兰州不同城镇功能区地下水氟赋存特征及影响因素

吕晓立, 郑跃军, 刘可, 李春燕, 赵伟, 韩占涛. 兰州不同城镇功能区地下水氟赋存特征及影响因素[J]. 水文地质工程地质, 2024, 51(2): 215-226. doi: 10.16030/j.cnki.issn.1000-3665.202211074
引用本文: 吕晓立, 郑跃军, 刘可, 李春燕, 赵伟, 韩占涛. 兰州不同城镇功能区地下水氟赋存特征及影响因素[J]. 水文地质工程地质, 2024, 51(2): 215-226. doi: 10.16030/j.cnki.issn.1000-3665.202211074
LYU Xiaoli, ZHENG Yuejun, LIU Ke, LI Chunyan, ZHAO Wei, HAN Zhantao. Characteristics and driving factors of fluoride in groundwater in different urban functional area of Lanzhou city[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 215-226. doi: 10.16030/j.cnki.issn.1000-3665.202211074
Citation: LYU Xiaoli, ZHENG Yuejun, LIU Ke, LI Chunyan, ZHAO Wei, HAN Zhantao. Characteristics and driving factors of fluoride in groundwater in different urban functional area of Lanzhou city[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 215-226. doi: 10.16030/j.cnki.issn.1000-3665.202211074

兰州不同城镇功能区地下水氟赋存特征及影响因素

  • 基金项目: 中国地质调查局地质调查项目(DD20230075);国家自然科学基金项目(41472226)
详细信息
    作者简介: 吕晓立(1978—),女,硕士,教授级高级工程师,主要从事水资源与水环境演化研究。E-mail:2767398591@qq.com
    通讯作者: 韩占涛(1977—),男,博士,研究员,主要从事水土污染机理与修复研究。E-mail:70522975@qq.com
  • 中图分类号: P641.3;X141

Characteristics and driving factors of fluoride in groundwater in different urban functional area of Lanzhou city

More Information
  • 高氟地下水对生态环境及人类健康存在潜在威胁。城镇化地区受地质背景与人类活动双重影响,地下水中氟的来源及其分布较为复杂,探讨地下水中氟的赋存特征对于保障地下水供水安全具有重要意义。以西北干旱区最大的工业城市兰州为例,采用数理统计、离子比、饱和指数分析等方法,研究了兰州不同城镇功能区高氟地下水的赋存环境特征及主要水文地球化学过程,阐明了人为活动对氟化物迁移富集的影响。结果表明:(1)研究区地下水中F的质量浓度介于0~4.8 mg/L之间,超出地下水质量Ⅲ类标准(1.0 mg/L)的高氟水共计13组,超标率为20.3%。(2)受人类活动强度与不同人为源输入影响,不同城镇功能区地下水中氟的赋存特征差异明显,其中西固工业区地下水中氟含量最高,高氟地下水样品占47.4%;城关老城区和断陷盆地新城区地下水中的氟含量相对较低,高氟地下水占比依次为7.1%和9.7%。(3)研究区高氟地下水以SO4•Cl—Na和Cl•SO4—Na 型水为主,表现出贫钙富钠弱碱性特点。(4)含氟矿物的溶解、方解石与白云石的沉淀/溶解、黏土矿物表面钙与钠之间的阳离子交换、强烈的蒸发浓缩作用和盐效应是导致研究区地下水中氟化物富集的主要水文地球化学过程。研究表明城镇化、工业化导致天然高氟水进一步劣变恶化,工业废水的泄漏是西固工业区地下水氟浓度升高的重要驱动力。结果可为高氟背景区人为干扰下的氟化物迁移富集研究提供借鉴。

  • 加载中
  • 图 1  研究区地下水采样点位置及氟浓度分布图

    Figure 1. 

    图 2  研究区水文地质剖面示意图

    Figure 2. 

    图 3  不同城市功能区地下水化学Piper三线图

    Figure 3. 

