基于均匀化理论与上限分析的膨胀土滑坡稳定性分析

杨晓华, 王东清, 袁帅, 张毅. 基于均匀化理论与上限分析的膨胀土滑坡稳定性分析[J]. 水文地质工程地质, 2024, 51(2): 172-182. doi: 10.16030/j.cnki.issn.1000-3665.202302050
引用本文: 杨晓华, 王东清, 袁帅, 张毅. 基于均匀化理论与上限分析的膨胀土滑坡稳定性分析[J]. 水文地质工程地质, 2024, 51(2): 172-182. doi: 10.16030/j.cnki.issn.1000-3665.202302050
YANG Xiaohua, WANG Dongqing, YUAN Shuai, ZHANG Yi. Stability analysis of expansive soil landslide based on homogenization theory and upper limit analysis[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 172-182. doi: 10.16030/j.cnki.issn.1000-3665.202302050
Citation: YANG Xiaohua, WANG Dongqing, YUAN Shuai, ZHANG Yi. Stability analysis of expansive soil landslide based on homogenization theory and upper limit analysis[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 172-182. doi: 10.16030/j.cnki.issn.1000-3665.202302050

基于均匀化理论与上限分析的膨胀土滑坡稳定性分析

  • 基金项目: 国家自然科学基金项目(51908053)
详细信息
    作者简介: 杨晓华(1961—),男,博士,教授,博士生导师,主要从事岩土与隧道工程研究。E-mail:xiaohuay@126.com
    通讯作者: 王东清(1997—),男,博士研究生,主要从事岩土工程研究。E-mail:wangdqchd@qq.com
  • 中图分类号: P642.22

Stability analysis of expansive soil landslide based on homogenization theory and upper limit analysis

  • Fund Project: This research is supported by the National Natural Science Foundation of China(Grant No. 51908053)
More Information
  • 在膨胀土和滑坡共同作用下,隧道洞口段施工更容易引发地表开裂甚至滑坡等工程灾害,在隧道内采用微型桩群防治滑坡比抗滑桩具有优势。本文基于均匀化理论与上限分析对某高速公路隧道洞口段膨胀土滑坡的稳定性进行计算,并评价微型桩群和削方卸载不同组合方式的处置效果,计算时将微型桩群及桩周土通过均匀化理论等效为符合摩尔库仑强度准则的等效加固体来,以此提高计算效率,最后通过对现场削方+微型桩群加固处置后的滑坡变形监测来验证计算的合理性,得出如下结论:相较于土的强度参数,等效加固体内摩擦角保持不变,黏聚力从26 kPa提高到85.36 kPa。处置前后的滑坡稳定性评价结果表明,不做处理时,滑坡滑动面从滑坡上方岩土交界面延续到隧道洞口前;仅采用微型桩群加固时,滑坡安全系数在1.17左右,滑动面从岩土交界面延续到隧道洞口后;同时采用微型桩群加固和削方卸载时,滑坡安全系数提高到1.26~1.28,滑动面上缘由土石交界面前移。现场变形监测表明地表变形与深层土体变形均不超过3 mm,该措施能保障滑坡的稳定性,同时也验证了计算方法的合理性,可为同类工程提供参考。

  • 加载中
  • 图 1  场地平面图

    Figure 1. 

    图 2  地质纵断面

    Figure 2. 

    图 3  洞口段地表裂缝

    Figure 3. 

    图 4  周期性材料均匀化示意图

    Figure 4. 

    图 5  单胞体模型数值三轴试验周期性边界条件与施加荷载

    Figure 5. 

    图 6  单胞体模型数值三轴试验结果

    Figure 6. 

    图 7  单胞体等效摩尔库仑强度曲线(单位:kPa)

    Figure 7. 

    图 8  滑坡计算模型

    Figure 8. 

    图 9  测点与测斜孔布置图

    Figure 9. 

    图 10  未处理时的滑坡塑性耗散

    Figure 10. 

    图 11  未处理时的滑坡速度场

    Figure 11. 

    图 12  采用微型桩群加固时的滑坡塑性耗散

    Figure 12. 

    图 13  采用微型桩群加固时的滑坡速度场

    Figure 13. 

    图 14  微型桩群加固与削方卸载工况的滑坡塑性耗散

    Figure 14. 

    图 15  微型桩群加固与削方卸载工况的滑坡速度场

    Figure 15. 

    图 16  边坡处置示意图

    Figure 16. 

    图 17  滑坡处置后测点的地表变形

    Figure 17. 

