层状非均质结构包气带入渗过程单相流与两相流数值模拟对比研究

高靖勋, 冯洪川, 祝晓彬, 吴吉春, 吴剑锋, 卫云波, 王水. 层状非均质结构包气带入渗过程单相流与两相流数值模拟对比研究[J]. 水文地质工程地质, 2022, 49(2): 24-32. doi: 10.16030/j.cnki.issn.1000-3665.202109011
引用本文: 高靖勋, 冯洪川, 祝晓彬, 吴吉春, 吴剑锋, 卫云波, 王水. 层状非均质结构包气带入渗过程单相流与两相流数值模拟对比研究[J]. 水文地质工程地质, 2022, 49(2): 24-32. doi: 10.16030/j.cnki.issn.1000-3665.202109011
GAO Jingxun, FENG Hongchuan, ZHU Xiaobin, WU Jichun, WU Jianfeng, WEI Yunbo, WANG Shui. A comparative numerical simulation study of single-phase flow and water-gas two-phase flow infiltration process in the vadose zone with the layered heterogeneous structure[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 24-32. doi: 10.16030/j.cnki.issn.1000-3665.202109011
Citation: GAO Jingxun, FENG Hongchuan, ZHU Xiaobin, WU Jichun, WU Jianfeng, WEI Yunbo, WANG Shui. A comparative numerical simulation study of single-phase flow and water-gas two-phase flow infiltration process in the vadose zone with the layered heterogeneous structure[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 24-32. doi: 10.16030/j.cnki.issn.1000-3665.202109011

层状非均质结构包气带入渗过程单相流与两相流数值模拟对比研究

  • 基金项目: 国家重点研发计划场地土壤污染成因与治理技术专项课题(2019YFC1804001;2019YFC1804300);国家自然科学基金项目(42072274;41730856);江苏省水利科技项目(2020038)
详细信息
    作者简介: 高靖勋(1996-),男,硕士研究生,主要从事多场耦合数值模拟研究。E-mail:jxgao1224@163.com
    通讯作者: 祝晓彬(1980-),男,副教授,主要从事复杂条件下地下水中污染物迁移转化数值模拟研究。E-mail:zxb@nju.edu.cn
  • 中图分类号: P641.2

A comparative numerical simulation study of single-phase flow and water-gas two-phase flow infiltration process in the vadose zone with the layered heterogeneous structure

More Information
  • 包气带水分入渗过程受多种因素的影响。定量研究层状非均质岩性结构和入渗速率对其影响,有助于解决根据不同条件选择单相流模型或水气二相流模型模拟包气带水分入渗过程的问题。结合填埋场等场地地层条件及污废水入渗特征,分别建立了“上细下粗”和“上粗下细”包气带层状非均质岩性结构水分入渗单相流和水气二相流模型,探讨不同层状非均质岩性结构条件下模型的适用性。在“上粗下细”岩性结构模型基础上,进一步探究入渗速率对水气两相运移结果的影响。基于论文模型研究表明:(1)在包气带岩性结构为“上细下粗”的条件下,气相的影响基本可以忽略,可直接采用单相流模型对包气带水分运移进行模拟;在“上粗下细”岩性结构和本次模型设定的底部压力保持不变及污废水泄漏前场地未接受降水入渗补给等条件下,当包气带上下层介质渗透率比值大于16倍时,气相会对水相运移产生明显影响,且下层介质渗透率越小、上下层介质渗透率比值越大,单相流与两相流的运移结果差别越大,需要采用水气二相流模型模拟包气带水分运移。(2)在包气带“上粗下细”岩性结构条件下,入渗速率越大,气相对水流入渗的阻滞作用越明显,此时包气带水分运移模拟应采用水气二相流模型。

  • 加载中
  • 图 1  包气带层状非均质岩性结构概念模型

    Figure 1. 

    图 2  “上细下粗”岩性结构条件下水分入渗52 d水相饱和度分布

    Figure 2. 

    图 3  “上细下粗”岩性结构交界面上、下观测点气压与水相饱和度变化曲线

    Figure 3. 

    图 4  “上粗下细”岩性结构条件下水分入渗80 d水相饱和度分布

    Figure 4. 

    图 5  “上粗下细”岩性结构交界面上、下观测点气压与水相饱和度变化曲线

    Figure 5. 

    图 6  “上粗下细”岩性结构下水分入渗导致潜水面孔隙水压力变化历时曲线

    Figure 6. 

    图 7  不同情景下单相流与水气二相流模型水分入渗补给至潜水面所需时间变化曲线

    Figure 7. 

    图 8  不同情景下“上粗下细”岩性结构界面下方观测点气压与水相饱和度变化曲线

    Figure 8. 

    图 9  入渗速率q=2×10−5 m/s时,“上粗下细”岩性结构水分入渗130 d水相饱和度分布

    Figure 9. 