    图 4  地下水F 与水位埋深关系图

    Figure 4. 

    图 5  地下水中Ca2+、Na+、Mg2+${\mathrm{HCO}}_3^- $等离子的质量浓度比值关系

    Figure 5. 

    图 6  地下水主要离子来源识别

    Figure 6. 

    图 7  地下水中F质量浓度与萤石饱和指数(a),萤石饱和指数与方解石(b)、白云岩(c)、盐岩(d)和石膏(e)饱和指数的关系

    Figure 7. 

    图 8  地下水中F质量浓度与${\mathrm{SO}}_4^{2-} $ (a)、Cl (b)、TDS (c)、Ca2+(d)和Mg2+(e)浓度的关系

    Figure 8. 

    图 9  地下水中F与Ca2+活度关系

    Figure 9. 

    图 10  地下水样品CAI-1和CAI-2关系

    Figure 10. 

    图 11  地下水中F与pH(a)和${\mathrm{HCO}}_3^- $(b)的关系

    Figure 11. 

    图 12  水化学组成Gibbs图

    Figure 12. 

    图 13  地下水 ρ(F) 与 γ(F) / γ(Cl) 的关系

    Figure 13. 

    图 14  ρ(Cl)与ρ(${\mathrm{NO}}_3^- $)关系表征的废水排放和化肥使用对地下水的影响

    Figure 14. 

    表 1  地下水氟及其水化学特征一览表

    Table 1.  F concentration and hydrochemical characteristics in groundwater

    检测项目 F TDS 总硬度 pH ${\mathrm{HCO}}_3^- $ ${\mathrm{SO}}_4^{2-} $ Cl K+ Na+ Ca2+ Mg2+ COD
    西固工业区
    n=19)
    最小值 0.49 1130.0 485.0 7.3 213.0 59.5 124 3.1 148.0 90.3 63.1 1.1
    最大值 4.75 34030.0 7645.0 7.8 872.0 9676.0 13163 46.8 9546.0 721.0 1419.0 18.0
    平均值 1.35 10528.2 2642.5 7.5 440.4 3208.6 3412.8 17.9 2803.5 366.6 448.0 3.3
    中位值 0.96 6875.0 2250.0 7.5 402.5 2368.0 2058 16.1 1362.0 374.8 334.3 2.2
    变异系数/% 77 97 74 2 45 86 111 60 108 52 82 114
    城关老城区
    n=14)
    最小值 ND 474.0 231.0 7.1 186.0 125.0 39.6 5.0 64.2 59.9 19.8 0.8
    最大值 1.05 9785.0 3908.5 8.3 852.0 2517.5 3507.0 46.8 2065.0 639.0 562.0 21.0
    平均值 0.51 2517.1 1091.5 7.6 500.3 812.8 578.2 14.2 474.7 239.4 148.5 2.9
    中位值 0.42 1594.5 877.5 7.6 541.0 477.3 237.5 9.5 261.0 228.0 118.3 1.4
    变异系数/% 63 98 84 5 36 88 156 84 113 65 97 182
    新城区
    n=31)
    最小值 ND 260.0 186.0 7.3 125.0 30.1 24.3 2.2 20.3 41.5 17.5 ND
    最大值 3.94 27250.0 7281.0 8.2 643.0 8347.0 11154.0 40.4 6920.0 957.5 1187.5 3.7
    平均值 0.55 4215.1 1289.1 7.7 303.3 1195.9 1236.6 9.4 974.2 244.1 165.6 1.2
    中位值 0.33 1501.0 818.0 7.6 250.0 323.0 329.0 6.3 163.0 184.5 70.2 0.9
    变异系数/% 134 153 123 4 44 155 190 97 172 91 157 83
    合计
    (n=64)
    最小值 ND 260.0 186.0 7.1 125.0 30.1 24.3 2.2 20.3 41.5 17.5 ND
    最大值 4.75 34030.0 7645.0 8.3 872.0 9676.0 13163 46.8 9546.0 957.5 1419.0 21.0
    平均值 0.57 2060.0 956.3 7.6 338.0 755.5 446.3 9.3 459.3 233.5 132.0 1.4
    中位值 0.78 5717.9 1647.7 7.6 382.5 1709.6 1738.6 12.9 1408.0 279.3 245.6 2.2
    变异系数/% 110 137 103 3 47 129 165 83 157 74 125 151
      注:除变异系数和pH无单位外,其他指标均为质量浓度(ρ),单位为mg/L;ND表示低于检出限,计算时ND作0处理。
    下载: 导出CSV
  • [1]

