Experimental study on seismic performance of composite reinforced structure with shock absorption and energy dissipation of potentially collapsedrock mass
-
摘要:
地震区工程建设中崩塌危岩体的加固方式目前主要是锚固和支挡两类结构形式。加固结构与危岩体的连结都采用刚性连结,结构与危岩体之间几乎无变形能力,因此抗震性能较差。在地震作用下,特别是强震作用下极易破坏失效,造成崩塌灾害,在我国西南地震区工程中大量存在此类破坏现象。为解决目前加固结构存在的问题,设计了一种允许地震作用下危岩体能够有限度的变位、可以缓冲危岩体的地震冲击力、具有减震消能功能的崩塌危岩体复合加固结构,结构由锚杆(索)、减震锚头(一级消能)、连梁、支撑桩以及设于连梁与支撑桩之间的作为二级减震消能装置所组成。为验证复合加固结构的功效,除理论分析外,利用振动台进行与同等条件普通锚杆加固结构的物理模型对比试验。试验选用具有地区代表性的不同波形、幅值与频率的地震波作为输入波形。理论分析与试验结果表明:复合加固结构相较于无防护措施的同样崩塌体理论分析,其位移增长速度显著降低,累积位移幅度显著减小;相较于传统锚杆加固结构,所承受的拉力和压力显著减小;峰值加速度放大系数明显降低。证明复合加固结构利用自身的弹塑性变形以及阻尼力,有效抵御由于地震作用在危岩体上产生的动应力,有效转移了危岩体的冲击动能,减震消能作用明显,避免加固结构损坏,从而阻止崩塌灾害的发生,证明复合加固结构能够分层次地削弥小震、中震、大震时产生的地震能峰值。减震消能复合结构为地震区崩塌危岩体的加固提供了一种新的加固方案,对于提升地震区工程中崩塌危岩体的加固技术具有较大的现实意义。
Abstract:At present, there are two types of structures for strengthening dangerous rock mass in earthquake area construction: anchorage and retaining. The connection between the two types of reinforced structures and the dangerous rock mass is rigid with very limited deformation ability between the structure and unstable rock mass, which leads to the poor seismic performance of the structure. Under the seismic load especially when the magnitude of earthquake is strong, it is easy to fail and cause collapse disaster. This kind of damage phenomenon exists in a large number of seismic projects in southwest China. To solve the existing problems of the reinforced structure, a composite reinforced structure was designed in this study, and it allows the dangerous rock mass to be dislocated to a limited extent under the action of earthquakes, can buffer the seismic impact force of the dangerous rock mass, and has the function of shock absorption and energy dissipation. The structure is composed of anchor rod (cable), shock absorber anchor head (primary energy dissipation), connecting beam, supporting pile, and a secondary shock absorber and energy dissipation device between the connecting beam and supporting pile. To verify the effectiveness of the composite reinforced structure, besides theoretical analysis, a physical model comparison test on the common anchor reinforced structure under the same conditions is carried out by using a shaking table. Different seismic waves, amplitudes and frequencies, which are representative of the region, are selected as input seismic loadings. Theoretical analysis and experimental results show that the displacement growth rate and cumulative displacement amplitude of the composite reinforced structure decrease significantly comparing to conditon for the same collapse body without protective measures. Compared with the traditional bolt-reinforced structure, the tensile force and pressure are significantly reduced. The amplification coefficient of peak acceleration PGA also decreased significantly. It is proved that the composite reinforced structure can effectively resist the dynamic stress caused by the earthquake on the dangerous rock mass by using its own elastoplastic deformation and damping force, effectively transfer the impact kinetic energy of the dangerous rock mass, and significantly reduce the shock and energy dissipation, which greatly avoids the damage of the reinforced structure and prevents the occurrence of collapse disasters. It is proved that the composite reinforced structure can slice off the peak seismic energy generated by small, medium and large earthquakes in layers, and has a good effect on damping and energy dissipation. This technology provides a new reinforcement scheme for the collapse dangerous rock mass, and has great practical significance for improving the consolidation technology of potentially collapsed rock mass in seismic area.