    图 18  滑坡处置后滑坡体深层土体位移

    Figure 18. 

    表 1  单胞体模型材料参数表

    Table 1.  Material parameters of cell model

    名称重度/(kN·m−3黏聚力/kPa内摩擦角/(°)弹性模量/MPa屈服强度/MPa泊松比
    21 6002350.33
    膨胀土地基1826.0152800.34
    桩土夹层1820.81222400.34
    下载: 导出CSV

    表 2  滑坡模型材料参数表

    Table 2.  Material parameters of landslide model

    名称 重度
    /(kN·m−3
    黏聚力
    /kPa
    内摩擦角
    /(°)
    抗压强度
    /MPa
    抗拉强度
    /MPa
    闪长石地层 20 60 20
    膨胀土地层 18 26 15
    隧道支护 25 26 1.6
    等效加固体 18 86.36 15
    下载: 导出CSV
  • [1]

    李宁,刘冠麟,许建聪,等. 降雨条件下边坡有限元强度折减法计算平台开发及其应用[J]. 水文地质工程地质,2018,45(3):63 − 70. [LI Ning,LIU Guanlin,XU Jiancong,et al. Development of shear strength reduction method for slope stability analysis under rainfall conditions and its application[J]. Hydrogeology & Engineering Geology,2018,45(3):63 − 70. (in Chinese with English abstract)]

    LI Ning, LIU Guanlin, XU Jiancong, et al. Development of shear strength reduction method for slope stability analysis under rainfall conditions and its application[J]. Hydrogeology & Engineering Geology, 2018, 453): 6370. (in Chinese with English abstract)

    [2]

    王平,朱赛楠,张枝华,等. 三峡库区大型斜倾顺层滑坡失稳机理分析——以石柱县龙井滑坡为例[J]. 中国地质灾害与防治学报,2021,32(4):24 − 32. [WANG Ping,ZHU Sainan,ZHANG Zhihua,et al. Instability mechanism of massive oblique bedding rock landslide in the Three-Gorges Reservoir:a case study of the Longjing landslide in Shizhu County of Chongqing City[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):24 − 32. (in Chinese with English abstract)]

    WANG Ping, ZHU Sainan, ZHANG Zhihua, et al. Instability mechanism of massive oblique bedding rock landslide in the Three-Gorges Reservoir: a case study of the Longjing landslide in Shizhu County of Chongqing City[J]. The Chinese Journal of Geological Hazard and Control, 2021, 324): 2432. (in Chinese with English abstract)

    [3]

    陈新泽,唐辉明,杨有成,等. 基于FLAC3D强度折减法滑坡三维稳定性研究——以三峡库区白果树古滑坡群为例[J]. 水文地质工程地质,2008,35(2):24 − 29. [CHEN Xinze,TANG Huiming,YANG Youcheng,et al. 3D analysis of landslide stability based on strength reduction FLAC3D:Taking Baiguoshu paleo-landslide group in the Three Gorges Reservoir area as example[J]. Hydrogeology & Engineering Geology,2008,35(2):24 − 29. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-3665.2008.02.005

    CHEN Xinze, TANG Huiming, YANG Youcheng, et al. 3D analysis of landslide stability based on strength reduction FLAC3D: Taking Baiguoshu paleo-landslide group in the Three Gorges Reservoir area as example[J]. Hydrogeology & Engineering Geology, 2008, 352): 2429. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2008.02.005

    [4]

    王根龙,伍法权,李巨文. 折线型滑面边坡稳定系数计算的极限分析上限解[J]. 水文地质工程地质,2007,34(1):62 − 65. [WANG Genlong,WU Faquan,LI Juwen. Upper-bound solution of safety factor for slope with broken-line slip surface based on plasticity limit analysis[J]. Hydrogeology & Engineering Geology,2007,34(1):62 − 65. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-3665.2007.01.013

    WANG Genlong, WU Faquan, LI Juwen. Upper-bound solution of safety factor for slope with broken-line slip surface based on plasticity limit analysis[J]. Hydrogeology & Engineering Geology, 2007, 341): 6265. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2007.01.013

    [5]

    LOW B K. Practical probabilistic slope stability analysis[J]. Soil and Rock America,2003,2:2777 − 2784.

