基于四参数随机生长法重构土体的格子玻尔兹曼细观渗流研究

蔡沛辰, 阙云, 蒋振梁, 杨鹏飞. 基于四参数随机生长法重构土体的格子玻尔兹曼细观渗流研究[J]. 水文地质工程地质, 2022, 49(2): 33-42. doi: 10.16030/j.cnki.issn.1000-3665.202106036
引用本文: 蔡沛辰, 阙云, 蒋振梁, 杨鹏飞. 基于四参数随机生长法重构土体的格子玻尔兹曼细观渗流研究[J]. 水文地质工程地质, 2022, 49(2): 33-42. doi: 10.16030/j.cnki.issn.1000-3665.202106036
CAI Peichen, QUE Yun, JIANG Zhenliang, YANG Pengfei. Lattice Boltzmann meso-seepage research of reconstructed soil based on the quartet structure generation set[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 33-42. doi: 10.16030/j.cnki.issn.1000-3665.202106036
Citation: CAI Peichen, QUE Yun, JIANG Zhenliang, YANG Pengfei. Lattice Boltzmann meso-seepage research of reconstructed soil based on the quartet structure generation set[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 33-42. doi: 10.16030/j.cnki.issn.1000-3665.202106036

基于四参数随机生长法重构土体的格子玻尔兹曼细观渗流研究

  • 基金项目: 国家自然科学基金项目(41772297)
详细信息
    作者简介: 蔡沛辰(1998-),男,硕士研究生,主要从事细观渗流研究。E-mail:peichen_fut@qq.com
    通讯作者: 阙云( 1980-),男,博士,教授,主要从事土壤渗流方面的研究和教学。E-mail:queyun_2001@ fzu.edu.cn
  • 中图分类号: P642.11+5;O357.3

Lattice Boltzmann meso-seepage research of reconstructed soil based on the quartet structure generation set

More Information
  • 多孔介质模型的重构问题是土体细观渗流机理研究的基础和关键。由四参数随机生长法(QSGS)构建土体模型,采用格子玻尔兹曼方法(LBM),通过MATLAB自编程序研究重构土在不同条件下的细观渗流机理。结果表明:随模型尺寸增大,孔隙连通程度显著提高,300×300格点大小的模型连通孔隙率增长幅度(34.38%)最大,继续扩大模型尺寸发现增加不明显;流体粒子在孔隙连通性好、孔径大的区域,会形成主渗流通道,且存在指进效应,孔道中间流速最大,可达0.0324,越靠近孔壁流速越小;大孔隙率土的流速比小孔隙率土大,而低孔隙率土中的流速相比大孔隙土更稳定;LBM模拟渗透率与经典K-C公式计算结果对比发现,孔隙率越高计算渗透率越准确(n=0.78,误差为10.22%);土颗粒越小,渗流孔道越细窄、分布越密集,对应的速度场分布更为均匀,同时流速也更小。该研究成果能较好地揭示重构土的细观渗流机理,也可为现有细观土体孔隙流研究提供一定借鉴。

  • 加载中
  • 图 1  QSGS生长相生长方向

    Figure 1. 

    图 2  QSGS重构细观土体结构(以pc=0.01为例)

    Figure 2. 

    图 3  D2Q9 模型

    Figure 3. 

    图 4  Poiseuille理论值与LBM模拟值对比

    Figure 4. 

    图 5  计算模型边界条件

    Figure 5. 

    图 6  不同尺寸模型渗流稳定后速度场图像

    Figure 6. 

    图 7  模型尺寸大小对渗流时间和速度的影响

    Figure 7. 

    图 8  不同步长渗流场分布图

    Figure 8. 

    图 9  典型孔道横向速度分布关系曲线

    Figure 9. 

    图 10  平均离散速度竖向分布关系

    Figure 10. 

    图 11  不同颗粒大小模型渗流稳定后速度场图像

    Figure 11. 

    图 12  渗流稳定后不同深度处速度分布情况

    Figure 12. 

    表 1  验证算例参数表 (格子单位)

    Table 1.  Validation calculation example parameter table (grid unit)

    参数LDδxδtRepinpout
    计算值1050111001.00061.0000
    下载: 导出CSV

    表 2  不同尺寸模型孔隙参数(格子单位)

    Table 2.  Pore parameters of different size models (grid unit)

    模型尺寸孔隙率n孔隙数量/个平均等效孔径连通孔隙率
    500.645100.19
    1001312.50.27
    200889.60.32
    30013911.50.43
    40025111.40.44
    50046210.50.46
    下载: 导出CSV

    表 3  LBM模拟渗透率与K-C模型计算渗透率对比结果(格子单位)

    Table 3.  Comparison results of the LBM simulated permeability and K-C model calculated permeability (grid unit)

    孔隙率nLBM渗透率K-C渗透率误差/%
    0.500.76581.002823.63
    0.642.68562.362613.67
    0.785.41874.916010.22
    下载: 导出CSV
  • [1]

    HANES J, CHIBA M, LANGER R. Degradation of porous poly(anhydride-co-imide) microspheres and implications for controlled macromolecule delivery[J]. Biomaterials,1998,19(1/2/3):163 − 172.