-
-
表 1 滑面目标参数和试验参数
Table 1. The target parameters and test parameters for sliding surface
类型 黏聚力/kPa 内摩擦角/(°) 目标参数 11 16.0 试验参数 10.8 15.6 表 2 滑面相似材料的黏聚力表
Table 2. Cohesion of the similar materials for sliding surface
材料比例序号 石英砂∶滑石粉∶黄土∶甘油∶水 黏聚力/kPa A 8∶7∶1∶2∶2 8.80 B 8∶8∶1∶2∶1 38.40 C 9∶6∶1∶2∶2 44.35 D 10∶4∶2∶3∶1 8.49 E 6∶6∶3∶3∶2 10.80 表 3 锚杆目标参数和试验参数
Table 3. Target parameters and test parameters of bolt
类型 极限抗拉强度/N 目标参数 1508.3 试验参数 1568.9 表 4 消能构件位移参数
Table 4. Displacement parameters of energy dissipating components
试验参数/mm 目标参数/mm 一级消能器 59.17 58.5 二级消能器 31.30 30.4 表 5 消能构件荷载参数
Table 5. Load parameters of energy dissipating member
试验参数/kN 目标参数/kN 一级消能器 2.11 2 二级消能器 4.38 4 表 6 振动台模型试验加载制度
Table 6. Loading system of shaking table test
序号 加载波形 加载方向 振幅/g 持时/s 1 白噪声 x — 30 2 El Centro波 x 0.1 50 3 卧龙波 x 0.1 55 4 人工波 x 0.1 50 $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ 17 白噪声 x — 30 18 El Centro波 x 0.5 50 19 卧龙波 x 0.5 55 20 人工波 x 0.5 50 $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ 25 白噪声 x — 30 26 El Centro波 x 0.7 50 27 卧龙波 x 0.7 55 28 人工波 x 0.7 50 -
[1] 中华人民共和国自然资源部. 2021年全国地质灾害灾情及2022年地质灾害趋势预测[R/OL]. (2022-01-13) [2023-06-06]. [Ministry of Natural Resources of the People’s Republic of China. Disaster situation of geological disasters in 2021 and Trend forecast of geological disasters in 2022 [R/OL]. (2022-01-13)[2023-06-06]. http://www.mnr.gov.cn/dt/ywbb/202201/t20220113_2717375.html.(in Chinese)]
Ministry of Natural Resources of the People’s Republic of China. Disaster situation of geological disasters in 2021 and Trend forecast of geological disasters in 2022 [R/OL]. (2022-01-13)[2023-06-06]. http://www.mnr.gov.cn/dt/ywbb/202201/t20220113_2717375.html.(in Chinese)
[2] 杨志华,张永双,郭长宝,等. 青藏高原东缘地质灾害影响因子敏感性分析[J]. 工程地质学报,2018,26(3):673 − 683. [YANG Zhihua,ZHANG Yongshuang,GUO Changbao,et al. Sensitivity analysis on causative factors of geohazards in eastern margin of Tibetan Plateau[J]. Journal of Engineering Geology,2018,26(3):673 − 683. (in Chinese with English abstract)] doi: 10.13544/j.cnki.jeg.2017-165
YANG Zhihua, ZHANG Yongshuang, GUO Changbao, et al. Sensitivity analysis on causative factors of geohazards in eastern margin of Tibetan Plateau[J]. Journal of Engineering Geology, 2018, 26(3): 673 − 683. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2017-165
[3] 刘志强. 崩塌危岩体形成机制分析及防治措施研究[J]. 江西建材,2023(2):144 − 145. [LIU Zhiqiang. Analysis on the formation mechanism of collapse dangerous rock mass and study on its prevention measures[J]. Jiangxi Building Materials,2023(2):144 − 145. (in Chinese with English abstract)] doi: 10.3969/j.issn.1006-2890.2023.02.057
LIU Zhiqiang. Analysis on the formation mechanism of collapse dangerous rock mass and study on its prevention measures[J]. Jiangxi Building Materials, 2023(2): 144 − 145. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-2890.2023.02.057
[4] 邱然,向传华. 大别山北麓信阳片区某崩塌(危岩体)地质灾害形成机制分析及防治建议[J]. 中国金属通报,2020(10):243 − 244. [QIU Ran,XIANG Chuanhua. Formation mechanism analysis and prevention suggestions of a collapse (dangerous rock mass) geological disaster in Xinyang area at the northern foot of Dabie Mountain[J]. China Metal Bulletin,2020(10):243 − 244. (in Chinese)] doi: 10.3969/j.issn.1672-1667.2020.10.121
