基于三维离散-连续耦合的岩溶隧道突水破坏模式研究

刘琛尧, 晏启祥, 孙润方, 王绪, 邓宝华, 陈耀. 基于三维离散-连续耦合的岩溶隧道突水破坏模式研究[J]. 水文地质工程地质, 2024, 51(2): 163-171. doi: 10.16030/j.cnki.issn.1000-3665.202211045
引用本文: 刘琛尧, 晏启祥, 孙润方, 王绪, 邓宝华, 陈耀. 基于三维离散-连续耦合的岩溶隧道突水破坏模式研究[J]. 水文地质工程地质, 2024, 51(2): 163-171. doi: 10.16030/j.cnki.issn.1000-3665.202211045
LIU Chenyao, YAN Qixiang, SUN Runfang, WANG Xu, DENG Baohua, CHEN Yao. Study on water inrush failure mode of karst tunnel based on three-dimensional discrete-continuous coupling[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 163-171. doi: 10.16030/j.cnki.issn.1000-3665.202211045
Citation: LIU Chenyao, YAN Qixiang, SUN Runfang, WANG Xu, DENG Baohua, CHEN Yao. Study on water inrush failure mode of karst tunnel based on three-dimensional discrete-continuous coupling[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 163-171. doi: 10.16030/j.cnki.issn.1000-3665.202211045

基于三维离散-连续耦合的岩溶隧道突水破坏模式研究

  • 基金项目: 国家自然科学基金项目(52278416)
详细信息
    作者简介: 刘琛尧(2000—),男,硕士研究生,主要从事隧道与地下工程科研工作。E-mail:lcy2847662434@163.com
    通讯作者: 晏启祥(1971—),男,博士,教授,博士生导师,主要从事隧道与地下工程科研以及教学工作。E-mail:1445333599@qq.com
  • 中图分类号: P641.134;U452.1+1

Study on water inrush failure mode of karst tunnel based on three-dimensional discrete-continuous coupling

More Information
  • 岩溶隧道在修建的过程中难以避免接近溶腔甚至高承压水溶腔,而突水破坏极易引发安全事故甚至对隧道产生不可逆的影响,因此对岩溶隧道突水破坏模式的研究有利于解决相关安全问题,并对选线安全具有一定参照意义。通过三维离散-连续耦合数值技术,对微观离散颗粒物理、力学参数进行标定并验证,模拟水压作用下下伏溶腔与隧道仰拱之间的防突岩体垮塌过程。根据试验结果将防突岩体的破坏模式分为3类:剪切破坏模式、弯折破坏模式和复合破坏模式。弯折破坏模式表现为防突岩体中部和两端拉伸裂缝呈贯通状;剪切破坏模式表现为防突岩体两端裂缝呈剪切态;复合破坏模式则同时具有二者的共同特性。3种破坏模式所引起的裂缝发育规律相似,均可分为初始发育、快速发育和平缓发育3个阶段。初始发育阶段时防突岩体所存在的裂缝数量较少;维持水压力防突岩体的裂缝数量突增并进入快速发育阶段;而后防突岩体中的裂缝产生贯通效果进入平缓发育阶段,最终防突岩体整体垮塌。由此得出结论:突水破坏在岩溶隧道中是一个渐变的过程,但对岩溶隧道总体安全性有不可逆的影响。

  • 加载中
  • 图 1  隧道仰拱下伏溶腔

    Figure 1. 

    图 2  三轴压缩模拟试验颗粒集合体模型

    Figure 2. 

    图 3  3种围压下试样轴向应力-轴向应变曲线

    Figure 3. 

    图 4  3种围压下试样横向应变-轴向应变曲线

    Figure 4. 

    图 5  验证模型地应力等值线图

    Figure 5. 

    图 6  验证模型竖向位移等值线图

    Figure 6. 

    图 7  三维离散-连续耦合模型

    Figure 7. 