    [2]

    吴蒙, 秦勇, 王晓青, 等. 中国致密砂岩储层流体可动性及其影响因素[J]. 吉林大学学报(地球科学版),2021,51(1):35 − 51. [WU Meng, QIN Yong, WANG Xiaoqing, et al. Fluid mobility and its influencing factors of tight sandstone reservoirs in China[J]. Journal of Jilin University (Earth Science Edition),2021,51(1):35 − 51. (in Chinese with English abstract)

    [3]

    张晨阳, 张泰丽, 张明, 等. 东南沿海地区玄武岩残积土雨水运移特征及滑坡失稳数值模拟[J]. 水文地质工程地质,2019,46(4):42 − 50. [ZHANG Chenyang, ZHANG Taili, ZHANG Ming, et al. Rainfall infiltration characteristics and numerical simulation of slope instability in the basalt residual soil in the coastal area of Southeast China[J]. Hydrogeology & Engineering Geology,2019,46(4):42 − 50. (in Chinese with English abstract)

    [4]

    蔡沛辰, 阙云, 李显. 非饱和花岗岩残积土水-气两相驱替过程数值模拟[J]. 水文地质工程地质,2021,48(6):54 − 63. [CAI Peichen, QUE Yun, LI Xian. Numerical simulation of water-gas two-phase displacement process in unsaturated granite residual soil[J]. Hydrogeology & Engineering Geology,2021,48(6):54 − 63. (in Chinese with English abstract)

    [5]

    蔡沛辰, 阙云, 李显. 围压条件下原状花岗岩残积土细观渗流数值模拟[J]. 福州大学学报(自然科学版),2021,49(3):400 − 406. [CAI Peichen, QUE Yun, LI Xian. Numerical simulation of meso-seepage flow in undisturbed granite residual soil under confining pressure[J]. Journal of Fuzhou University (Natural Science Edition),2021,49(3):400 − 406. (in Chinese with English abstract)

    [6]

    钱尼贵. 基于格子Boltzmann方法的路面路基细观渗流特性及试验研究[D]. 广州: 华南理工大学, 2018.

    QIAN Nigui. Analysis and experimental investigation of mesoscopic seepage characteristics of pavement and subgrade based on lattice boltzmann method[D]. Guangzhou: South China University of Technology, 2018. (in Chinese with English abstract)

    [7]

    BROADWELL J E. Shock structure in a simple discrete velocity gas[J]. Physics of Fluids,1964,7(8):1243. doi: 10.1063/1.1711368

    [8]

    MAIER R S, KROLL D M, BERNARD R S, et al. Pore-scale simulation of dispersion[J]. Physics of Fluids,2000,12(8):2065 − 2079. doi: 10.1063/1.870452

    [9]

    PILOTTI M. Generation of realistic porous media by grains sedimentation[J]. Transport in Porous Media,1998,33(3):257 − 278. doi: 10.1023/A:1006598029153

    [10]

    MADADI M, SAHIMI M. Lattice Boltzmann simulation of fluid flow in fracture networks with rough, self-affine surfaces[J]. Physical Review E,2003,67(2):1 − 12.

    [11]

    ZHANG H F, GE X S, YE H. Randomly mixed model for predicting the effective thermal conductivity of moist porous media[J]. Journal of Physics D:Applied Physics,2006,39(1):220 − 226. doi: 10.1088/0022-3727/39/1/032

    [12]

    周潇, 申林方, 阮永芬, 等. 基于四参数随机生长法重构土体的渗流细观数值模拟[J]. 排灌机械工程学报,2015,33(4):316 − 321. [ZHOU Xiao, SHEN Linfang, RUAN Yongfen, et al. Reconstructed soil meso-numerical seepage simulation based on quartet structure generation set[J]. Journal of Drainage and Irrigation Machinery Engineering,2015,33(4):316 − 321. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-8530.14.0176

    [13]

    申林方, 王志良, 李邵军. 基于土体细观结构重构技术的渗流场数值模拟[J]. 岩土力学,2015,36(11):3307 − 3314. [SHEN Linfang, WANG Zhiliang, LI Shaojun. Numerical simulation for seepage field of soil based on mesoscopic structure reconfiguration technology[J]. Rock and Soil Mechanics,2015,36(11):3307 − 3314. (in Chinese with English abstract)

    [14]

    MCNAMARA G R, ZANETTI G. Use of the Boltzmann equation to simulate lattice-gas automata[J]. Physical Review Letters,1988,61(20):2332 − 2335. doi: 10.1103/PhysRevLett.61.2332

    [15]

    冯杰, 解河海, 黄国如. 土壤大孔隙流机理及产汇流模型[M]. 北京: 科学出版社, 2012.

