高岭土电渗固结特性及数值模拟研究

沈美兰, 周太全, 李吴刚. 高岭土电渗固结特性及数值模拟研究[J]. 水文地质工程地质, 2021, 48(4): 78-85. doi: 10.16030/j.cnki.issn.1000-3665.202010026
引用本文: 沈美兰, 周太全, 李吴刚. 高岭土电渗固结特性及数值模拟研究[J]. 水文地质工程地质, 2021, 48(4): 78-85. doi: 10.16030/j.cnki.issn.1000-3665.202010026
SHEN Meilan, ZHOU Taiquan, LI Wugang. A study of the kaolin electro-osmotic consolidation characteristics and their numerical simulation[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 78-85. doi: 10.16030/j.cnki.issn.1000-3665.202010026
Citation: SHEN Meilan, ZHOU Taiquan, LI Wugang. A study of the kaolin electro-osmotic consolidation characteristics and their numerical simulation[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 78-85. doi: 10.16030/j.cnki.issn.1000-3665.202010026

高岭土电渗固结特性及数值模拟研究

  • 基金项目: 大连理工大学海岸和近海工程国家重点实验室开放基金项目(LP1909);国家自然科学基金项目(51009071)
详细信息
    作者简介: 沈美兰(1995-),女,硕士研究生,主要从事环境岩土相关的研究。E-mail: 1839963126@qq.com
    通讯作者: 周太全(1976-),男,博士,副教授,主要从事岩土力学、工程力学教学与科研。E-mail: Zhoutaiquan@163.com
  • 中图分类号: TU411.5

A study of the kaolin electro-osmotic consolidation characteristics and their numerical simulation

More Information
  • 电渗固结是促进低渗透性软土排水固结的有效方法。为了揭示不同电势梯度影响高岭土电渗固结的基本规律,在自制电渗试验装置上对高岭土进行电渗试验。试验过程中测量电流、排水量、沉降量以及有效电压随时间的变化,并进行单位排水能耗分析。基于电渗固结多场耦合控制方程,实现土体电渗固结全耦合分析的有限元数值方法,计算结果与解析解吻合良好,验证了程序的有效性。为预测不同电势梯度下土体沉降量随时间的变化关系,分别对0.5,1.0,1.5 V/cm 3种电势梯度电渗固结试验进行数值模拟分析,获得模型表面沉降量分布、阳极超静孔隙水压力时空发展规律、阳极位置固结度等曲线,计算结果和试验结果吻合良好,可为实际电渗试验提供理论指导。

  • 加载中
  • 图 1  电渗试验装置图

    Figure 1. 

    图 2  土体中电流和排水量与时间关系曲线

    Figure 2. 

    图 3  土体沉降量-时间关系曲线

    Figure 3. 

    图 4  土体最终含水率分布

    Figure 4. 

    图 5  两端有效电压-时间关系曲线

    Figure 5. 

    图 6  电渗实物图

    Figure 6. 

    图 7  单位排水能耗-时间变化曲线

    Figure 7. 

    图 8  一维电渗固结超静孔隙水压力时空分布

    Figure 8. 

    图 9  模型表面及阳极固结沉降

    Figure 9. 

    图 10  阳极超静孔隙水压力及固结度

    Figure 10. 

  • [1]

    CASAGRANDE I L. Electro-osmosis in soils[J]. Géotechnique,1949,1(3):159 − 177.

    [2]

    LAMONT-BLACK J, JONES C J F P, ALDER D. Electrokinetic strengthening of slopes - Case history[J]. Geotextiles and Geomembranes,2016,44(3):319 − 331. doi: 10.1016/j.geotexmem.2016.01.001

    [3]

    胡黎明, 洪何清, 吴伟令. 高岭土的电渗试验[J]. 清华大学学报(自然科学版),2010,50(9):1353 − 1356. [HU Liming, HONG Heqing, WU Weiling. Electro-osmosis tests on Kaolin clay[J]. Journal of Tsinghua University (Science and Technology),2010,50(9):1353 − 1356. (in Chinese with English abstract)

    [4]

    HAMIR R B, JONES C J F P, CLARKE B G. Electrically conductive geosynthetics for consolidation and reinforced soil[J]. Geotextiles and Geomembranes,2001,19(8):455 − 482. doi: 10.1016/S0266-1144(01)00021-8

    [5]

    李瑛, 龚晓南, 张雪婵. 电压对一维电渗排水影响的试验研究[J]. 岩土力学,2011,32(3):709 − 714. [LI Ying, GONG Xiaonan, ZHANG Xuechan. Experimental research on effect of applied voltage on one-dimensional electroosmotic drainage[J]. Rock and Soil Mechanics,2011,32(3):709 − 714. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2011.03.012

    [6]

    金志伟, 阎长虹, 李良伟, 等. 低含水率盾构泥浆的真空-电渗联合泥水分离技术试验研究[J]. 水文地质工程地质,2020,47(1):103 − 110. [JIN Zhiwei, YAN Changhong, LI Liangwei, et al. An experimental study of vacuum negative pressure incorporated with electro-osmosis in mud-water dehydration for shield slurry with low water content[J]. Hydrogeology & Engineering Geology,2020,47(1):103 − 110. (in Chinese with English abstract)

    [7]

    ESRIG, MELVIN I. Pore pressures, consolidation, and electrokinetics[J]. Journal of the Soil Mechanics & Foundations Division,1968,94(4):899 − 922.