    图 8  防突岩体弯折破坏

    Figure 8. 

    图 9  接触力链图

    Figure 9. 

    图 10  防突岩体剪切破坏

    Figure 10. 

    图 11  防突岩体复合破坏

    Figure 11. 

    图 12  3种破坏模式下防突岩体裂隙数

    Figure 12. 

    表 1  工程实际围岩物理力学参数

    Table 1.  Physical and mechanical parameters of actual surrounding rock

    参数 杨氏模量/GPa 泊松比 黏聚力/MPa 摩擦角/(°) 密度/(kg·m−3)
    取值 6 0.2 1.8 40 2600
    下载: 导出CSV

    表 2  三轴压缩试验颗粒参数

    Table 2.  Particle parameters in the triaxial compression test

    参数 最小粒径/mm 粒径比 颗粒密度/(kg·m−3) 孔隙率 加载应变速率
    取值 1 1.66 2500 0.3 0.005
    下载: 导出CSV

    表 3  围岩参数标定结果

    Table 3.  Calibration parameters of surrounding rock

    颗粒微观参数 黏结有效模量/ GPa 有效模量/GPa 黏结刚度比 刚度比 平行黏结内摩擦角/(°) 摩擦系数 平行黏结抗拉强度/MPa 平行黏结黏聚力/MPa
    5 5 4 4 40 0.5 3 3
    对应宏观参数内摩擦角/(°黏聚力/MPa泊松比弹性模量/GPa
    37.041.940.216.11
    下载: 导出CSV
  • [1]

    钟祖良,高国富,刘新荣,等. 地下采动下含深大裂隙岩溶山体变形响应特征[J]. 水文地质工程地质,2020,47(4):97 − 106. [ZHONG Zuliang,GAO Guofu,LIU Xinrong,et al. Deformation response characteristics of karst mountains with deep and large fissures under the condition of underground mining[J]. Hydrogeology & Engineering Geology,2020,47(4):97 − 106. (in Chinese with English abstract)]

    ZHONG Zuliang, GAO Guofu, LIU Xinrong, et al. Deformation response characteristics of karst mountains with deep and large fissures under the condition of underground mining[J]. Hydrogeology & Engineering Geology, 2020, 474): 97106. (in Chinese with English abstract)

    [2]

    曾斌, 陈植华, 邵长杰,等. 基于地下水流系统理论的岩溶隧道涌突水来源及路径分析[J]. 地质科技通报,2022,41(1):99 − 108. [ZENG Bin, CHEN Zhihua, SHAO Changjie, et al. Analysis of source and path of water inrush in karst tunnel based on the theory of groundwater flow system[J]. Bulletin of Geological Science and Technology,2022,41(1):99 − 108.(in Chinese with English abstract)]

    ZENG Bin, CHEN Zhihua, SHAO Changjie, et al. Analysis of source and path of water inrush in karst tunnel based on the theory of groundwater flow system[J]. Bulletin of Geological Science and Technology, 2022, 411): 99108.(in Chinese with English abstract)

    [3]

    颜慧明, 常威, 郭绪磊, 等. 岩溶水流系统识别方法及其在引调水工程隧洞选线中的应用[J]. 地质科技通报,2022,41(1):127 − 136. [YAN Huiming, CHANG Wei, GUO Xulei, et al. Identification of the karst water flow system and its application in the tunnel line selection of water diversion projects[J]. Bulletin of Geological Science and Technology,2022,41(1):127 − 136.(in Chinese with English abstract)]

    YAN Huiming, CHANG Wei, GUO Xulei, et al. Identification of the karst water flow system and its application in the tunnel line selection of water diversion projects[J]. Bulletin of Geological Science and Technology, 2022, 411): 127136.(in Chinese with English abstract)

    [4]