    图 10  入渗速率q=2×10−5 ,8×10−6 m/s时,“上粗下细”岩性结构界面下方观测点气压与水相饱和度变化曲线

    Figure 10. 

    表 1  非均质介质主要参数[14]

    Table 1.  Main hydrogeological parameters of heterogeneous media[14]

    介质密度/(kg·m−3渗透率/(10−12m2孔隙度相对渗透率-饱和度关系曲线
    (VG-M模型)
    毛细压力-饱和度关系曲线
    (VG模型)
    λSlrSlsSgrλSlrSlsPmax1/P0
    粗砂2 650300.310.4160.0610.050.4160.0615×1063.0×10−4
    细砂2 6508.00.350.4300.1010.050.4300.1015×1062.5×10−4
    亚黏土2 6500.160.400.4470.1510.050.4470.1515×1061.0×10−4
      注:λ为经验参数,为残余水饱和度,为饱和水饱和度,为残余气饱和度,Pmax为最大吸力,1/为土壤进气值的倒数。
    下载: 导出CSV

    表 2  不同模拟情景参数设置

    Table 2.  Parameter settings of different simulation cases

    模拟情景设置渗透率/(10−12m2上下层介质
    渗透率比值
    上层介质(细砂)8.0/
    情景1下层介质1
    (亚黏土)
    0.1650
    情景2下层介质20.2040
    情景3下层介质30.4020
    情景4下层介质40.5016
    情景5下层介质50.8010
    情景6下层介质61.65
    下载: 导出CSV
  • [1]

    COLMAN E A, BODMAN G B. Moisture and energy conditions during downward entry of water into moist and layered soils[J]. Soil Science Society of America Journal,1945,9(C):3 − 11. doi: 10.2136/sssaj1945.036159950009000C0001x

    [2]

    王文焰, 张建丰, 汪志荣, 等. 砂层在黄土中的阻水性及减渗性的研究[J]. 农业工程学报,1995,11(1):104 − 110. [WANG Wenyan, ZHANG Jianfeng, WANG Zhirong, et al. Experiment and study on water-tightness and infiltration reduction of sand layer in loess soils[J]. Transactions of the Chinese Society of Agricultural Engineering,1995,11(1):104 − 110. (in Chinese with English abstract)

    [3]

    解文艳, 樊贵盛. 土壤质地对土壤入渗能力的影响[J]. 太原理工大学学报,2004,35(5):537 − 540. [XIE Wenyan, FAN Guisheng. Influence of soil structure on infiltration characteristics in field soils[J]. Journal of Taiyuan University of Technology,2004,35(5):537 − 540. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-9432.2004.05.010

    [4]

    张建丰. 黄土区层状土入渗特性及其指流的实验研究[D]. 杨凌: 西北农林科技大学, 2004

    ZHANG Jianfeng. Experimental study on infiltration characteristics and finger flow in layer soils of the loess area[D]. Yangling: Northwest A & F University, 2004. (in Chinese with English abstract)

    [5]

    郭会荣, 靳孟贵, 齐登红, 等. 基于地中渗透仪的入渗补给方式分析[J]. 水文地质工程地质,2007,34(4):107 − 111. [GUO Huirong, JIN Menggui, QI Denghong, et al. Characterization of groundwater recharge processes based on large lysimeters[J]. Hydrogeology & Engineering Geology,2007,34(4):107 − 111. (in Chinese with English abstract)

    [6]

    王仕琴, 宋献方, 肖国强, 等. 基于氢氧同位素的华北平原降水入渗过程[J]. 水科学进展,2009,20(4):495 − 501. [WANG Shiqin, SONG Xianfang, XIAO Guoqiang, et al. Appliance of oxygen and hydrogen isotope in the process of precipitation infiltration in the shallow groundwater areas of North China Plain[J]. Advances in Water Science,2009,20(4):495 − 501. (in Chinese with English abstract)

    [7]

    霍思远, 靳孟贵, 梁杏. 包气带弱渗透性黏土透镜体对降雨入渗补给影响的数值模拟[J]. 吉林大学学报(地球科学版),2013,43(5):1579 − 1587. [HUO Siyuan, JIN Menggui, LIANG Xing. Impacts of low-permeability clay lens in vadose zone onto rainfall infiltration and groundwater recharge using numerical simulation of variably saturated flow[J]. Journal of Jilin University (Earth Science Edition),2013,43(5):1579 − 1587. (in Chinese with English abstract)

    [8]

    高业新, 张冰, 崔浩浩. 包气带水入渗过程中水化学组分运移规律研究[J]. 水文地质工程地质,2014,41(2):1 − 6. [GAO Yexin, ZHANG Bing, CUI Haohao. A study of the migration of chemical compositions in vadose water infiltration[J]. Hydrogeology & Engineering Geology,2014,41(2):1 − 6. (in Chinese with English abstract)

    [9]

    徐远志, 赵贵章, 母霓莎, 等. 包气带水分运移过程的影响因素综述[J]. 华北水利水电大学学报(自然科学版),2019,40(2):37 − 41. [XU Yuanzhi, ZHAO Guizhang, MU Nisha, et al. Review on factors affecting the process of water movement in vadose zone[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition),2019,40(2):37 − 41. (in Chinese with English abstract)

    [10]

    WEI Y B, CHEN K P, WU J C. Estimation of the critical infiltration rate for air compression during infiltration[J]. Water Resources Research,2020,56(3):1 − 13.