    [8]

    徐伟, 刘斯宏, 王柳江, 等. 真空预压联合电渗法加固软基的固结方程[J]. 河海大学学报(自然科学版),2011,39(2):169 − 175. [XU Wei, LIU Sihong, WANG Liujiang, et al. Analytical theory of soft ground consolidation under vacuum preloading combined with electro-osmosis[J]. Journal of Hohai University (Natural Sciences),2011,39(2):169 − 175. (in Chinese with English abstract)

    [9]

    胡黎明, 吴伟令, 吴辉. 软土地基电渗固结理论分析与数值模拟[J]. 岩土力学,2010,31(12):3977 − 3983. [HU Liming, WU Weiling, WU Hui. Theoretical analysis and numerical simulation of electroosmosis consolidation for soft clay[J]. Rock and Soil Mechanics,2010,31(12):3977 − 3983. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2010.12.045

    [10]

    龚明星, 王档良, 詹贵贵. 考虑有效电势变化的软土一维电渗固结理论[J]. 水文地质工程地质,2015,42(4):61 − 66. [GONG Mingxing, WANG Dangliang, ZHAN Guigui. 1-D electro-osmotic consolidation theory considering variation in effective potential in soft soil[J]. Hydrogeology & Engineering Geology,2015,42(4):61 − 66. (in Chinese with English abstract)

    [11]

    WU H, HU L M. Analytical and numerical model of electro-osmotic consolidation for soft soil improvement[C]//Geo-Congress 2013. March 3-7, 2013, San Diego, California, USA. Reston, VA, USA: American Society of Civil Engineers, 2013: 2107-2116.

    [12]

    TANG X W, XUE Z J, YANG Q, et al. Water content and shear strength evaluation of marine soil after electro-osmosis experiments[J]. Drying Technology,2017,35(14):1696 − 1710. doi: 10.1080/07373937.2016.1270299

    [13]

    苏金强, 王钊. 电渗的二维固结理论[J]. 岩土力学,2004,25(1):125 − 131. [SU Jinqiang, WANG Zhao. Theory of two-dimensional electro-osmotic consolidation of soils[J]. Rock and Soil Mechanics,2004,25(1):125 − 131. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2004.01.027

    [14]

    谢新宇, 郑凌逶, 谢康和, 等. 电势梯度与电极间距变化的滨海软土电渗模型试验研究[J]. 土木工程学报,2019,52(1):108 − 114. [XIE Xinyu, ZHENG Lingwei, XIE Kanghe, et al. Experimental study on electro-osmosis of marine soft soil with varying potential gradient and electrode spacing[J]. China Civil Engineering Journal,2019,52(1):108 − 114. (in Chinese with English abstract)

    [15]

    王宁伟, 孙守刚, 梁家豪, 等. 非金属电极在电渗排水中的应用[J]. 水利与建筑工程学报,2016,14(4):59 − 63. [WANG Ningwei, SUN Shougang, LIANG Jiahao, et al. The application of non-metallic electrodes in electroosmotic drainage[J]. Journal of Water Resources and Architectural Engineering,2016,14(4):59 − 63. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-1144.2016.04.012

    [16]

    YUAN J, HICKS M A. Large deformation elastic electro-osmosis consolidation of clays[J]. Computers and Geotechnics,2013,54:60 − 68. doi: 10.1016/j.compgeo.2013.05.012

    [17]

    王柳江, 刘斯宏, 汪俊波, 等. 电场-渗流场-应力场耦合的电渗固结数值分析[J]. 岩土力学,2012,33(6):1904 − 1911. [WANG Liujiang, LIU Sihong, WANG Junbo, et al. Numerical analysis of electroosmostic consolidation based on coupled electrical field-seepage field-stress field[J]. Rock and Soil Mechanics,2012,33(6):1904 − 1911. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2012.06.046

    [18]

    吴辉, 胡黎明. 考虑电导率变化的电渗固结模型[J]. 岩土工程学报,2013,35(4):734 − 738. [WU Hui, HU Liming. Numerical simulation of electro-osmosis consolidation considering variation of electrical conductivity[J]. Chinese Journal of Geotechnical Engineering,2013,35(4):734 − 738. (in Chinese with English abstract)

    [19]

    TO P, MALEKZADEH M, SIVAKUGAN N, et al. 3D numerical model of electro-kinetic Sedimentation−Consolidation of dredged mud with variable parameters[J]. Geotechnical and Geological Engineering,2020,38(4):4333 − 4348. doi: 10.1007/s10706-020-01298-2

    [20]

    WU H, HU L M, WEN Q B. Numerical simulation of electro-osmotic consolidation coupling non-linear variation of soil parameters[J]. Computers & Geosciences,2017,103:92 − 98.

  • 加载中

(10)

计量
  • 文章访问数:  2508
  • PDF下载数:  95
  • 施引文献:  0
出版历程
收稿日期:  2020-10-15
修回日期:  2020-12-15
刊出日期:  2021-07-15

目录