    李华明,张永辉,胡志平,等. 峨汉高速庙子坪隧道岩溶发育特征及工程效应分析[J]. 中国地质灾害与防治学报,2022,33(1):92 − 98. [LI Huaming,ZHANG Yonghui,HU Zhiping,et al. Analysis of Karst development characteristics and influence of Miaoziping tunnel in E-Han expressway[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):92 − 98. (in Chinese with English abstract)]

    LI Huaming, ZHANG Yonghui, HU Zhiping, et al. Analysis of Karst development characteristics and influence of Miaoziping tunnel in E-Han expressway[J]. The Chinese Journal of Geological Hazard and Control, 2022, 331): 9298. (in Chinese with English abstract)

    [5]

    段天宇, 成建梅, 段勇, 等. 隧洞突涌水指示西南岩溶大泉成因关系及水环境效应分析[J]. 地质科技通报,2023,42(4):183 − 193. [DUAN Tianyu, CHENG Jianmei, DUAN Yong, et al. Indications of tunnel water inrush to the origin of large karst springs in Southwest China and water environmental effects[J]. Bulletin of Geological Science and Technology,2023,42(4):183 − 193.(in Chinese with English abstract)]

    DUAN Tianyu, CHENG Jianmei, DUAN Yong, et al. Indications of tunnel water inrush to the origin of large karst springs in Southwest China and water environmental effects[J]. Bulletin of Geological Science and Technology, 2023, 424): 183193.(in Chinese with English abstract)

    [6]

    YAN Changbin,XU Guoyuan,ZUO Yujun. Destabilization analysis of overlapping underground chambers induced by blasting vibration with catastrophe theory[J]. Transactions of Nonferrous Metals Society of China,2006,16(3):735 − 740. doi: 10.1016/S1003-6326(06)60130-1

    [7]

    刘波,肖红飞. 隧道下伏溶洞顶板安全厚度确定方法[J]. 中国安全科学学报,2019,29(4):104 − 111. [LIU Bo,XIAO Hongfei. Method for determining safe thickness of cave roofs under a tunnel[J]. China Safety Science Journal,2019,29(4):104 − 111. (in Chinese with English abstract)]

    LIU Bo, XIAO Hongfei. Method for determining safe thickness of cave roofs under a tunnel[J]. China Safety Science Journal, 2019, 294): 104111. (in Chinese with English abstract)

    [8]

    周栋梁,邹金锋. 岩溶区分岔隧道底板的安全厚度[J]. 中南大学学报(自然科学版),2015,46(5):1886 − 1892. [ZHOU Dongliang,ZOU Jinfeng. Safe thickness of floor of forked tunnel in Karst areas[J]. Journal of Central South University (Science and Technology),2015,46(5):1886 − 1892. (in Chinese with English abstract)] doi: 10.11817/j.issn.1672-7207.2015.05.042

    ZHOU Dongliang, ZOU Jinfeng. Safe thickness of floor of forked tunnel in Karst areas[J]. Journal of Central South University (Science and Technology), 2015, 465): 18861892. (in Chinese with English abstract) doi: 10.11817/j.issn.1672-7207.2015.05.042

    [9]

    HUANG Xin,LI Shucai,XU Zhenhao,et al. An attribute recognition model for safe thickness assessment between concealed Karst cave and tunnel[J]. Journal of Central South University,2019,26(4):955 − 969. doi: 10.1007/s11771-019-4063-1

    [10]

    MEGUID M A,DANG H K. The effect of erosion voids on existing tunnel linings[J]. Tunnelling and Underground Space Technology,2009,24(3):278 − 286. doi: 10.1016/j.tust.2008.09.002

    [11]

    江学良,曹平,杨慧,等. 水平应力与裂隙密度对顶板安全厚度的影响[J]. 中南大学学报(自然科学版),2009,40(1):211 − 216. [JIANG Xueliang,CAO Ping,YANG Hui,et al. Effect of horizontal stress and rock crack density on roof safety thickness of underground area[J]. Journal of Central South University (Science and Technology),2009,40(1):211 − 216. (in Chinese with English abstract)]

