非饱和带二氧化碳入侵对表生植物及土壤的影响

潘颖, 赵晓红, 王文科, 邓红章, 韩枫, 罗平平, 杨雨萌, 张徽. 非饱和带二氧化碳入侵对表生植物及土壤的影响[J]. 水文地质工程地质, 2021, 48(4): 180-189. doi: 10.16030/j.cnki.issn.1000-3665.202102023
引用本文: 潘颖, 赵晓红, 王文科, 邓红章, 韩枫, 罗平平, 杨雨萌, 张徽. 非饱和带二氧化碳入侵对表生植物及土壤的影响[J]. 水文地质工程地质, 2021, 48(4): 180-189. doi: 10.16030/j.cnki.issn.1000-3665.202102023
PAN Ying, ZHAO Xiaohong, WANG Wenke, DENG Hongzhang, HAN Feng, LUO Pingping, YANG Yumeng, ZHANG Hui. Influence of carbon dioxide invasion in the unsaturated zone on vegetation and soil[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 180-189. doi: 10.16030/j.cnki.issn.1000-3665.202102023
Citation: PAN Ying, ZHAO Xiaohong, WANG Wenke, DENG Hongzhang, HAN Feng, LUO Pingping, YANG Yumeng, ZHANG Hui. Influence of carbon dioxide invasion in the unsaturated zone on vegetation and soil[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 180-189. doi: 10.16030/j.cnki.issn.1000-3665.202102023

非饱和带二氧化碳入侵对表生植物及土壤的影响

  • 基金项目: 国家自然科学基金项目(42077183;41302208);国土资源公益性行业科研项目(201211063-4)
详细信息
    作者简介: 潘颖(1995-),女,硕士研究生,主要从事环境生态方面的研究。E-mail: 1107914020@qq.com
    通讯作者: 赵晓红(1976-),女,副教授,主要从事水土污染、环境化学等方面的研究。E-mail: xzhao@chd.edu.cn
  • 中图分类号: X173

Influence of carbon dioxide invasion in the unsaturated zone on vegetation and soil

More Information
  • 非饱和带属于地球关键带,与人类生存环境及安全健康关系密切,而CO2对生态环境及全球气候变化的影响至关重要。为了探索高浓度CO2入侵非饱和带对生态环境可能带来的风险,基于长安大学水与环境原位试验场CO2试验平台,向种植有5种典型植物(黑麦草、小麦、玉米、豌豆和苋菜)的土壤中长期注入浓度为5%、10%和15%的CO2气体,评估CO2入侵对植物和土壤的潜在影响。对表生植物及土壤样品(深度为20~30 cm)的理化性质分析表明:高浓度CO2明显抑制了植物的生长,会导致植株高度、叶片数和果实重量下降;土壤矿相和理化性质也有微小变化,表现为土壤pH值的变化以及氮、有效钾、有效磷等的减少。通过分析植物的光合作用、渗透调节作用以及抗氧化系统的变化,不同的植物对CO2胁迫表现出不同且复杂的响应,总体上C3单子叶植物黑麦草和C4单子叶植物玉米显示出比其他植物更高的敏感性,表明它们有潜力作为评估CO2生态影响的指示植物。

  • 加载中
  • 图 1  原位试验场地总览(a)、温室(b)、温室试验框(c)及CO2入侵模拟试验流程图(d)

    Figure 1. 

    图 2  不同浓度CO2入侵下植物的生长状况(从上到下:小麦、玉米、黑麦草、豌豆)

    Figure 2. 

    图 3  植株高度(a)、叶片数量(b)、果实质量(c)及颗粒数(d)等的生长情况

    Figure 3. 

    图 4  不同CO2浓度下植物的光合作用指标

    Figure 4. 

    图 5  不同CO2浓度下植物的抗氧化酶活性

    Figure 5. 

    图 6  土壤氮、磷、钾和碳含量随CO2浓度的变化(X0:对照; X5:5%; X10:10%; X15:15%)

    Figure 6. 

    图 7  土壤XRD衍射图谱(X0:对照; X10:10%; X15:15%)

    Figure 7. 