    孔晓乐,王仕琴,赵焕,等. 华北低平原区地下水中氟分布特征及形成原因:以南皮县为例[J]. 环境科学,2015,36(11):4051 − 4059. [KONG Xiaole,WANG Shiqin,ZHAO Huan,et al. Distribution characteristics and source of fluoride in groundwater inl ower plain area of North China Plain:A case study in Nanpi County[J]. Environmental Science,2015,36(11):4051 − 4059. (in Chinese with English abstract)]

    KONG Xiaole, WANG Shiqin, ZHAO Huan, et al. Distribution characteristics and source of fluoride in groundwater inl ower plain area of North China Plain: A case study in Nanpi County[J]. Environmental Science, 2015, 3611): 40514059. (in Chinese with English abstract)

    [2]

    PENG Xu,BIAN Jianmin,LI Yihan,et al. Characteristics of fluoride migration and enrichment in groundwater under the influence of natural background and anthropogenic activities[J]. Environmental Pollution,2022,314,120208.

    [3]

    LI Danni,GAO Xubo,WANG Yanxin,et al. Diverse mechanisms drive fluoride enrichment in groundwater in two neighboring sites in northern China[J]. Environmental Pollution,2018,237:430 − 441.

    [4]

    张玉贤, 甘义群, 周肖瑜, 等. 微生物参与下高氟区沉积物中氟的迁移行为[J]. 地质科技通报,2022,41(3):228 − 235. [ZHANG Yuxian, GAN Yiqun, ZHOU Xiaoyu, et al. Mobilization of fluoride in sediments at high fluoride area enhanced by microorganisms[J]. Bulletin of Geological Science and Technology,2022,41(3):228 − 235. (in Chinese with English abstract)]

    ZHANG Yuxian, GAN Yiqun, ZHOU Xiaoyu, et al. Mobilization of fluoride in sediments at high fluoride area enhanced by microorganisms[J]. Bulletin of Geological Science and Technology, 2022, 413): 228235. (in Chinese with English abstract)

    [5]

    WANG Zhen,GUO Huaming,XING Shiping,et al. Hydrogeochemical and geothermal controls on the formation of high fluoride groundwater[J]. Journal of Hydrology 2021,598:126372.

    [6]

    COYTE R M,SINGH A,FURST K E,et al. Co-occurrence of geogenic and anthropogenic contaminants in groundwater from Rajasthan,India[J]. Science of the Total Environment,2019,688:1216 − 1227. doi: 10.1016/j.scitotenv.2019.06.334

    [7]

    ALI S,THAKUR S K,SARKAR A,et al. Worldwide contamination of water by fluoride[J]. Environmental Chemistry Letters,2016,14(3):291 − 315. doi: 10.1007/s10311-016-0563-5

    [8]

    BRAHMAN K D,KAZI T G,AFRIDI H I,et al. Evaluation of high levels of fluoride,arsenic species and other physicochemical parameters in underground water of two sub districts of Tharparkar,Pakistan:a multivariate study[J]. Water Research,2013,47(3):1005 − 1020. doi: 10.1016/j.watres.2012.10.042

    [9]

    ALARCÓN-HERRERA M T,MARTIN-ALARCON D A,GUTIÉRREZ M,et al. Co-occurrence,possible origin,and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico:geographical data visualization[J]. Science of the Total Environment,2020,698:134168. doi: 10.1016/j.scitotenv.2019.134168

    [10]

    LI Junxia,WANG Yuting,ZHU Chenjing,et al. Hydrogeochemical processes controlling the mobilization and enrichment of fluoride in groundwater of the North China Plain[J]. Science of the Total Environment,2020,730:138877.