QIU Ran, XIANG Chuanhua. Formation mechanism analysis and prevention suggestions of a collapse (dangerous rock mass) geological disaster in Xinyang area at the northern foot of Dabie Mountain[J]. China Metal Bulletin, 2020(10): 243 − 244. (in Chinese) doi: 10.3969/j.issn.1672-1667.2020.10.121
[5] 刘永平,佴磊,李广杰. 某高陡边坡崩塌落石运动特征分析及其防治[J]. 水文地质工程地质,2005,32(1):30 − 33. [LIU Yongping,NAI Lei,LI Guangjie. Falling rock movement characteristic and reinforcement measures of a high steep slope[J]. Hydrogeology & Engineering Geology,2005,32(1):30 − 33. (in Chinese with English abstract)]
LIU Yongping, NAI Lei, LI Guangjie. Falling rock movement characteristic and reinforcement measures of a high steep slope[J]. Hydrogeology & Engineering Geology, 2005, 32(1): 30 − 33. (in Chinese with English abstract)
[6] 黄润秋,刘卫华. 基于正交设计的滚石运动特征现场试验研究[J]. 岩石力学与工程学报,2009,28(5):882 − 891. [HUANG Runqiu,LIU Weihua. In-situ test study of characteristics of rolling rock blocks based on orthogonal design[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(5):882 − 891. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-6915.2009.05.003
HUANG Runqiu, LIU Weihua. In-situ test study of characteristics of rolling rock blocks based on orthogonal design[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 882 − 891. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2009.05.003
[7] 刘传正,黄学斌,黎力. 乌江鸡冠岭山崩堵江地质灾害及其防治对策[J]. 水文地质工程地质,1995,22(4):6 − 11. [LIU Chuanzheng,HUANG Xuebin,LI Li. Geological disasters of Jiguanling landslide blocking the river in Wujiang River and its prevention and control countermeasures[J]. Hydrogeology & Engineering Geology,1995,22(4):6 − 11. (in Chinese)] doi: 10.16030/j.cnki.issn.1000-3665.1995.04.003
LIU Chuanzheng, HUANG Xuebin, LI Li. Geological disasters of Jiguanling landslide blocking the river in Wujiang River and its prevention and control countermeasures[J]. Hydrogeology & Engineering Geology, 1995, 22(4): 6 − 11. (in Chinese) doi: 10.16030/j.cnki.issn.1000-3665.1995.04.003
[8] 黄海宁,巨能攀,黄健,等. 郑万高铁宜万段边坡危岩崩落破坏特征[J]. 水文地质工程地质,2020,47(3):164 − 172. [HUANG Haining,JU Nengpan,HUANG Jian,et al. Caving failure characteristic of slope rockfall on Yiwan section of the Zhengzhou—Wanzhou high-speed railway[J]. Hydrogeology & Engineering Geology,2020,47(3):164 − 172. (in Chinese with English abstract)] doi: 10.16030/j.cnki.issn.1000-3665.201906053
HUANG Haining, JU Nengpan, HUANG Jian, et al. Caving failure characteristic of slope rockfall on Yiwan section of the Zhengzhou—Wanzhou high-speed railway[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 164 − 172. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201906053
[9] VALAGUSSA A,FRATTINI P,CROSTA G B. Earthquake-induced rockfall hazard zoning[J]. Engineering Geology,2014,182:213 − 225. doi: 10.1016/j.enggeo.2014.07.009
[10] 祁生文,伍法权,严福章. 岩质边坡动力反应分析[M]. 北京:科学出版社,2007. [QI Shengwen,WU Faquan,YAN Fuzhang. Rock slope dynamic response analysis[M]. Beijing:Science Press,2007. (in Chinese)]
QI Shengwen, WU Faquan, YAN Fuzhang. Rock slope dynamic response analysis[M]. Beijing: Science Press, 2007. (in Chinese)
[11] PENG Ningbo,DONG Yun,ZHU Ye,et al. Influence of ground motion parameters on the seismic response of an anchored rock slope[J]. Advances in Civil Engineering,2020,2020:1 − 10.
