Techniques for detecting underground space in hidden karst region: Taking Wuhan as an example
-
摘要: 岩溶地面塌陷是城市隐伏岩溶区地下空间开发过程中常见的地质环境问题,具有隐蔽性和突发性,开展隐伏岩溶区地下空间结构探测技术方法研究可以有效指导地下空间开发利用。以武汉市为例,分析武汉市岩溶地面塌陷的成因机理,提出岩溶发育程度、覆盖层厚度和结构、地下水是岩溶地面塌陷的原生地质条件,也是隐伏岩溶区地下空间探测的特征因子。通过对比分析地质雷达、高密度电阻率法、浅层地震、微动、混合源面波、瞬变电磁法、孔间层析成像和地面核磁共振法等技术方法在武汉市隐伏岩溶区地下空间探测的适用性。结果表明:地质雷达适用于浅部土层扰动探测,小极距的高密度电阻率法和混合源面波适宜于覆盖层的厚度和结构探测,浅层地震、微动和孔间层析成像适宜岩溶发育特征探测,地面核磁共振法可通过岩溶地下水的富水性辅助岩溶发育程度探测。Abstract: The concealed and sudden karst collapse is the one of common geological environmental problems in the utilization of underground space in urban hidden karst areas. Research on the detection technology and methods of underground space structure in hidden karst areas may guide the utilization of underground space effectively. The degree of karst development, thickness and structure of the overburden, groundwater were proposed to be the primary geological conditions of karst collapse, which were characteristic factors of underground space exploration in hidden karst region, on the basis of analyzing the cause mechanism of karst collapse in Wuhan. The applicability of detecting underground space in hidden karst region was compared with ground penetrating radar, high density resistivity, shallow seismic, microtremor, multi-source surface wave, transient electromagnetic cross-hole computerized tomography and surface nuclear magnetic resonance. The results show that ground penetrating radar is suitable for detecting shallow soil disturbances. Both high density resistivity with small polar distance and multi-source surface wave are suitable for detecting the thickness and structure of the overburden. The shallow seismic, microtremor and cross-hole computerized tomography are suitable for detecting characteristics of karst development. Surface nuclear magnetic resonance can be used to evidence the degree of karst development through water abundance of karst groundwater.
-
Key words:
- hidden karst region /
- underground space /
- Wuhan /
- karst collapse
-
-
[1] 胡亚波, 刘广润, 肖尚德, 等. 一种复合型岩溶地面塌陷的形成机理——以武汉市烽火村塌陷为例[J]. 地质科技情报, 2007, 26(1):96-100.[HU Y B, LIU G R, XIAO S D, et al. Mechanism of a compound karst surface collapse:a case study in Fenghuo village of Wuhan City[J].Geological Science and Technology Information, 2007, 26(1):96-100.(in Chinese)]
[2] 卢伟, 杨荣丰, 朱晓青, 等. 湖南湘潭某岩溶地面塌陷特征及成因分析[J]. 华南地质与矿产, 2018, 34(3):229-235.[LU W, YANG R F, ZHU X Q, et al. Analysis on the characteristics and cause of a karst ground collapse in Xiangtan, Hunan Province[J]. Geology and Mineral Resources of South China, 2018, 34(3):229-235.(in Chinese)]
[3] 陈学军, 周明芳, 陈富坚, 等. 岩溶地区破坏性抽水致塌试验研究——以广西桂林西城区为例[J]. 地质科技情报, 2002, 21(1):79-82.[CHEN X J, ZHOU M F, CHEN F J, et al. Destructive pumping test to study the characteristics of karst collapses in limestone region:A case study in the western urban of Guilin city[J]. Geological Science and Technology Information, 2002, 21(1):79-82.(in Chinese)]
[4] 黄强兵, 彭建兵, 王飞永, 等. 特殊地质城市地下空间开发利用面临的问题与挑战[J]. 地学前缘, 2019, 26(3):85-94.[HUANG Q B, PENG J B, WANG F Y, et al. Issues and challenges in the development of urban underground space in adverse geological environment[J]. Earth Science Frontiers, 2019, 26(3):85-94.(in Chinese)]
[5] 江思义, 吴福, 王启耀, 等. 岩溶地区地下空间开发适宜性评价——以桂林市规划中心城区为例[J]. 桂林理工大学学报, 2019, 39(2):402-409.[JIANG S Y, WU F, WANG Q Y, et al. Suitability evaluation of underground space development in karst area:an example from Guilin[J]. Journal of Guilin University of Technology, 2019, 39(2):402-409.(in Chinese)]
[6] 范士凯. 武汉(湖北)地区岩溶地面塌陷资源环境与工程[J]. 2006, 20(增刊1):608-616.[FAN S K. A discussion on karst collapse in Wuhan(Hubei)[J]. Resources Environment & Engineering, 2006, 20(Sup1):608-616.(in Chinese)]
[7] 徐贵来. 武汉市覆盖层岩溶地面塌陷形成机理与危险性评价[D]. 武汉:中国地质大学(武汉), 2016.[XU G L. Mechanism and hazard assessment of covered karst sinkholes in Wuhan city, China[D].Wuhan:China University of Geosciences, 2016.(in Chinese)]
[8] 涂婧, 魏瑞均, 杨戈欣, 等. 湖北武汉岩溶塌陷时空分布规律及其影响因素分析[J]. 中国地质灾害与防治学报, 2019, 30(6):68-73.[TU J, WEI R Y, YANG G X, et al. Analysis on spatial and temporal distribution characteristics of karst collapse and its influence factors in Wuhan City of Hubei Province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(6):68-73.(in Chinese)]
[9] 罗小杰. 武汉地区浅层岩溶发育特征与岩溶塌陷灾害防治[J]. 中国岩溶, 2013, 32(4):419-432.[LUO X J. Features of the shallow karst development and control of karst collapse in Wuhan[J]. Carsologica Sinica, 2013, 32(4):419-432.(in Chinese)]
[10] ZAJC M, POGACNIKŽ, GOSAR A. Ground penetrating radar and structural geological mapping investigation of karst and tectonic features in flyschoid rocks as geological hazard for exploitation[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67:78-87.