    JIANG Xueliang, CAO Ping, YANG Hui, et al. Effect of horizontal stress and rock crack density on roof safety thickness of underground area[J]. Journal of Central South University (Science and Technology), 2009, 401): 211216. (in Chinese with English abstract)

    [12]

    李浪,陈显波,程金星,等. 深长隧道突涌水灾害防突岩盘模型试验研究[J]. 岩石力学与工程学报,2020,39(增刊2):3278-3285. [LI Lang,CHEN Xianbo,CHENG Jinxing,et al. Model test to investigate waterproof-resistant slab for water inrush geohazards in deep buried and long tunnels[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Sup 2):3278-3285. (in Chinese with English abstract)]

    LI Lang, CHEN Xianbo, CHENG Jinxing, et al. Model test to investigate waterproof-resistant slab for water inrush geohazards in deep buried and long tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Sup 2): 3278-3285. (in Chinese with English abstract)

    [13]

    肖喜,赵晓彦,张巨峰,等. 岩溶隧道涌突水破坏模式分类及防突厚度研究[J]. 工程地质学报,2022,30(2):459 − 474. [XIAO Xi,ZHAO Xiaoyan,ZHANG Jufeng,et al. Classification of water inrush failure mode and rock thickness for preventing water inrush in Karst tunnels[J]. Journal of Engineering Geology,2022,30(2):459 − 474. (in Chinese with English abstract)]

    XIAO Xi, ZHAO Xiaoyan, ZHANG Jufeng, et al. Classification of water inrush failure mode and rock thickness for preventing water inrush in Karst tunnels[J]. Journal of Engineering Geology, 2022, 302): 459474. (in Chinese with English abstract)

    [14]

    黄鑫. 隧道突水突泥致灾系统与充填溶洞间歇型突水突泥灾变机理[D]. 济南:山东大学,2019. [HUANG Xin. Water and Mud Inrush Hazard-Causing System and Disaster Mechanism of Intermittent Type of Water and Mud Inrush of Filled Karst Cave in Tunnel[D]. Jinan: Shandong University,2019]. (in Chinese with English abstract)]

    HUANG Xin. Water and Mud Inrush Hazard-Causing System and Disaster Mechanism of Intermittent Type of Water and Mud Inrush of Filled Karst Cave in Tunnel[D]. Jinan: Shandong University, 2019]. (in Chinese with English abstract)

    [15]

    徐爽,朱浮声,张俊. 离散元法及其耦合算法的研究综述[J]. 力学与实践,2013,35(1):8 − 14. [XU Shuang,ZHU Fusheng,ZHANG Jun. A overview of the discrete element method and its coupling algorithms[J]. Mechanics in Engineering,2013,35(1):8 − 14. (in Chinese with English abstract)] doi: 10.6052/1000-0879-12-269

    XU Shuang, ZHU Fusheng, ZHANG Jun. A overview of the discrete element method and its coupling algorithms[J]. Mechanics in Engineering, 2013, 351): 814. (in Chinese with English abstract) doi: 10.6052/1000-0879-12-269

    [16]

    谭鑫,胡政博,冯龙健,等. 软土中碎石桩模型试验的三维离散-连续介质耦合数值模拟[J]. 岩土工程学报,2021,43(2):347 − 355. [TAN Xin,HU Zhengbo,FENG Longjian,et al. Three-dimensional discrete-continuous coupled numerical simulation of a single stone column in soft soils[J]. Chinese Journal of Geotechnical Engineering,2021,43(2):347 − 355. (in Chinese with English abstract)] doi: 10.11779/CJGE202102015

    TAN Xin, HU Zhengbo, FENG Longjian, et al. Three-dimensional discrete-continuous coupled numerical simulation of a single stone column in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 432): 347355. (in Chinese with English abstract) doi: 10.11779/CJGE202102015

    [17]

