井内嵌入同轴多孔与固体圆柱地下水渗流流型分析

朱琳, 雷海燕, 马非, 戴传山. 井内嵌入同轴多孔与固体圆柱地下水渗流流型分析[J]. 水文地质工程地质, 2021, 48(4): 25-31. doi: 10.16030/j.cnki.issn.1000-3665.202007045
引用本文: 朱琳, 雷海燕, 马非, 戴传山. 井内嵌入同轴多孔与固体圆柱地下水渗流流型分析[J]. 水文地质工程地质, 2021, 48(4): 25-31. doi: 10.16030/j.cnki.issn.1000-3665.202007045
ZHU Lin, LEI Haiyan, MA Fei, DAI Chuanshan. Flow pattern analysis around a solid cylinder with both porous and water rings in porous media[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 25-31. doi: 10.16030/j.cnki.issn.1000-3665.202007045
Citation: ZHU Lin, LEI Haiyan, MA Fei, DAI Chuanshan. Flow pattern analysis around a solid cylinder with both porous and water rings in porous media[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 25-31. doi: 10.16030/j.cnki.issn.1000-3665.202007045

井内嵌入同轴多孔与固体圆柱地下水渗流流型分析

  • 基金项目: 国家自然科学基金项目(41574176)
详细信息
    作者简介: 朱琳(1996-),女,硕士研究生,主要从事多孔介质传热传质研究。E-mail: 1036019766@qq.com
    通讯作者: 戴传山(1964-),男,博士,教授,主要从事地热能开发利用研究。E-mail: csdai@tju.edu.cn
  • 中图分类号: P641.2

Flow pattern analysis around a solid cylinder with both porous and water rings in porous media

More Information
  • 对二维无限大多孔介质内单向均匀水平流垂直绕过“固体小圆柱-多孔介质环-水环-多孔介质”复杂四层结构下的流场进行了解析求解。内、外多孔介质区域均采用Brinkman模型,纯流体水环采用Stokes模型,通过耦合界面间的质量、动量守恒关系得到了各区域流函数的通用表达式。在此基础上分析了不同几何参数,不同内、外多孔介质渗透系数情况下,圆柱外绕流的流型变化;着重研究了水环间隙以及内、外多孔介质渗透系数的变化对流型及横向、纵向速度分布的影响。结果表明:外部多孔区流型主要受控于外部渗透系数;水环间隙宽度对水环内速度峰值影响较大;内部渗透系数增加到某一临界值情况下,横截面速度分布从阶梯形变为抛物形,即“穿透”现象。研究结果对有类似结构的地埋管换热器、地下水污染物吸收装置、地下水测速装置等的设计研发有理论指导意义。

  • 加载中
  • 图 1  物理模型示意图

    Figure 1. 

    图 2  ${\chi _{\rm{e}}}$ 变化下纵向中心剖面(Y=0),横向中心剖面(X=0)无量纲速度分布图

    Figure 2. 

    图 3  纵向、横向中心剖面无量纲速度分布图

    Figure 3. 

    图 4  典型工况下的压力云图(工况2)

    Figure 4. 

    图 5  典型工况下的流线图

    Figure 5. 

    图 6  典型工况下的速度云图

    Figure 6. 

    表 1  不同工况的计算参数

    Table 1.  Summary of calculation conditions under different parameters.

    工况1 100 120 0.6 15
    工况2 2 2.4 30 750
    工况3 1.1 1.32 54 1350
    工况4 2.3 2.4 30 750
    工况5 1.1 2.4 30 750
    工况6 2 4.0 30 750
    工况7 2 2.1 30 750
    工况8 2 2.4 100 750
    工况9 2 2.4 3 750
    工况10 2 2.4 30 30
    工况11 2 2.4 30 10
    下载: 导出CSV
  • [1]

    陈崇希, 胡立堂. 渗流-管流耦合模型及其应用综述[J]. 水文地质工程地质,2008,35(3):70 − 75. [CHEN Chongxi, HU Litang. A review of the page pipe coupling model and its application[J]. Hydrogeology & Engineering Geology,2008,35(3):70 − 75. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2008.03.018

    [2]

    RASHIDI S, TAMAYOL A, VALIPOUR M S, et al. Fluid flow and forced convection heat transfer around a solid cylinder wrapped with a porous ring[J]. International Journal of Heat & Mass Transfer,2013,63:91 − 100.