    [11]

    SUN D M, ZANG Y G, SEMPRICH S. Effects of airflow induced by rainfall infiltration on unsaturated soil slope stability[J]. Transport in Porous Media,2015,107(3):821 − 841. doi: 10.1007/s11242-015-0469-x

    [12]

    WEI Y B, CHEN K P, WU J C, et al. Experimental study of the moisture distribution on the wetting front during drainage and imbibition in a 2D sand chamber[J]. Journal of Hydrology,2018,561:112 − 122. doi: 10.1016/j.jhydrol.2018.03.069

    [13]

    张杰, 韩同春, 豆红强, 等. 探讨变雨强条件下的入渗过程及影响因素[J]. 岩土力学, 2014, 35(增刊1): 451-456

    ZHANG Jie, HAN Tongchun, DOU Hongqiang, et al. Study of infiltration process and its influential factors under variable rainfall intensity[J]. Rock and Soil Mechanics, 2014, 35(Sup1): 451-456. (in Chinese with English abstract)

    [14]

    朱伟, 陈学东, 钟小春. 降雨入渗规律的实测与分析[J]. 岩土力学,2006,27(11):1873 − 1879. [ZHU Wei, CHEN Xuedong, ZHONG Xiaochun. Observation and analysis of rainfall infiltration[J]. Rock and Soil Mechanics,2006,27(11):1873 − 1879. (in Chinese with English abstract)

    [15]

    刘刚, 童富果, 习念念, 等. 通气和封气条件下降雨对粘性土入渗速率、含水率及孔隙压力的影响试验[J]. 水电能源科学,2015,33(12):19 − 21. [LIU Gang, TONG Fuguo, XI Niannian, et al. Impact test of rainfall on clay soil infiltration rate, moisture content and pore pressure under aeration and gas sealing conditions[J]. Water Resources and Power,2015,33(12):19 − 21. (in Chinese with English abstract)

    [16]

    刘秀花, 王蕊. 灌水量对包气带水分运移与滞留影响过程研究[J]. 干旱地区农业研究,2016,34(5):262 − 268. [LIU Xiuhua, WANG Rui. Research on impact process of irrigation amount on moisture migration and retention in vadose zone[J]. Agricultural Research in the Arid Areas,2016,34(5):262 − 268. (in Chinese with English abstract)

    [17]

    SUN D M, ZANG Y G, FENG P, et al. Quasi-saturated zones induced by rainfall infiltration[J]. Transport in Porous Media,2016,112(1):77 − 104. doi: 10.1007/s11242-016-0633-y

    [18]

    施小清, 张可霓, 吴吉春. TOUGH2软件的发展及应用[J]. 工程勘察,2009,37(10):29 − 34. [SHI Xiaoqing, ZHANG Keni, WU Jichun. The history and application of TOUGH2 code[J]. Geotechnical Investigation & Surveying,2009,37(10):29 − 34. (in Chinese with English abstract)

    [19]

    PRUESS K, OLDENBURG C M, MORIDIS G J. TOUGH2 user's guide version 2[R]. Office of Scientific and Technical Information, 1999.

    [20]

    GUO H P, JIAO J J, WEEKS E P. Rain-induced subsurface airflow and lisse effect[J]. Water Resources Research,2008,44(7):767 − 768.

    [21]

    施小清, 吴吉春, 姜蓓蕾, 等. 包气带中降雨入渗单相流和二相流数值模拟对比[J]. 工程勘察,2011,39(1):38 − 45. [SHI Xiaoqing, WU Jichun, JIANG Beilei, et al. Comparison of numerical simulation based on water-gas two phase flow and single phase flow for the seepage in vadose zone[J]. Geotechnical Investigation & Surveying,2011,39(1):38 − 45. (in Chinese with English abstract)

    [22]

    李云良. 降雨条件下非饱和带水—气二相流模拟研究[D]. 西安: 长安大学, 2010

    LI Yunliang. Simulation study of two-phases(water and air) flow in unsaturated zone under infiltration condition[D]. Xi’an: Chang’an University, 2010. (in Chinese with English abstract)

  • 加载中

(10)

(2)

计量
  • 文章访问数:  993
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2021-09-15
修回日期:  2021-10-25
刊出日期:  2022-03-15

目录