[11] LAMBERT D W, ADAMS G L, FODOR B, et al. Use of electrical resistivity surveying to evaluate collapse potential related to road construction over a cave[J]. Carbonates and Evaporites, 2013,28(1/2):215-219.
[12] DOS SANTOS ESM, SILVA RWS, SAMPAIO EES. Analysis of the risk of karst collapse in Lapao, Bahia, Brazil[J]. Exploration Geophysics, 2013(3):198-212.
[13] 伍小刚, 李天斌, 张中,等. 传统瞬变电磁法的改进及其在隧道超前地质预报中的应用[J/OL]. 水文地质工程地质. https://doi.org/10.16030/j.cnki.issn.1000-3665.202003025.[WU X G, LI T B, ZHANG Z, et al. Improvement of traditional transient electromagnetic method and its application in advanced geological forecast of tunnel[J/OL]. Hydrogeology & Engineering Geology. https://doi.org/10.16030/j.cnki.issn.1000-3665.202003025. (in Chinese)]
[14] 田志飞, 贾杰南, 赵毅博. 隧道岩溶区浅层地震及地质雷达综合预报应用研究[J]. 水利科技与经济, 2018, 24(5):32-38.[TIAN Z F, JIA J N, ZHAO Y B. Application of shallow earthquake and geological radar comprehensive prediction of tunnel karst area[J]. Water Conservancy Science and Technology and Economy, 2018, 24(5):32-38.(in Chinese)]
[15] 陈玉玲, 韩凯, 陈贻祥, 等. 可控源音频大地电磁法再岩溶塌陷勘察中的应用[J]. 地球物理学进展, 2015, 30(6):2616-2622.[CHEN Y L, HAN K, CHEN Y X, et al. The application of CSAMT in karst collapse investigation[J]. Progress in Geophysics, 2015, 30(6):2616-2622.(in Chinese)]
[16] 李天祺, 彭涛, 郭印. 井间地震层析成像技术在岩溶勘察中的应用[J]. 水文地质工程地质, 2009,36(6):127-130.[LI T Q, PENG T, GUO Y. Application of cross-hole seismic computerized tomography technology to karst caves survey[J]. Hydrogeology & Engineering Geology, 2009,36(6):127-130.(in Chinese)]
[17] 李耐宾, 裴世建. 微动技术在大连地铁岩溶勘察中的应用[J]. 工程地球物理学报, 2019, 16(5):580-585.[LI N B, PEI S J. The application of microtremor technology to karst survey of the Dalian subway[J]. Chinese Journal of Engineering Geophysics, 2019, 16(5):580-585.(in Chinese)]
[18] 郑智杰, 敖文龙, 曾洁,等. 综合物探法在柳州泗角村岩溶塌陷区调查中的应用[J]. 水文地质工程地质, 2017, 44(5):143-149.[ZHENG Z J, AO W L, ZENG J, et al. Application of integrated geophysical methods to karst collapse investigation in the Sijiao village near Liuzhou[J]. Hydrogeology & Engineering Geology, 2017, 44(5):143-149.(in Chinese)]
[19] 房浩, 李巧灵, 雷晓东, 等. 平原区深层隐伏岩溶塌陷主控因子地球物理调查方法适用性分析[J]. 水文地质工程地质, 2020, 47(1):153-160.[FANG H, LI Q L, LEI X D, et al. Applicability of geophysical survey methods for the main controlling factors of deep covered karst collapse in plain areas[J]. Hydrogeology & Engineering Geology, 2020, 47(1):153-160.(in Chinese)]
[20] 屈若枫. 武汉地铁穿越区岩溶地面塌陷过程及其对隧道影响特征研究[D]. 武汉:中国地质大学(武汉), 2017.[QU R F. Research on the evolutive process of karst collapse and the impact mechanism of the karst on subway tunnel in Wuhan subway crossing area[D]. Wuhan:China University of Geosciences, 2017.(in Chinese)]