    表 1  不同CO2浓度下植物的可溶性蛋白浓度

    Table 1.  Soluble protein concentrations of the plants under CO2 exposure /(mg·g−1

    CO2浓度/% 黑麦草 小麦 豌豆 玉米 苋菜
    0 23.73±4.70 19.87±3.97 16.14±1.94 15.62±2.34 0.86±0.08
    5 18.84±2.82 12.49±1.47 13.69±1.70 8.04±0.95 0.79±0.09
    10 12.98±1.53 13.16±1.99 15.52±1.44 12.62±1.07 4.03±0.70
    15 12.00±1.83 13.34±2.67 15.24±1.86 21.50±4.88 3.54±0.12
    下载: 导出CSV

    表 2  不同CO2浓度下植物的可溶性糖浓度

    Table 2.  Soluble saccharide concentrations of the plants under CO2 exposure /(μmol·g−1

    CO2浓度/% 黑麦草 小麦 豌豆 玉米 苋菜
    0 0.28±0.03 0.26±0.03 0.07±0.01 0.14±0.01 0.12±0.02
    5 0.32±0.04 0.32±0.04 0.07±0.01 0.14±0.01 0.10±0.01
    10 0.34±0.04 0.39±0.01 0.10±0.02 0.16±0.02 0.12±0.02
    15 0.40±0.02 0.41±0.02 0.12±0.02 0.15±0.01 0.15±0.04
    下载: 导出CSV

    表 3  不同CO2浓度下植物的丙二醛浓度

    Table 3.  MDA concentrations of the plants under CO2 exposure /(μmol·g−1

    CO2浓度/% 黑麦草 小麦 豌豆 玉米 苋菜
    0 0.0040±0.0026 0.0110±0.0010 0.0112±0.0024 0.0320±0.0030 0.0072±0.0002
    5 0.0065±0.0039 0.0130±0.0030 0.0149±0.0032 0.0401±0.0030 0.0086±0.0002
    10 0.0071±0.0027 0.0169±0.0020 0.0158±0.0027 0.0405±0.0040 0.0069±0.0008
    15 0.0153±0.0015 0.0220±0.0030 0.0188±0.0030 0.0410±0.0050 0.0074±0.0023
    下载: 导出CSV

    表 4  不同CO2浓度下植物的脯氨酸浓度

    Table 4.  Proline concentrations of the plants under CO2 exposure /(mg·g−1

    CO2浓度/% 黑麦草 小麦 豌豆 玉米 苋菜
    0 2622.80±493.87 253.91±48.29 115.82±15.12 26.45±5.07 40.94±11.35
    5 2570.12±431.96 118.77±21.76 148.93±35.28 34.76±7.62 26.39±6.56
    10 1690.37±234.54 224.89±15.94 161.87±25.23 17.47±4.37 14.74±0.91
    15 1128.91±106.11 181.67±19.17 166.28±10.39 8.53±1.66 17.70±1.40
    下载: 导出CSV
  • [1]

    王齐鑫, 马传明, 花勐健, 等. 安徽省沉积盆地CO2地质储存适宜性评价[J]. 水文地质工程地质,2017,44(5):121 − 130. [WANG Qixin, MA Chuanming, HUA Mengjian, et al. Suitability evaluation of geological storage of CO2 in sedimentary basin of Anhui Province[J]. Hydrogeology & Engineering Geology,2017,44(5):121 − 130. (in Chinese with English abstract)

    [2]

    STENHOUSE M, ARTHUR R, ZHOU W. Assessing environmental impacts from geological CO2 storage[J]. Energy Procedia,2009,1(1):1895 − 1902. doi: 10.1016/j.egypro.2009.01.247

    [3]

    彭李晖, 王建军, 尤伟静, 等. 二氧化碳地质储存的主要环境问题及研究进展[J]. 水文地质工程地质,2013,40(5):104 − 110. [PENG Lihui, WANG Jianjun, YOU Weijing, et al. Environmental issues and advances of carbon dioxide geological storage[J]. Hydrogeology & Engineering Geology,2013,40(5):104 − 110. (in Chinese with English abstract)

    [4]

    MALE E J, PICKLES W L, SILVER E A, et al. Using hyperspectral plant signatures for CO2 leak detection during the 2008 ZERT CO2 sequestration field experiment in Bozeman, Montana[J]. Environmental Earth Sciences,2010,60(2):251 − 261. doi: 10.1007/s12665-009-0372-2

    [5]

    文冬光, 郭建强, 张森琦, 等. 中国二氧化碳地质储存研究进展[J]. 中国地质,2014,41(5):1716 − 1723. [WEN Dongguang, GUO Jianqiang, ZHANG Senqi, et al. The progress in the research on carbon dioxide geological storage in China[J]. Geology in China,2014,41(5):1716 − 1723. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3657.2014.05.025

    [6]