    [11]

    梁秀娟,肖然,肖长来,等. 吉林西部洋沙泡水库高氟水的形成[J]. 吉林大学学报(地球科学版),2012,42(3):798 − 804. [LIANG Xiujuan,XIAO Ran,XIAO Changlai,et al. Formation of high-fluorine water of Yangshapao reservoir in western Jilin Province[J]. Journal of Jilin University (Earth Science Edition),2012,42(3):798 − 804. (in Chinese with English abstract)]

    LIANG Xiujuan, XIAO Ran, XIAO Changlai, et al. Formation of high-fluorine water of Yangshapao reservoir in western Jilin Province[J]. Journal of Jilin University (Earth Science Edition), 2012, 423): 798804. (in Chinese with English abstract)

    [12]

    BERGER T,MATHURIN F A,DRAKE H,et al. Fluoride abundance and controls in fresh groundwater in quaternary deposits and bedrock fractures in an area with fluorine-rich granitoid rocks[J]. Science of the Total Environment,2016,569/570:948 − 960.

    [13]

    孙丹阳, 李和学, 刘强, 等. 地下水停采后地面沉降区地下水氟的演化规律——以沧州市为例[J]. 地质科技通报,2023,42(4):218 − 227. [SUN Danyang, LI Hexue, LIU Qiang, et al. Evolution of groundwater fluoride in land subsidence areas after groundwater cessation: A case study at Cangzhou[J]. Bulletin of Geological Science and Technology,2023,42(4):218 − 227. (in Chinese with English abstract)]

    SUN Danyang, LI Hexue, LIU Qiang, et al. Evolution of groundwater fluoride in land subsidence areas after groundwater cessation: A case study at Cangzhou[J]. Bulletin of Geological Science and Technology, 2023, 424): 218227. (in Chinese with English abstract)

    [14]

    吕晓立,刘景涛,周冰,等. 塔城盆地地下水氟分布特征及富集机理[J]. 地学前缘,2021,28(2):426 − 436. [LÜ Xiaoli,LIU Jingtao,ZHOU Bing,et al. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Basin[J]. Earth Science Frontiers,2021,28(2):426 − 436. (in Chinese with English abstract)]

    LÜ Xiaoli, LIU Jingtao, ZHOU Bing, et al. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Basin[J]. Earth Science Frontiers, 2021, 282): 426436. (in Chinese with English abstract)

    [15]

    MASOOD N,HUDSON-EDWARDS K A,FAROOQI A. Groundwater nitrate and fluoride profiles,sources and health risk assessment in the coal mining areas of Salt Range,Punjab Pakistan[J]. Environmental Geochemistry and Health,2022,44(3):715 − 728. doi: 10.1007/s10653-021-00987-y

    [16]

    吕晓立,邵景力,刘景涛,等. 兰州市区地下水矿化度分布特征及成因分析[J]. 干旱区资源与环境,2013,27(7):23 − 27. [LÜ Xiaoli,SHAO Jingli,LIU Jingtao,et al. Distribution characteristics and origin of total dissolved solids in groundwater under Lanzhou City[J]. Journal of Arid Land Resources and Environment,2013,27(7):23 − 27. (in Chinese with English abstract)]

    LÜ Xiaoli, SHAO Jingli, LIU Jingtao, et al. Distribution characteristics and origin of total dissolved solids in groundwater under Lanzhou City[J]. Journal of Arid Land Resources and Environment, 2013, 277): 2327. (in Chinese with English abstract)

    [17]

    兰州市统计局. 兰州统计年鉴-2021[M]. 北京:中国统计出版社,2021. [Lanzhou Bureau of Statistics. Lanzhou Statistical Yearbook [M]. Beijing:China Statistics Press,2021. (in Chinese)]