    [3]

    SWARTZ M A, FLEURY M E. Interstitial flow and its effects in soft tissues[J]. Annual Review of Biomedical Engineering,2007,9(1):229 − 256. doi: 10.1146/annurev.bioeng.9.060906.151850

    [4]

    POP I, INGHAM D B. Flow past a sphere embedded in a porous medium based on the Brinkman model[J]. International Journal of Engineering Science,1992,30(2):257 − 262. doi: 10.1016/0020-7225(92)90058-O

    [5]

    DROST W, KLOTZ D, KOCH A, et al. Point dilution methods of investigating ground water flow by means of radioisotopes[J]. Water Resources Research,1968,4(1):125 − 146. doi: 10.1029/WR004i001p00125

    [6]

    SANO O. Viscous flow past a cylindrical hole bored inside porous media-with application to measurement of the velocity of subterranean water by the single boring method[J]. Nagare,1983,2(3):252 − 259.

    [7]

    MOMII K, JINNO K, HIRANO F. Laboratory studies on a new laser Doppler Velocimeter System for horizontal groundwater velocity measurements in a borehole[J]. Water Resources Research,1993,29(2):283 − 291. doi: 10.1029/92WR01958

    [8]

    RAJA SEKHAR G P, SANO O. Viscous flow past a circular/spherical void in porous media-an application to measurement of the velocity of groundwater by the single boring method[J]. Journal of the Physical Society of Japan,2000,69(8):2479 − 2484. doi: 10.1143/JPSJ.69.2479

    [9]

    RAJA SEKHAR G P, SANO O. Two-dimensional viscous flow past a slightly deformed circular cavity in a porous medium[J]. Fluid Dynamics Research,2001,28(4):281 − 293. doi: 10.1016/S0169-5983(00)00033-2

    [10]

    RAJA SEKHAR G P, SANO O. Two-dimensional viscous flow in a granular material with a void of arbitrary shape[J]. Physics of Fluids,2003,15(2):554 − 567. doi: 10.1063/1.1536165

    [11]

    LI Y C, PARK C W. A predictive model for the removal of colloidal particles in fibrous filter media[J]. Chemical Engineering Science,1999,54(5):633 − 644. doi: 10.1016/S0009-2509(98)00266-8

    [12]

    SEKHAR G P R. Effective medium model for flow through beds of porous cylindrical fibres[J]. Applicable Analysis,2010,89(6):833 − 848. doi: 10.1080/00036811003649116

    [13]

    BAYER-RAICH M, CREDOZ A, GUIMERÀ J, et al. Estimates of horizontal groundwater flow velocities in boreholes[J]. Groundwater,2019,57(4):525 − 533. doi: 10.1111/gwat.12820

    [14]

    KLAMMLER H, HATFIELD K, ANNABLE M D, et al. General analytical treatment of the flow field relevant to the interpretation of passive fluxmeter measurements[J]. Water Resources Research,2007,43(4):264 − 272.

    [15]

    BECKERMANN C, VISKANTA R, RAMADHYANI S. Natural convection in vertical enclosures containing simultaneously fluid and porous layers[J]. Journal of Fluid Mechanics,1988,186:257 − 284. doi: 10.1017/S0022112088000138

    [16]

    戴传山, 祁芸芝, 雷海燕, 等. 悬浮微小颗粒对多孔介质渗流特性影响的实验研究[J]. 水文地质工程地质,2016,43(6):1 − 6. [DAI Chuanshan, QI Yunzhi, LEI Haiyan, et al. Deposition effect of suspended microparticle on the local permeability in porous media[J]. Hydrogeology & Engineering Geology,2016,43(6):1 − 6. (in Chinese with English abstract)

    [17]

    RAJA SEKHAR G P, AMARANATH T. Stokes flow inside a porous spherical shell[J]. Zeitschrift Fur Angewandte Mathematik Und Physik ZAMP,2000,51(3):481 − 490. doi: 10.1007/s000330050009

    [18]

    BRINKMAN H C. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[J]. Flow, Turbulence & Combustion,1949,1(1):27 − 34.

    [19]

    PADMAVATHI B S, AMARANATH T, NIGAM S D. Stokes flow past a porous sphere using Brinkman's model[J]. Zeitschrift Für Angewandte Mathematik Und Physik ZAMP,1993,44(5):929 − 939.

    [20]

    QIN Y, KALONI P N. Creeping flow past a porous spherical shell[J]. ZAMM Journal of Applied Mathematics and Mechanics,1993,73(2):77 − 84. doi: 10.1002/zamm.19930730207

  • 加载中

(6)

(1)

计量
  • 文章访问数:  777
  • PDF下载数:  79
  • 施引文献:  0
出版历程
收稿日期:  2020-07-13
修回日期:  2020-10-24
刊出日期:  2021-07-15

目录