    [6]

    李春光,朱宇飞,刘丰,等. 基于下限原理有限元的强度折减法[J]. 岩土力学,2012,33(6):1816 − 1821. [LI Chunguang,ZHU Yufei,LIU Feng,et al. Evaluation of strength reduction factor by lower bound limit analysis using finite element method[J]. Rock and Soil Mechanics,2012,33(6):1816 − 1821. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-7598.2012.06.033

    LI Chunguang, ZHU Yufei, LIU Feng, et al. Evaluation of strength reduction factor by lower bound limit analysis using finite element method[J]. Rock and Soil Mechanics, 2012, 336): 18161821. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2012.06.033

    [7]

    袁帅,冯德旺,张森豪,等. 考虑水力参数空间变异性的盾构隧道开挖面稳定性分析[J]. 岩土力学,2022,43(11):3153 − 3162. [YUAN Shuai,FENG Dewang,ZHANG Senhao,et al. Stability analysis of shield tunnel excavation face considering spatial variability of hydraulic parameters[J]. Rock and Soil Mechanics,2022,43(11):3153 − 3162. (in Chinese with English abstract)]

    YUAN Shuai, FENG Dewang, ZHANG Senhao, et al. Stability analysis of shield tunnel excavation face considering spatial variability of hydraulic parameters[J]. Rock and Soil Mechanics, 2022, 4311): 31533162. (in Chinese with English abstract)

    [8]

    袁帅,冯德旺. 考虑渗透系数各向异性的盾构隧道开挖面稳定性数值极限分析[J]. 同济大学学报(自然科学版),2020,48(12):1717 − 1725. [YUAN Shuai,FENG Dewang. Computational limit analysis of shield tunnel face with a consideration of permeability anisotropy[J]. Journal of Tongji University (Natural Science),2020,48(12):1717 − 1725. (in Chinese with English abstract)]

    YUAN Shuai, FENG Dewang. Computational limit analysis of shield tunnel face with a consideration of permeability anisotropy[J]. Journal of Tongji University (Natural Science), 2020, 4812): 17171725. (in Chinese with English abstract)

    [9]

    张智超,陈育民. 微型桩-加筋土挡墙的模型试验和数值模拟分析[J]. 岩石力学与工程学报,2017,36(4):987 − 996. [ZHANG Zhichao,CHEN Yumin. Model test and numerical analysis of micropile-MSE wall[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(4):987 − 996. (in Chinese with English abstract)]

    ZHANG Zhichao, CHEN Yumin. Model test and numerical analysis of micropile-MSE wall[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 364): 987996. (in Chinese with English abstract)

    [10]

    王祥. 微型桩在高速铁路滑坡治理中的设计和应用[J]. 铁道工程学报,2021,38(2):19 − 22. [WANG Xiang. Design and application of micropiles on treatment for landslide of high-speed railway[J]. Journal of Railway Engineering Society,2021,38(2):19 − 22. (in Chinese with English abstract)] doi: 10.3969/j.issn.1006-2106.2021.02.004

    WANG Xiang. Design and application of micropiles on treatment for landslide of high-speed railway[J]. Journal of Railway Engineering Society, 2021, 382): 1922. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-2106.2021.02.004

    [11]

    高建章,方迎潮,王学军,等. 山区天然气管道—滑坡体系下花管微型桩与螺纹微型桩支护性能对比试验[J]. 中国地质灾害与防治学报,2023,34(2):120 − 131. [GAO Jianzhang,FANG Yingchao,WANG Xuejun,et al. Physical model tests on supporting performance of micro-pile and micro-pile with thread in natural gas pipe-landslide system in mountainous area[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):120 − 131. (in Chinese with English abstract)]

    GAO Jianzhang, FANG Yingchao, WANG Xuejun, et al. Physical model tests on supporting performance of micro-pile and micro-pile with thread in natural gas pipe-landslide system in mountainous area[J]. The Chinese Journal of Geological Hazard and Control, 2023, 342): 120131. (in Chinese with English abstract)

    [12]

    李乾坤,石胜伟,韩新强,等. 某滑坡治理工程微型组合抗滑桩应用效果分析[J]. 中国地质灾害与防治学报,2013,24(3):62 − 67. [LI Qiankun,SHI Shengwei,HAN Xinqiang,et al. Effects of the micro-piles to stabilize a slope[J]. The Chinese Journal of Geological Hazard and Control,2013,24(3):62 − 67. (in Chinese with English abstract)]

    LI Qiankun, SHI Shengwei, HAN Xinqiang, et al. Effects of the micro-piles to stabilize a slope[J]. The Chinese Journal of Geological Hazard and Control, 2013, 243): 6267. (in Chinese with English abstract)

    [13]