    Lanzhou Bureau of Statistics. Lanzhou Statistical Yearbook [M]. Beijing: China Statistics Press, 2021. (in Chinese)

    [18]

    国家质量监督检验检疫总局,中国国家标准化管理委员会. 地下水质量标准:GB/T 14848—2017[S]. 北京:中国标准出版社,2017. [General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China. Standard for groundwater quality:GB/T 14848—2017[S]. Beijing:Standards Press of China,2017. (in Chinese)]

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Standard for groundwater quality: GB/T 14848—2017[S]. Beijing: Standards Press of China, 2017. (in Chinese)

    [19]

    国家技术监督局. 饮用天然矿泉水检验方法:GB/T 8538—1995[S]. 北京:中国标准出版社,2004. [State Bureau of Quality and Technical Supervision of the People’s Republic of China. Methods for examination of drinking natural mineral water:GB/T 8538—1995[S]. Beijing:Standards Press of China,2004. (in Chinese)]

    State Bureau of Quality and Technical Supervision of the People’s Republic of China. Methods for examination of drinking natural mineral water: GB/T 8538—1995[S]. Beijing: Standards Press of China, 2004. (in Chinese)

    [20]

    杨睿,韩志杰,韩志伟,等. 岩溶地下河系统对旅游活动输入的水化学指纹记录[J]. 中国岩溶,2023,42(2):193 − 206. [YANG Rui,HAN Zhijie,HAN Zhiwei,et al. Hydrochemical fingerprinting to impact of tourism activities on karst underground river system[J]. Carsologica Sinica,2023,42(2):193 − 206. (in Chinese with English abstract)]

    YANG Rui, HAN Zhijie, HAN Zhiwei, et al. Hydrochemical fingerprinting to impact of tourism activities on karst underground river system[J]. Carsologica Sinica, 2023, 42(2): 193 − 206. (in Chinese with English abstract)

    [21]

    吕晓立,刘景涛,朱亮,等. 甘肃省秦王川盆地地下水氟富集特征及影响因素[J]. 干旱区资源与环境,2020,34(3):188 − 195. [LÜ Xiaoli,LIU Jingtao,ZHU Liang,et al. Evolution feature and gensis of fluoride groundwater in shallow aquifer from Qin Wangchuan basin[J]. Journal of Arid Land Resources and Environment,2020,34(3):188 − 195. (in Chinese with English abstract)]

    LÜ Xiaoli, LIU Jingtao, ZHU Liang, et al. Evolution feature and gensis of fluoride groundwater in shallow aquifer from Qin Wangchuan basin[J]. Journal of Arid Land Resources and Environment, 2020, 343): 188195. (in Chinese with English abstract)

    [22]

    苏绘梦,张发旺,侯甦予,等. 基于水化学与氢氧稳定同位素的平禹矿区沉降区地下水循环变化解析[J]. 水文地质工程地质,2023,50(5):53 − 67. [SU Huimeng, ZHANG Fawang, HOU Suyu, et al. An analysis of groundwater circulation in the Pingyu mining area based on hydrochemical and isotopic characteristics of groundwater[J]. Hydrogeology & Engineering Geology,2023,50(5):53 − 67. (in Chinese withEnglish abstract)]

    SU Huimeng, ZHANG Fawang, HOU Suyu, et al. An analysis of groundwater circulation in the Pingyu mining area based on hydrochemical and isotopic characteristics of groundwater[J]. Hydrogeology & Engineering Geology, 2023, 505): 5367. (in Chinese withEnglish abstract)

    [23]

    鲁重生,刘文波,李志明,等. 京津冀水源涵养区水化学环境分析—以承德市兴隆县为例[J]. 水文地质工程地质,2020,47(6):132 − 141. [LU Chongsheng,LIU Wenbo,LI Zhiming,et al. Hydrochemical environment in a typical conservation area in the Beijing-Tianjin-Hebei region:A case study in Xinglong County of Chengde[J]. Hydrogeology & Engineering Geology,2020,47(6):132 − 141. (in Chinese with English abstract)]