    VONG C Q, JACQUEMET N, PICOT-COLBEAUX G, et al. Reactive transport modeling for impact assessment of a CO2 intrusion on trace elements mobility within fresh groundwater and its natural attenuation for potential remediation[J]. Energy Procedia,2011,4:3171 − 3178. doi: 10.1016/j.egypro.2011.02.232

    [7]

    张森琦, 郭建强, 刁玉杰, 等. 规模化深部咸水含水层CO2地质储存选址方法研究[J]. 中国地质,2011,38(6):1640 − 1651. [ZHANG Senqi, GUO Jianqiang, DIAO Yujie, et al. Technical method for selection of CO2 geological storage project sites in deep saline aquifers[J]. Geology in China,2011,38(6):1640 − 1651. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3657.2011.06.025

    [8]

    范基姣, 张森琦, 郭建强, 等. 水环境同位素技术在二氧化碳地质储存中的应用探讨[J]. 水文地质工程地质,2013,40(1):106 − 109. [FAN Jijiao, ZHANG Senqi, GUO Jianqiang, et al. Application of environmental isotope technique to geological storage of carbon dioxide[J]. Hydrogeology & Engineering Geology,2013,40(1):106 − 109. (in Chinese with English abstract)

    [9]

    KHARAKA Y K, THORDSEN J J, KAKOUROS E, et al. Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT field site, Bozeman, Montana[J]. Environmental Earth Sciences,2010,60(2):273 − 284. doi: 10.1007/s12665-009-0401-1

    [10]

    ARDELAN M V, STEINNES E. Changes in mobility and solubility of the redox sensitive metals Fe, Mn and Co at the seawater-sediment interface following CO2 seepage[J]. Biogeosciences,2010,7(2):569 − 583. doi: 10.5194/bg-7-569-2010

    [11]

    HUESEMANN M H, SKILLMAN A D, CRECELIUS E A. The inhibition of marine nitrification by ocean disposal of carbon dioxide[J]. Marine Pollution Bulletin,2002,44(2):142 − 148. doi: 10.1016/S0025-326X(01)00194-1

    [12]

    HARVEY O R, QAFOKU N P, CANTRELL K J, et al. Geochemical implications of gas leakage associated with geologic CO2 storage-A qualitative review[J]. Environmental Science & Technology,2013,4:23 − 36.

    [13]

    YANG W, MAROTO-VALER M, Steven M D. Environmental consequences of potential leaks of CO2 in soil[J]. Energy Procedia,2011,4:3224 − 3230. doi: 10.1016/j.egypro.2011.02.239

    [14]

    BEAUBIEN S E, CIOTOLI G, COOMBS P, et al. The impact of a naturally occurring CO2 gas vent on the shallow ecosystem and soil chemistry of a Mediterranean pasture (Latera, Italy)[J]. International Journal of Greenhouse Gas Control,2008,2:373 − 387. doi: 10.1016/j.ijggc.2008.03.005

    [15]

    LIU Y, HAN S J. Soil and root respiration under elevated CO2 concentrations during seedling growth of pinus sylvestris var. sylvestriformis[J]. Pedosphere,2007,17(5):600 − 665.

    [16]

    ALLARD V, ROBIN C, NEWTON P C D, et al. Short and long-term effects of elevated CO2 on Lolium Perenne rhizodeposition and its consequences on soil organic matter turnover and plant N yield[J]. Soil Biology and Biochemistry,2006,38:1178 − 1187. doi: 10.1016/j.soilbio.2005.10.002

    [17]

    KANDELER E, MOSIER A R, MORGAN J A, et al. Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi-arid grassland[J]. Soil Biology and Biochemistry,2006,38:2448 − 2460. doi: 10.1016/j.soilbio.2006.02.021

    [18]

    LI C R, WANG W K, DENG H Z, et al. Effects of elevated carbon dioxide on soil bacterial community structure[J]. Advanced Materials Research,2014,1010/1011/1012:422 − 428. doi: 10.4028/www.scientific.net/AMR.1010-1012.422

    [19]

    KRVGER M, JONES D, FRERICHS J, et al. Effects of elevated CO2 concentrations on the vegetation and microbial populations at a terrestrial CO2 vent at Laacher See, Germany[J]. International Journal of Greenhouse Gas Control,2011,5(4):1093 − 1098. doi: 10.1016/j.ijggc.2011.05.002

    [20]

    PFANZ H, VODNIK D, WITTMANN C, et al. Photosynthetic performance (CO2-compensation point, carboxylation efficiency, and net photosynthesis) of timothy grass (Phleum pratense L.) is affected by elevated carbon dioxide in post-volcanic mofette areas[J]. Environmental and Experimental Botany,2007,61(1):41 − 48. doi: 10.1016/j.envexpbot.2007.02.008