    王树丰,张遵遵,赵欣. 桩心配筋微型桩抗滑特性试验研究[J]. 水文地质工程地质,2012,39(3):49 − 53. [WANG Shufeng,ZHANG Zunzun,ZHAO Xin. Model experimental research on anti-sliding characteristics of micropiles with center reinforcement arrangement[J]. Hydrogeology & Engineering Geology,2012,39(3):49 − 53. (in Chinese with English abstract)]

    WANG Shufeng, ZHANG Zunzun, ZHAO Xin. Model experimental research on anti-sliding characteristics of micropiles with center reinforcement arrangement[J]. Hydrogeology & Engineering Geology, 2012, 393): 4953. (in Chinese with English abstract)

    [14]

    胡时友,蔡强,李超杰. 三排微型桩加固碎石土滑坡物理模型试验研究[J]. 水文地质工程地质,2018,45(3):56 − 62. [HU Shiyou,CAI Qiang,LI Chaojie. A study of the physical model test of debris landslide reinforcement with three row micro-piles[J]. Hydrogeology & Engineering Geology,2018,45(3):56 − 62. (in Chinese with English abstract)]

    HU Shiyou, CAI Qiang, LI Chaojie. A study of the physical model test of debris landslide reinforcement with three row micro-piles[J]. Hydrogeology & Engineering Geology, 2018, 453): 5662. (in Chinese with English abstract)

    [15]

    HASSEN G,GUEGUIN M,DE BUHAN P. A homogenization approach for assessing the yield strength properties of stone column reinforced soils[J]. European Journal of Mechanics - A/Solids,2013,37:266 − 280. doi: 10.1016/j.euromechsol.2012.07.003

    [16]

    GUEGUIN M,HASSEN G,DE BUHAN P. Stability analysis of homogenized stone column reinforced foundations using a numerical yield design approach[J]. Computers and Geotechnics,2015,64:10 − 19. doi: 10.1016/j.compgeo.2014.11.001

    [17]

    JELLALI B,BOUASSIDA M,DE BUHAN P. A homogenization method for estimating the bearing capacity of soils reinforced by columns[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2005,29(10):989 − 1004. doi: 10.1002/nag.441

    [18]

    MENG Qingxiang,WANG Huanling,XU Weiya,et al. A numerical homogenization study of the elastic property of a soil-rock mixture using random mesostructure generation[J]. Computers and Geotechnics,2018,98:48 − 57. doi: 10.1016/j.compgeo.2018.01.015

    [19]

    WU Chengqing,HAO Hong. Derivation of 3D masonry properties using numerical homogenization technique[J]. International Journal for Numerical Methods in Engineering,2006,66(11):1717 − 1737. doi: 10.1002/nme.1537

    [20]

    李刚,王刚,高幼龙,等. 固定式钻孔倾斜仪在滑坡示范监测中的应用[J]. 水文地质工程地质,2009,36(4):135 − 138. [LI Gang,WANG Gang,GAO Youlong,et al. Application of EL in-place inclinmoter to landslide monitoring[J]. Hydrogeology & Engineering Geology,2009,36(4):135 − 138. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-3665.2009.04.030

    LI Gang, WANG Gang, GAO Youlong, et al. Application of EL in-place inclinmoter to landslide monitoring[J]. Hydrogeology & Engineering Geology, 2009, 364): 135138. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2009.04.030

    [21]

    陈云生,刘光彬,张一铭,等. 阳鹿高速公路K52新滑坡变形特征与成因机理分析[J]. 中国地质灾害与防治学报,2022,33(1):83 − 91. [CHEN Yunsheng,LIU Guangbin,ZHANG Yiming,et al. Deformation characteristics and genetic mechanism of a new landslide at K52 of Luyang freeway[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):83 − 91. (in Chinese with English abstract)]

    CHEN Yunsheng, LIU Guangbin, ZHANG Yiming, et al. Deformation characteristics and genetic mechanism of a new landslide at K52 of Luyang freeway[J]. The Chinese Journal of Geological Hazard and Control, 2022, 331): 8391. (in Chinese with English abstract)

    [22]

    MAKRODIMOPOULOS A,MARTIN C M. Upper bound limit analysis using simplex strain elements and second-order cone programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2007,31(6):835 − 865. doi: 10.1002/nag.567

  • 加载中

(18)

(2)

计量
  • 文章访问数:  821
  • PDF下载数:  85
  • 施引文献:  0
出版历程
收稿日期:  2023-02-21
修回日期:  2023-09-07
录用日期:  2023-09-25
刊出日期:  2024-03-15

目录