无黏性土的压缩特性及模型

马露. 无黏性土的压缩特性及模型[J]. 水文地质工程地质, 2021, 48(4): 72-77. doi: 10.16030/j.cnki.issn.1000-3665.202010014
引用本文: 马露. 无黏性土的压缩特性及模型[J]. 水文地质工程地质, 2021, 48(4): 72-77. doi: 10.16030/j.cnki.issn.1000-3665.202010014
MA Lu. Compression characteristics and models of cohesionless soil[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 72-77. doi: 10.16030/j.cnki.issn.1000-3665.202010014
Citation: MA Lu. Compression characteristics and models of cohesionless soil[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 72-77. doi: 10.16030/j.cnki.issn.1000-3665.202010014

无黏性土的压缩特性及模型

  • 基金项目: 安徽省教育厅重点研究项目(KJ2018A0539;KJ2020A0080);安徽省级质量工程项目(2018zhkt175)
详细信息
    作者简介: 马露(1988-),男,硕士研究生,讲师,主要从事岩土工程教学与科研工作。E-mail: mal@ahstu.edu.cn
  • 中图分类号: P642.11+6;TU411.5

Compression characteristics and models of cohesionless soil

  • 我国南海神狐海域海底沉积物主要由钙质砂与无黏性土组成,其力学性质对海洋工程的稳定性具有显著影响。无黏性土的压缩特性是研究其力学性能的重要内容之一,为分析不同荷载作用下土样的压缩特性,利用高压三轴仪试验系统,开展了不同砂含量及不同初始孔隙比下无黏性土样的等向压缩试验。试验结果表明:在试验采用的高有效应力下,无黏性土具有显著的过渡土性质,初始组构难以被改变;随多孔易碎钙质砂含量的增加,土样可压缩性和压缩曲线的收敛度均增加,钙质砂的破碎显著改变了初始组构。提出可以描述含砂无黏性土压缩特性的数学模型,所含参数物理意义明确且易于确定。与不同砂土压缩试验数据对比发现,该模型对其他种类土同样具有较好的拟合度,验证了本模型的广泛适用性。与已有压缩模型的对比,验证了本模型的实用性,为无黏性土应力-应变关系的理论研究提供基础。

  • 加载中
  • 图 1  粉砂和钙质砂级配累计曲线

    Figure 1. 

    图 2  不同土样压缩曲线

    Figure 2. 

    图 3  不同砂含量下αe0的关系

    Figure 3. 

    图 4  本文砂土预测值与试验值

    Figure 4. 

    图 5  模型拟合值与实测值对比

    Figure 5. 

    表 1  钙质砂和粉砂的物理参数

    Table 1.  Parameters of calcareous sand and silt

    土类 比重Gs 粒径/mm 最大孔隙比emax 最小孔隙比emin
    粉砂 2.63 <0.075 0.880 0.560
    钙质砂 2.77 0.5~1 1.290 0.930
    下载: 导出CSV

    表 2  试验方案

    Table 2.  Test scheme

    编号ID 砂含量S/% 初始孔隙比e0 相对密实度Dr/% 加载梯度/MPa
    1 0 0.633 90 0.1,0.2,0.4,0.8,
    1,2,4,6,8,12,
    16,20,24,28,30
    2 0 0.685 80
    3 0 0.795 60
    4 20 0.582 80
    5 20 0.683 60
    6 20 0.795 40
    7 40 0.581 60
    8 40 0.682 4%
    9 40 0.795 20
    10 100 1.060 80
    11 100 1.120 60
    下载: 导出CSV

    表 3  0% S不同初始孔隙比下的拟合参数

    Table 3.  Fitting parameters of 0% S with different initial void ratios

    e0 α β
    0.633 0.00287 0.719
    0.685 0.00256 0.754
    0.795 0.00311 0.773
    下载: 导出CSV

    表 4  砂含量不同时无黏性土的拟合参数

    Table 4.  Fitting parameters of cohesionless soils with different sand contents

    试样 k et β
    0% S 0.0066 0.258 0.749
    20% S 0.0093 0.419 0.776
    40% S 0.0105 0.400 0.781
    下载: 导出CSV
  • [1]

    杨光华, 姚丽娜, 姜燕, 等. 基于ep曲线的软土地基非线性沉降的实用计算方法[J]. 岩土工程学报,2015,37(2):242 − 249. [YANG Guanghua, YAO Lina, JIANG Yan, et al. Practical method for calculating nonlinear settlement of soft ground based on ep curve[J]. Chinese Journal of Geotechnical Engineering,2015,37(2):242 − 249. (in Chinese with English abstract) doi: 10.11779/CJGE201502005

    [2]

    曹文贵, 印鹏, 贺敏, 等. 考虑实测数据新旧程度的工后沉降单项模型预测方法[J]. 水文地质工程地质,2015,42(6):65 − 70. [CAO Wengui, YIN Peng, HE Min, et al. A prediction method for post-construction settlement of a single model with the consideration of the new or old degree of the measured data[J]. Hydrogeology & Engineering Geology,2015,42(6):65 − 70. (in Chinese with English abstract)

    [3]