    严琼,吴顺川,周喻,等. 基于连续-离散耦合的边坡稳定性分析研究[J]. 岩土力学,2015,36(增刊2):47-56. [YAN Qiong,WU Shunchuan,ZHOU Yu,et al. Slope stability analysis based on technology of continuum-discrete coupling[J]. Rock and Soil Mechanics,2015,36(Sup 2):47-56. (in Chinese with English abstract)]

    YAN Qiong, WU Shunchuan, ZHOU Yu, et al. Slope stability analysis based on technology of continuum-discrete coupling[J]. Rock and Soil Mechanics, 2015, 36(Sup 2): 47-56. (in Chinese with English abstract)

    [18]

    陈振华. 沉桩的离散-连续耦合数值分析[D]. 福州:福州大学,2013. [CHEN Zhenhua. Discrete-continuous coupling numerical analysis of pile sinking[D]. Fuzhou:Fuzhou University,2013. (in Chinese with English abstract)]

    CHEN Zhenhua. Discrete-continuous coupling numerical analysis of pile sinking[D]. Fuzhou: Fuzhou University, 2013. (in Chinese with English abstract)

    [19]

    叶成银,龚维明,周马生,等. 沉桩过程三维离散-连续耦合数值模拟分析研究[J]. 公路,2019,64(4):61 − 67. [YE Chengyin,GONG Weiming,ZHOU Masheng,et al. Three-dimensional discrete-continuous coupling numerical simulation analysis of pile sinking process[J]. Highway,2019,64(4):61 − 67. (in Chinese)]

    YE Chengyin, GONG Weiming, ZHOU Masheng, et al. Three-dimensional discrete-continuous coupling numerical simulation analysis of pile sinking process[J]. Highway, 2019, 644): 6167. (in Chinese)

    [20]

    刘波. 强夯的三维连续-离散耦合数值模拟[D]. 上海:同济大学,2018. [LIU Bo. Three-dimensional continuous-discrete coupling numerical simulation of dynamic compaction[D]. Shanghai:Tongji University,2018. (in Chinese with English abstract)]

    LIU Bo. Three-dimensional continuous-discrete coupling numerical simulation of dynamic compaction[D]. Shanghai: Tongji University, 2018. (in Chinese with English abstract)

    [21]

    余宾赛. 基于离散-连续耦合方法的黄土隧道压力拱效应研究[D]. 西安:西安科技大学,2019. [YU Binsai. Study on pressure arch effect of loess tunnel based on discrete-continuous coupling method[D]. Xi’an:Xi’an University of Science and Technology,2019. (in Chinese with English abstract)]

    YU Binsai. Study on pressure arch effect of loess tunnel based on discrete-continuous coupling method[D]. Xi’an: Xi’an University of Science and Technology, 2019. (in Chinese with English abstract)

    [22]

    徐国文,何川,汪耀,等. 层状软岩隧道围岩破坏的连续-离散耦合分析[J]. 西南交通大学学报,2018,53(5):966 − 973. [[XU Guowen,HE Chuan,WANG Yao,et al. Failure analysis on surrounding rock of soft-layered rock tunnel using coupled continuum-discrete model[J]. Journal of Southwest Jiaotong University,2018,53(5):966 − 973. (in Chinese with English abstract)] doi: 10.3969/j.issn.0258-2724.2018.05.013

    [XU Guowen, HE Chuan, WANG Yao, et al. Failure analysis on surrounding rock of soft-layered rock tunnel using coupled continuum-discrete model[J]. Journal of Southwest Jiaotong University, 2018, 535): 966973. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-2724.2018.05.013

    [23]

    马亚丽娜,崔臻,盛谦,等. 正断层错动对围岩-衬砌体系响应影响的离散-连续耦合模拟研究[J]. 岩土工程学报,2020,42(11):2088 − 2097. [MA Y,CUI Zhen,SHENG Qian,et al. Influences of normal fault dislocation on response of surrounding rock and lining system based on discrete-continuous coupling simulation[J]. Chinese Journal of Geotechnical Engineering,2020,42(11):2088 − 2097. (in Chinese with English abstract)] doi: 10.11779/CJGE202011014