    [21]

    STOCK W D, LUDWIG F, MORROW C, et al. Long-term effects of elevated atmospheric CO2 on species composition and productivity of a southern African C4 dominated grassland in the vicinity of a CO2 exhalation[J]. Plant Ecology,2005,178(2):211 − 224. doi: 10.1007/s11258-004-3654-5

    [22]

    MACEK I, PFANZ H, FRANCETIC V, et al. Root respiration response to high CO2 concentrations in plants from natural CO2 springs[J]. Environmental and Experimental Botany,2005,54(1):90 − 99. doi: 10.1016/j.envexpbot.2004.06.003

    [23]

    AL-TRABOULSI M, SJOGERSTEN S, COLLS J, et al. Potential impact of CO2 leakage from carbon capture and storage systems on field bean (Vicia faba)[J]. Physiologia plantarum,2012,146(3):261 − 71. doi: 10.1111/j.1399-3054.2012.01620.x

    [24]

    WEST J M, PEARCE J M, COOMBS P. The impact of controlled injection of CO2 on the soilecosystem and chemistry of an English lowland pasture[J]. Energy Procedia,2009,1(1):1863 − 1870. doi: 10.1016/j.egypro.2009.01.243

    [25]

    伍洋. 地质封存CO2泄露对玉米和苜蓿影响模拟实验研究[D]. 北京: 中国农业科学院, 2012.

    WU Yang. Simulation experimental research of the impact of CO2 leakage from geological storage on maize and alfalfa[D]. Beijing: Chinese Academy of Agricultural Science, 2012. (in Chinese with English abstract)

    [26]

    伍洋, 马欣, 李玉娥, 等. 地质封存CO2泄露对农田生态系统的影响评估及耐受阈值[J]. 农业工程学报,2012,28(2):196 − 205. [WU Yang, MA Xin, LI Yue, et al. Impact assessment and the tolerance threshold value of CO2 leakage from geological storage on agro-ecosystem[J]. Transactions of the CSAE,2012,28(2):196 − 205. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-6819.2012.02.035

    [27]

    乔胜英. 土壤理化性质实验指导书[M]. 武汉: 中国地质大学出版社, 2012.

    QIAO Shengying. Soil physical and chemical properties test instruction[M]. Wuhan: China University of Geosciences Press, 2012. (in Chinese)

    [28]

    李合生. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2000.

    LI Hesheng. Principle and technology of plant physiological and biochemical experiments[M]. Beijing: Higher Education Press, 2000. (in Chinese)

    [29]

    周婵, 邹志远, 杨允菲. 盐碱胁迫对羊草可溶性蛋白质含量的影响[J]. 东北师大学报(自然科学版),2009,41(3):94 − 96. [ZHOU Chan, ZOU Zhiyuan, YANG Yunfei. Effect of salt-alkali stress on soluble protein of leymus chinensis[J]. Journal of Northeast Normal University (Natural Science Edition),2009,41(3):94 − 96. (in Chinese with English abstract)

    [30]

    周广. 高温胁迫对7种杜鹃生理生化特性的影响[D]. 南昌: 南昌大学, 2010.

    ZHOU Guang. Effect of the physiological and biochemical character of seven rhododendron L. plants under high temperature stress[D]. Nanchang: Nanchang University, 2010. (in Chinese with English abstract)

    [31]

    余叔文, 汤章城. 植物生理和分子生物学[M]. 北京: 科技出版社, 1999: 39-745.

    YU Shuwen, TANG Zhangcheng. Plant physiology and molecular biology[M]. Beijing: Science Press, 1999: 39-745. (in Chinese)

    [32]

    赵江涛, 李晓峰, 李航, 等. 可溶性糖在高等植物代谢调节中的生理作用[J]. 安徽农业科学,2006(24):6423 − 6425. [ZHAO Jiangtao, LI Xiaofeng, LI Hang, et al. Research on the role of the soluble sugar in the regulation of physiological metabolism in higher plant[J]. Journal of Anhui Agricultural Sciences,2006(24):6423 − 6425. (in Chinese with English abstract) doi: 10.3969/j.issn.0517-6611.2006.24.008

    [33]