    LU Chongsheng, LIU Wenbo, LI Zhiming, et al. Hydrochemical environment in a typical conservation area in the Beijing-Tianjin-Hebei region: A case study in Xinglong County of Chengde[J]. Hydrogeology & Engineering Geology, 2020, 476): 132141. (in Chinese with English abstract)

    [24]

    张春潮,侯新伟,李向全,等. 三姑泉域岩溶地下水水化学特征及形成演化机制[J]. 水文地质工程地质,2021,48(3):62 − 71. [ZHANG Chunchao,HOU Xinwei,LI Xiangquan,et al. Hydrogeochemical characteristics and evolution mechanism of karst groundwater in the catchment area of the Sangu Spring[J]. Hydrogeology & Engineering Geology,2021,48(3):62 − 71. (in Chinese with English abstract)]

    ZHANG Chunchao, HOU Xinwei, LI Xiangquan, et al. Hydrogeochemical characteristics and evolution mechanism of karst groundwater in the catchment area of the Sangu Spring[J]. Hydrogeology & Engineering Geology, 2021, 483): 6271. (in Chinese with English abstract)

    [25]

    DONG Shaogang,LIU Baiwei,CHEN Yue,et al. Hydro-geochemical control of high arsenic and fluoride groundwater in arid and semi-arid areas:A case study of Tumochuan Plain,China[J]. Chemosphere,2022,301:134657. doi: 10.1016/j.chemosphere.2022.134657

    [26]

    GAO Xubo,WANG Yanxin,LI Yilian,et al. Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin,northern China[J]. Environmental Geology,2007,53(4):795 − 803. doi: 10.1007/s00254-007-0692-z

    [27]

    GUO Huaming,ZHANG Yang,XING Lina,et al. Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao Basin,Inner Mongolia[J]. Applied Geochemistry,2012,27(11):2187 − 2196. doi: 10.1016/j.apgeochem.2012.01.016

    [28]

    张志雄,王仕琴,张依章,等. 雄安新区唐河污水库残留污染物对地下水水化学动态的作用机制[J]. 环境科学,2021,42(11):5312 − 5321. [ZHANG Zhixiong,WANG Shiqin,ZHANG Yizhang,et al. Dynamic mechanisms of groundwater quality by residual contaminants of the Tanghe wastewater reservoir in Xiongan New Area[J]. Environmental Science,2021,42(11):5312 − 5321. (in Chinese with English abstract)]

    ZHANG Zhixiong, WANG Shiqin, ZHANG Yizhang, et al. Dynamic mechanisms of groundwater quality by residual contaminants of the Tanghe wastewater reservoir in Xiongan New Area[J]. Environmental Science, 2021, 4211): 53125321. (in Chinese with English abstract)

    [29]

    孟甲,郑慧铭,宋帅良,等. 鲁西南黄河下游地下水氟富集规律及其影响因素[J/OL]. 地质通报,(2023-10-11)[2024-03-06]. [MENG Jia,ZHENG Huiming,SONG Shuailiang,et al. Fluorine enrichment pattern of groundwater in the lower reaches of the Yellow River in southwestern Shandong Province and its influencing factors[J/OL].Geological Bulletin of China, (2023-10-11)[2024-03-06]. http://kns.cnki.net/kcms/detail/11.4648.P.20231010.1103.004.html. (in Chinese with English Abstract)]

    MENG Jia, ZHENG Huiming, SONG Shuailiang, et al. Fluorine enrichment pattern of groundwater in the lower reaches of the Yellow River in southwestern Shandong Province and its influencing factors[J/OL].Geological Bulletin of China, (2023-10-11)[2024-03-06]. http://kns.cnki.net/kcms/detail/11.4648.P.20231010.1103.004.html. (in Chinese with English Abstract)

    [30]