    曹文贵, 许烜, 李鹏, 等. 基于Eshelby等效夹杂原理的地基沉降分层总和分析方法探讨[J]. 水文地质工程地质,2016,43(6):59 − 65. [CAO Wengui, XU Xuan, LI Peng, et al. A discussion of the layer-wise summation method for ground foundation settlement analysis based on the Eshelby equivalent inclusion[J]. Hydrogeology & Engineering Geology,2016,43(6):59 − 65. (in Chinese with English abstract)

    [4]

    ELKAMHAWY E, ZHOU B, WANG H B. Transitional behavior in well-graded soils: an example of completely decomposed granite[J]. Engineering Geology,2019,253:240 − 250. doi: 10.1016/j.enggeo.2019.02.027

    [5]

    孙德安, 汪健, 何家浩, 等. 原状扬州黏性土压缩特性与孔径分布[J]. 水文地质工程地质,2020,47(1):111 − 116. [SUN De'an, WANG Jian, HE Jiahao, et al. Compression characteristics and pore-size distributions of the undisturbed Yangzhou clayey soils[J]. Hydrogeology & Engineering Geology,2020,47(1):111 − 116. (in Chinese with English abstract)

    [6]

    吕亚茹, 李治中, 李浪. 高应力状态下钙质砂的一维压缩特性及试验影响因素分析[J]. 岩石力学与工程学报,2019,38(增刊1):3142 − 3150. [LYU Yaru, LI Zhizhong, LI Lang. One-dimensional compression behavior of calcareous sand and its experimental technology under high stress conditions[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(Sup1):3142 − 3150. (in Chinese with English abstract)

    [7]

    王新志, 翁贻令, 王星, 等. 钙质土颗粒咬合作用机制[J]. 岩土力学,2018,39(9):3113 − 3120. [WANG Xinzhi, WENG Yiling, WANG Xing, et al. Interlocking mechanism of calcareous soil[J]. Rock and Soil Mechanics,2018,39(9):3113 − 3120. (in Chinese with English abstract)

    [8]

    MUN W, MCCARTNEY J S. Roles of particle breakage and drainage in the isotropic compression of sand to high pressures[J]. Journal of Geotechnical and Geoenvironmental Engineering,2017,143(10):04017071. doi: 10.1061/(ASCE)GT.1943-5606.0001770

    [9]

    SHENG D C, YAO Y P, CARTER J P. A volume–stress model for sands under isotropic and critical stress states[J]. Canadian Geotechnical Journal,2008,45(11):1639 − 1645. doi: 10.1139/T08-085

    [10]

    MCDOWELL G R, HUMPHREYS A. Yielding of granular materials[J]. Granular Matter,2002,4(1):1 − 8.

    [11]

    BAUER E. Calibration of a comprehensive hypoplastic model for granular materials[J]. Soils and Foundations,1996,36(1):13 − 26. doi: 10.3208/sandf.36.13

    [12]

    沈珠江. 土的三重屈服面应力应变模式[J]. 固体力学学报,1984,5(2):163 − 174. [SHEN Zhujiang. A stress-strain model for soils with three yield surfaces[J]. Acta Mechanica Solida Sinica,1984,5(2):163 − 174. (in Chinese with English abstract)

    [13]

    赵颜辉, 朱俊高, 张宗亮, 等. 无黏性土压缩曲线的一种数学模式[J]. 岩土力学,2011,32(10):3033 − 3037. [ZHAO Yanhui, ZHU Jungao, ZHANG Zongliang, et al. A compression model for cohesionless soils[J]. Rock and Soil Mechanics,2011,32(10):3033 − 3037. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2011.10.023

    [14]

    王龙, 朱俊高, 郭万里, 等. 无黏性土压缩模型及其验证[J]. 岩土力学,2020,41(1):229 − 234. [WANG Long, ZHU Jungao, GUO Wanli, et al. Compression model for cohesionless soils and its verification[J]. Rock and Soil Mechanics,2020,41(1):229 − 234. (in Chinese with English abstract)

    [15]

    沈扬, 沈雪, 俞演名, 等. 粒组含量对钙质砂压缩变形特性影响的宏细观研究[J]. 岩土力学,2019,40(10):3733 − 3740. [SHEN Yang, SHEN Xue, YU Yanming, et al. Macro-micro study of compressive deformation properties of calcareous sand with different particle fraction contents[J]. Rock and Soil Mechanics,2019,40(10):3733 − 3740. (in Chinese with English abstract)

    [16]

    蔡正银, 侯贺营, 张晋勋, 等. 考虑颗粒破碎影响的珊瑚砂临界状态与本构模型研究[J]. 岩土工程学报,2019,41(6):989 − 995. [CAI Zhengyin, HOU Heying, ZHANG Jinxun, et al. Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering,2019,41(6):989 − 995. (in Chinese with English abstract)

    [17]

    LEE K L, FARHOOMAND I. Compressibility and crushing of granular soil in anisotropic triaxial compression[J]. Canadian Geotechnical Journal,1967,4(1):68 − 86. doi: 10.1139/t67-012

  • 加载中

(5)

(4)

计量
  • 文章访问数:  1949
  • PDF下载数:  143
  • 施引文献:  0
出版历程
收稿日期:  2020-10-10
修回日期:  2021-01-05
刊出日期:  2021-07-15

目录