    吉增宝, 王进鑫, 李继文, 等. 不同季节干旱及复水对刺槐幼苗可溶性糖含量的影响[J]. 西北植物学报,2009,29(7):1358 − 1363. [JI Zengbao, WANG Jinxin, LI Jiwen, et al. Dynamic changes of soluble sugar in the seedlings of robinia pseudoacacia under drought stress and rewatering in different seasons[J]. Acta Botanica Boreali-Occidentalia Sinica,2009,29(7):1358 − 1363. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4025.2009.07.011

    [34]

    张坤生, 田荟琳. 过氧化氢酶的功能及研究[J]. 食品科技,2007,32(1):8 − 10. [ZHANG Kunsheng, TIAN Huilin. Research and function of catalase in organism[J]. Food Science and Technology,2007,32(1):8 − 10. (in Chinese with English abstract) doi: 10.3969/j.issn.1005-9989.2007.03.003

    [35]

    赵秀娟, 韩雅楠, 蔡禄. 盐胁迫对植物生理生化特性的影响[J]. 湖北农业科学,2011,50(19):3897 − 3899. [ZHAO Xiujuan, HAN Yanan, CAI Lu. Advances in research on physiological and biochemical effects of NaCl stress on plant[J]. Hubei Agricultural Science,2011,50(19):3897 − 3899. (in Chinese with English abstract) doi: 10.3969/j.issn.0439-8114.2011.19.003

    [36]

    王秀香. 土壤水分胁迫对不同品种蓖麻叶片丙二醛含量的影响[J]. 科技资讯,2012(16):137 − 138. [WANG Xiuxiang. Influence of soil water stress on malondialdehyde content in the different varieties of castor leaves[J]. Science & Technology Information,2012(16):137 − 138. (in Chinese) doi: 10.3969/j.issn.1672-3791.2012.16.115

    [37]

    周青, 黄晓华. 逆境胁迫下作物积累脯氨酸的生理生态学意义[J]. 农业环境科学学报,1991,10(6):272 − 273. [ZHOU Qing, HUANG Xiaohua. Physiological ecology meaning of crop accumulated proline under adversity stress[J]. Agro-environmental Protection,1991,10(6):272 − 273. (in Chinese)

    [38]

    董建兴, 李义连, 杨国栋, 等. CO2-水-岩相互作用对盖层渗透率影响的数值模拟[J]. 地质科技情报,2012,31(1):115 − 121. [DONG Jianxing, LI Yilian, YANG Guodong, et al. Numerical simulation of CO2-Water-Rock interaction impact on caprock permeability[J]. Geological Science and Technology Information,2012,31(1):115 − 121. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7849.2012.01.019

    [39]

    ZHAO X H, DENG H Z, WANG W K, et al. Impact of naturally leaking carbon dioxide on soil properties and ecosystems in the Qinghai-Tibet plateau[J]. Scientific Reports,2017,7(1):3001. doi: 10.1038/s41598-017-02500-x

    [40]

    昊恒, 张信贵, 韩立华. 水化学场变异对土体性质的影响[J]. 广西大学学报,1999(2):1 − 4. [WU Heng, ZHANG Xingui, HAN Lihua. The change of ground water chemical field affect properties of soilmass[J]. Journal of Guangxi University,1999(2):1 − 4. (in Chinese with English abstract)

    [41]

    仵彦卿. 地下水与地质灾害[J]. 地下空间,1999,19(4):303 − 310. [WU Yanqing. Groundwater and geological disasters[J]. Underground Space,1999,19(4):303 − 310. (in Chinese) doi: 10.3969/j.issn.1673-0836.1999.04.007

    [42]

    沈天宇. 高浓度CO2入侵对地下水隔水粘土层理化性质的影响[D]. 西安: 长安大学, 2018.

    SHEN Tianyu. Effects of high concentration CO2 invasion on physicochemical properties of clay layer of groundwater[D]. Xiʼan: Changʼan University, 2018. (in Chinese with English abstract)

    [43]

    朱春梧, 曾青, 朱建国, 等. 大气CO2浓度上升对植物地下竞争的影响[J]. 中国生态农业学报,2007,15(4):185 − 189. [ZHU Chunwu, ZENG Qing, ZHU Jianguo, et al. Effect of elevated CO2 on below-ground plant competition[J]. Chinese Journal of Eco-Agriculture,2007,15(4):185 − 189. (in Chinese with English abstract)

  • 加载中

(7)

(4)

计量
  • 文章访问数:  1899
  • PDF下载数:  63
  • 施引文献:  0
出版历程
收稿日期:  2021-02-23
修回日期:  2021-05-21
刊出日期:  2021-07-15

目录