    FENG Jie, XIE Hehai, HUANG Guoru, et al. The mechanism of soil macropore flow and the model of runoff generation[M]. Beijing: Science Press, 2012. (in Chinese)

    [16]

    WANG Q F, LI C W, ZHAO Y C, et al. Study of gas emission law at the heading face in a coal-mine tunnel based on the Lattice Boltzmann method[J]. Energy Science & Engineering,2020,8(5):1705 − 1715.

    [17]

    SONG R, WANG Y, LIU J J, et al. Comparative analysis on pore-scale permeability prediction on micro-CT images of rock using numerical and empirical approaches[J]. Energy Science & Engineering,2019,7(6):2842 − 2854.

    [18]

    李仁民, 刘松玉, 方磊, 等. 采用随机生长四参数生成法构造黏土微观结构[J]. 浙江大学学报(工学版),2010,44(10):1897 − 1901. [LI Renmin, LIU Songyu, FANG Lei, et al. Micro-structure of clay generated by quartet structure generation set[J]. Journal of Zhejiang University (Engineering Science),2010,44(10):1897 − 1901. (in Chinese with English abstract) doi: 10.3785/j.issn.1008-973X.2010.10.009

    [19]

    何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009.

    HE Yaling, WANG Yong, LI Qing. Lattice Boltzmann method: theory and applications[M]. Beijing: Science Press, 2009. (in Chinese)

    [20]

    KRUGER T, KUSUMAATMAJA H, KUZMIN A, et al. The Lattice Boltzmann method principles and practice[M]. New York: Springer, 2017.

    [21]

    WOLF-GLADROW D A. Lattice gas cellular automata and lattice boltzmann models[M]. Berlin: Springer Berlin Heidelberg, 2000.

    [22]

    QIAN Y H, D'HUMIÈRES D, LALLEMAND P. Lattice BGK models for navier-stokes equation[J]. Europhysics Letters (EPL),1992,17(6):479 − 484. doi: 10.1209/0295-5075/17/6/001

    [23]

    CHAPMAN S, COWLING T G. The mathematical theory of non-uniform Gases[M]. Cambridge: Cambridge University Press, 1970.

    [24]

    郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2009.

    GUO Zhaoli, ZHENG Chuguang. Theory and applications of lattice boltzmann method[M]. Beijing: Science Press, 2009. (in Chinese)

    [25]

    GUO Z L, ZHENG C G, SHI B C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J]. Chinese Physics,2002,11(4):366 − 374. doi: 10.1088/1009-1963/11/4/310

    [26]

    李晶晶, 金磊, 程涛. 土石混合体细观渗流场的格子Boltzmann模拟[J]. 科学技术与工程,2019,19(29):235 − 241. [LI Jingjing, JIN Lei, CHENG Tao. Numerical simulation of mesoscopic seepage field of soil-rock mixture based on lattice boltzmann method[J]. Science Technology and Engineering,2019,19(29):235 − 241. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2019.29.038

    [27]

    蔡沛辰, 阙云, 杨鹏飞. 原状花岗岩残积土大孔隙细观渗流场的格子Boltzmann模拟[J]. 福州大学学报(自然科学版),2021,49(4):531 − 536. [CAI Peichen, QUE Yun, YANG Pengfei. Lattice Boltzmann simulation of macropore meso-seepage field in undisturbed granite residual soil[J]. Journal of Fuzhou University (Natural Science Edition),2021,49(4):531 − 536. (in Chinese with English abstract)

    [28]

    杨峰, 王昊, 黄波, 等. 基于CT扫描的致密砂岩渗流特征及应力敏感性研究[J]. 地质力学学报,2019,25(4):475 − 482. [YANG Feng, WANG Hao, HUANG Bo, et al. Study on the stress sensitivity and seepage characteristics of tight sandstone based on CT scanning[J]. Journal of Geomechanics,2019,25(4):475 − 482. (in Chinese with English abstract) doi: 10.12090/j.issn.1006-6616.2019.25.04.045

    [29]

    LATIEF F D E, FAUZI U. Kozeny-Carman and empirical formula for the permeability of computer rock models[J]. International Journal of Rock Mechanics and Mining Sciences,2012,50:117 − 123. doi: 10.1016/j.ijrmms.2011.12.005

    [30]

    KAVIANY M. Principles of heat transfer in porous media[M]. 2nd ed. New York: Springer, 2012.

    [31]

    刘丹, 汪新智, 何玉荣. 随机四参数法生成多孔介质及渗流模拟[J]. 工程热物理学报,2021,42(1):210 − 214. [LIU Dan, WANG Xinzhi, HE Yurong. Lattice boltzmann simulation of flow in random porous media constructed by quartet structure generation set[J]. Journal of Engineering Thermophysics,2021,42(1):210 − 214. (in Chinese with English abstract)

  • 加载中

(12)

(3)

计量
  • 文章访问数:  2507
  • PDF下载数:  87
  • 施引文献:  0
出版历程
收稿日期:  2021-06-15
修回日期:  2021-07-19
刊出日期:  2022-03-15

目录