[21] 贺彬, 钟世华, 罗其奇, 等. 武汉地铁6号线岩溶发育特征及治理方案比选[J]. 科学技术与工程, 2017, 17(30):336-342.[HE B, ZHONE S H, LUO Q Q, et al. Characteristics of karst development and karst treatments of Wuhan metro line 6[J]. Science Technology and Engineering, 2017, 17(30):336-342.(in Chinese)]
[22] 徐小连. 综合物探技术在武汉市江夏区大桥新区岩溶探测中的应用研究[J]. 中国煤炭地质, 2019, 31(6):80-85.[XU X L. Study on application of integrated geophysical prospecting for karst in Daqiao new area,Jiangxia economic development zone, Wuhan City[J]. Coal Geology of China, 2019, 31(6):80-85.(in Chinese)]
[23] 田望学, 毛新武, 何仁亮, 等. 武汉地区1:5万区调第四系研究进展[J]. 华南地质与矿产, 2011, 27(4):286-291.[TIAN W X, MAO X W, HE R L, et al. Progresses in Quaternary system of Wuhan area in 1:50000 regional geological survey[J]. Geology and Mineral Resources of South China, 2011, 27(4):286-291.(in Chinese)]
[24] 张丽芬, 曾夏生, 姚运生, 等. 我国岩溶塌陷研究综述[J]. 中国地质灾害与防治学报, 2007, 18(3):126-130.[ZHANG L F, ZENG X S, YAO Y S, et al. Review on karst collapse in China[J]. The Chinese Journal of Geological Hazard and Control, 2007, 18(3):126-130. (in Chinese)]
[25] 邱向荣. 岩溶塌陷稳定性的灰色模糊综合评判[J]. 水文地质工程地质, 2004, 31(4):58-61.[QIU X R. Grey fuzzy synthetic assessment for stability if karst collapse[J]. Hydrogeology & Engineering Geology, 2004, 31(4):58-61. (in Chinese)]
[26] 叶太兰. 微动台阵探测技术及其应用研究[J]. 中国地震, 2004, 20(1):47-52.[YE T L. The exploration technique for microtremor array and its application[J]. Earthquake Research in China, 2004, 20(1):47-52.(in Chinese)]
[27] 胡让全, 黄健民. 综合物探方法在广州市金沙洲岩溶地面塌陷、地面沉降地质灾害调查中的应用[J]. 物探与化探, 2014, 38(3):610-615.[HU R Q, HUANG J M. The application of integrated geophysical techniques to the investigation of karst ground collapse and ground subsidence in Jinshazhou area, Guangzhou City[J]. Geophysical and Geochemical Exploration, 2014, 38(3):610-615.(in Chinese)]
[28] 候超文. 综合物探技术在地下岩溶探测中的应用研究[D]. 成都:成都理工大学, 2019.[HOU C W. Application research of integrated geophysical exploration technology in underground karst exploration[D].Chengdu:Chengdu University of Technology, 2019.(in Chinese)]
[29] 杨建明, 王洪昌, 沙椿. 基于等值反磁通瞬变电磁法的岩溶探测分析[J]. 物探与化探, 2018, 42(4):846-850.[YANG J M, WANG H C, SHA C. An analysis of karst exploration based on opposing coils transient electromagnetic method[J]. Geophysical and Geochemical Exploration, 2018, 42(4):846-850.(in Chinese)]
[30] 赵杨杉, 王洁, 张威. 地质雷达方法在武汉岩溶探测中的应用分析[J]. 中国煤炭地质, 2019, 31(增刊1):108-112.[ZHAO Y S, WANG J, ZHANG W. Applied analysis of ground penetrating radar in Wuhan karst prospecting[J]. Coal Geology of China, 2019, 31(Sup1):108-112.(in Chinese)]
[31] 刘庆华, 鲁来玉, 王凯明. 主动源和被动源面波浅勘方法综述[J]. 地球物理学进展, 2015, 30(6):2906-2922.[LIU Q H, LU L Y, WANG K M. Review on the active and passive surface wave exploration method for the near-surface structure[J].Progress in Geophysics, 2015, 30(6):2906-2922. (in Chinese)]
-
计量
- 文章访问数: 1550
- PDF下载数: 104
- 施引文献: 0