    MA Y, CUI Zhen, SHENG Qian, et al. Influences of normal fault dislocation on response of surrounding rock and lining system based on discrete-continuous coupling simulation[J]. Chinese Journal of Geotechnical Engineering, 2020, 4211): 20882097. (in Chinese with English abstract) doi: 10.11779/CJGE202011014

    [24]

    高峰,谭绪凯,陈晓宇,等. 基于离散-连续耦合方法的隧道压力拱特性研究[J]. 计算力学学报,2020,37(2):218 − 225. [GAO Feng,TAN Xukai,CHEN Xiaoyu,et al. Research on tunnel pressure arch based on coupled discrete and continuous method[J]. Chinese Journal of Computational Mechanics,2020,37(2):218 − 225. (in Chinese with English abstract)] doi: 10.7511/jslx20190427001

    GAO Feng, TAN Xukai, CHEN Xiaoyu, et al. Research on tunnel pressure arch based on coupled discrete and continuous method[J]. Chinese Journal of Computational Mechanics, 2020, 372): 218225. (in Chinese with English abstract) doi: 10.7511/jslx20190427001

    [25]

    袁海平,王昱博. 基于连续-离散耦合方法的小间距深埋硐室合理间距研究[J]. 矿业研究与开发,2021,41(8):16 − 21. [YUAN Haiping,WANG Yubo. Research on reasonable spacing of small spacing deep-buried chamber based on continuous-discrete coupled method[J]. Mining Research and Development,2021,41(8):16 − 21. (in Chinese with English abstract)]

    YUAN Haiping, WANG Yubo. Research on reasonable spacing of small spacing deep-buried chamber based on continuous-discrete coupled method[J]. Mining Research and Development, 2021, 418): 1621. (in Chinese with English abstract)

    [26]

    刘波,杨亚刚. 基于离散裂隙网络与离散元耦合方法的礼让隧道岩体力学参数确定[J]. 科学技术与工程,2020,20(23):9567 − 9573. [LIU Bo,YANG Yagang. Determination of mechanical parameters on rock mass of Lirang tunnel based on discrete fracture network-discrete element method coupling technology[J]. Science Technology and Engineering,2020,20(23):9567 − 9573. (in Chinese with English abstract)] doi: 10.3969/j.issn.1671-1815.2020.23.045

    LIU Bo, YANG Yagang. Determination of mechanical parameters on rock mass of Lirang tunnel based on discrete fracture network-discrete element method coupling technology[J]. Science Technology and Engineering, 2020, 2023): 95679573. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2020.23.045

    [27]

    胡杰,何满潮,李兆华,等. 基于三维离散-连续耦合方法的NPR锚索-围岩相互作用机理研究[J]. 工程力学,2020,37(7):27 − 34. [HU Jie,HE Manchao,LI Zhaohua,et al. Numerical study on npr cable-rock interaction using 3d discrete-continuous coupling method[J]. Engineering Mechanics,2020,37(7):27 − 34. (in Chinese with English abstract)] doi: 10.6052/j.issn.1000-4750.2019.07.0390

    HU Jie, HE Manchao, LI Zhaohua, et al. Numerical study on npr cable-rock interaction using 3d discrete-continuous coupling method[J]. Engineering Mechanics, 2020, 377): 2734. (in Chinese with English abstract) doi: 10.6052/j.issn.1000-4750.2019.07.0390

  • 加载中

(12)

(3)

计量
  • 文章访问数:  856
  • PDF下载数:  37
  • 施引文献:  0
出版历程
收稿日期:  2022-11-15
修回日期:  2023-01-06
录用日期:  2023-02-28
刊出日期:  2024-03-15

目录