    LI Zeyan,CAO Wengeng,REN Yu,et al. Enrichment mechanisms for the co-occurrence of arsenic-fluoride-iodine in the groundwater in different sedimentary environments of the Hetao Basin,China[J]. Science of the Total Environment,2022,839:156184. doi: 10.1016/j.scitotenv.2022.156184

    [31]

    PI Kunfu,WANG Yanxin,XIE Xianjun,et al. Hydrogeochemistry of co-occurring geogenic arsenic,fluoride and iodine in groundwater at Datong basin,Northern China[J]. Journal of Hazardous Materials,2015,300:652 − 661. doi: 10.1016/j.jhazmat.2015.07.080

    [32]

    吕晓立,刘景涛,韩占涛,等. 城镇化进程中珠江三角洲高锰地下水赋存特征及成因[J]. 环境科学,2022,43(10):4449 − 4458. [LÜ Xiaoli,LIU Jingtao,HAN Zhantao,et al. Characteristics and causes of high-manganese groundwater in Pearl River Delta during urbanization[J]. Environmental Science,2022,43(10):4449 − 4458. (in Chinese with English abstract)]

    LÜ Xiaoli, LIU Jingtao, HAN Zhantao, et al. Characteristics and causes of high-manganese groundwater in Pearl River Delta during urbanization[J]. Environmental Science, 2022, 4310): 44494458. (in Chinese with English abstract)

    [33]

    秦文婧,宋献方,谷洪彪. 基于层次聚类法的柳江煤矿对地下水水质影响分析[J]. 水文地质工程地质,2018,45(3):30 − 39. [QIN Wenjing,SONG Xianfang,GU Hongbiao. Impacts of the Liujiang coal mine on groundwater quality based on hierarchical cluster analysis[J]. Hydrogeology & Engineering Geology,2018,45(3):30 − 39. (in Chinese with English abstract)]

    QIN Wenjing, SONG Xianfang, GU Hongbiao. Impacts of the Liujiang coal mine on groundwater quality based on hierarchical cluster analysis[J]. Hydrogeology & Engineering Geology, 2018, 453): 3039. (in Chinese with English abstract)

    [34]

    何锦,郑一迪,邓启军,等. 我国北方新生代玄武岩地下水化学特征及其成因——以河北省张北县为例[J]. 吉林大学学报(地球科学版),2022,52(1):181 − 193. [HE Jin,ZHENG Yidi,DENG Qijun,et al. Groundwater origin and hydrochemical characteristics in Cenozoic basaltic aquifer in North China:A case study of Zhangbei County,Hebei Province[J]. Journal of Jilin University (Earth Science Edition),2022,52(1):181 − 193. (in Chinese with English abstract)]

    HE Jin, ZHENG Yidi, DENG Qijun, et al. Groundwater origin and hydrochemical characteristics in Cenozoic basaltic aquifer in North China: A case study of Zhangbei County, Hebei Province[J]. Journal of Jilin University (Earth Science Edition), 2022, 521): 181193. (in Chinese with English abstract)

    [35]

    XIAO Yong,HAO Qichen,ZHANG Yunhui,et al. Investigating sources,driving forces and potential health risks of nitrate and fluoride in groundwater of a typical alluvial fan plain[J]. Science of the Total Environment,2022,802:149909. doi: 10.1016/j.scitotenv.2021.149909

    [36]

    OGRINC N,TAMŠE S,ZAVADLAV S,et al. Evaluation of geochemical processes and nitrate pollution sources at the Ljubljansko Polje aquifer (Slovenia):a stable isotope perspective[J]. Science of the Total Environment,2019,646:1588 − 1600. doi: 10.1016/j.scitotenv.2018.07.245

  • 加载中

(14)

(1)

计量
  • 文章访问数:  754
  • PDF下载数:  44
  • 施引文献:  0
出版历程
收稿日期:  2022-11-21
修回日期:  2023-12-15
刊出日期:  2024-03-15

目录