民, 等. 天津市浅层地热能存在的热堆积问题及解决方法探讨[J]. 地质调查与研究,2017,40(1):76 − 80. [YUE Liyan, MENG Lingjun, ZHAO Sumin, et al. The cold & heat accumulation problem and solution methods of the shallow geothermal resource in Tianjin[J]. Geological Survey and Research,2017,40(1):76 − 80. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-4135.2017.01.011

    [22]

    朱天奎. 地下含水层蓄能特性模拟实验研究[D]. 长春: 吉林大学, 2013.

    ZHU Tiankui. Simulation experiment research on storage characteristic of underground aquifer[D]. Changchun: Jilin University, 2013.(in Chinese with English abstract)

    [23]

    孔祥言, 李道伦, 徐献芝, 等. 热-流-固耦合渗流的数学模型研究[J]. 水动力学研究与进展(A辑),2005,20(2):269 − 275. [KONG Xiangyan, LI D Lianlun, XU Xianzhi, et al. Study on the mathematical models of coupled thermal-hydrological-mechanical (THM) processes[J]. Journal of Hydrodynamics,2005,20(2):269 − 275. (in Chinese with English abstract)

    [24]

    张永杰, 束龙仓, 温忠辉, 等. 人工回灌对地下水年龄分布规律的影响[J]. 水文地质工程地质,2018,45(1):8 − 14. [ZHANG Yongjie, SHU Longcang, WEN Zhonghui, et al. Effect of artificial recharge on groundwater age distribution[J]. Hydrogeology & Engineering Geology,2018,45(1):8 − 14. (in Chinese with English abstract)

    [25]

    曹潇元, 侯德义, 胡立堂. 甘肃北山区域地下水流数值模拟研究[J]. 水文地质工程地质,2020,47(2):9 − 16. [CAO Xiaoyuan, HOU Deyi, HU Litang. Numerical simulation of regional groundwater flow in the Beishan area of Gansu[J]. Hydrogeology & Engineering Geology,2020,47(2):9 − 16. (in Chinese with English abstract)

    [26]

    李宏卿, 曾昭发, 刘四新, 等. 基于COMSOL Multiphysics的长白山天池多物理场耦合响应研究[J]. 地球物理学进展,2017,32(4):1779 − 1783. [LI Hongqing, ZENG Zhaofa, LIU Sixin, et al. Study on coupling response of multiphysical field around Tianchi lake of Changbaishan volcano based on COMSOL Multiphysics[J]. Progress in Geophysics,2017,32(4):1779 − 1783. (in Chinese with English abstract) doi: 10.6038/pg20170449

    [27]

    陈响亮. 抽灌井群热交互性及其布控特性研究[D]. 长春: 吉林大学, 2011.

    CHEN Xiangliang. Study on thermal interaction and its control in the field of pumping/injecting well groups[D]. Changchun: Jilin University, 2011. (in Chinese with English abstract)

    [28]

    高青, 周学志, 江彦, 等. 地能利用过程抽灌井区热贯通及其定量分析[J]. 应用基础与工程科学学报,2012,20(3):447 − 454. [GAO Qing, ZHOU Xuezhi, JIANG Yan, et al. Quantitative analysis of thermal breakthrough in pumping and injecting well group area during earth energy utilization[J]. Journal of Basic Science and Engineering,2012,20(3):447 − 454. (in Chinese with English abstract) doi: 10.3969/j.issn.1005-0930.2012.03.012

  • 加载中

(10)

(2)

计量
  • 文章访问数:  1152
  • PDF下载数:  112
  • 施引文献:  0
出版历程
收稿日期:  2020-03-30
修回日期:  2020-05-15
刊出日期:  2021-03-15

目录