[12] 陈涛. 基于FLAC3D的危岩撑-锚联合支护分配比研究[J]. 水文地质工程地质,2019,46(1):64 − 70. [CHEN Tao. A study of the distribution ratio for combined spore-anchor supporting of unstable rocks based on FLAC3D[J]. Hydrogeology & Engineering Geology,2019,46(1):64 − 70. (in Chinese with English abstract)]
CHEN Tao. A study of the distribution ratio for combined spore-anchor supporting of unstable rocks based on FLAC3D[J]. Hydrogeology & Engineering Geology, 2019, 46(1): 64 − 70. (in Chinese with English abstract)
[13] ZHANG Jingwu,LI Mingdong,YI Jinxiang,et al. Investigation on the stability of fissured slopes reinforced with anchor cables under seismic action[J]. Mathematical Problems in Engineering,2021,2021:1 − 14.
[14] YE Weina,ZHOU Yong,YE Shuaihua. Dynamic stability analysis of frame anchor-supported slope[J]. Arabian Journal of Geosciences,2021,14(15):1489. doi: 10.1007/s12517-021-07879-6
[15] HUANG Liang,HE Weili,HOU Yujie,et al. Seismic behavior of flexible geogrid wrap-reinforced soil slope[J]. Advances in Civil Engineering,2021,2021:1 − 12.
[16] 龙哲. 地震作用下含软弱层岩体边坡锚固界面剪切作用研究[D]. 兰州:兰州大学,2020. [LONG Zhe. Study on shear effect of anchorage interface of rock slope with weak layer under earthquake[D]. Lanzhou:Lanzhou University,2020. (in Chinese with English abstract)]
LONG Zhe. Study on shear effect of anchorage interface of rock slope with weak layer under earthquake[D]. Lanzhou: Lanzhou University, 2020. (in Chinese with English abstract)
[17] 陈龙飞,邓安,程谦恭,等. 一种高陡危岩及大型崩塌岩土体的防护消能方法:CN115470560A[P]. 2022-12-13. [CHEN Longfei,DENG An,CHENG Qiangong,et al. Protection and energy dissipation method for high-steep dangerous rock and large-scale collapsed rock-soil body:CN115470560A[P]. 2022-12-13. (in Chinese)]
CHEN Longfei, DENG An, CHENG Qiangong, et al. Protection and energy dissipation method for high-steep dangerous rock and large-scale collapsed rock-soil body: CN115470560A[P]. 2022-12-13. (in Chinese)
[18] 于德杰,吕兰颂,刘海艇,等. 一种适用于边坡危岩体的崩塌防治装置:CN112761170A[P]. 2021-05-07. [YU Dejie,LYU Lansong,LIU Haiting,et al. Collapse prevention and control device suitable for slope dangerous rock mass:CN112761170A[P]. 2021-05-07. (in Chinese)]
YU Dejie, LYU Lansong, LIU Haiting, et al. Collapse prevention and control device suitable for slope dangerous rock mass: CN112761170A[P]. 2021-05-07. (in Chinese)
[19] 陶志刚,刘奎明,胡杰,等. 一种防滚石冲击和危岩体崩塌的新型柔性防护系统:CN115559234A[P]. 2023-01-03. [TAO Zhigang,LIU Kuiming,HU Jie,et al. A New flexible protection system against the impact of Rolling Stones and the collapse of dangerous rock:CN115559234A [P]. 2023-01-03. (in Chinese)]
TAO Zhigang, LIU Kuiming, HU Jie, et al. A New flexible protection system against the impact of Rolling Stones and the collapse of dangerous rock: CN115559234A [P]. 2023-01-03. (in Chinese)
[20] 袁博,祝介旺. 滚石冲击下棚洞破坏动力响应分析及改进对策——以川藏公路(安久拉山南麓)门式棚洞为例[J]. 水文地质工程地质,2019,46(6):57 − 66. [YUAN Bo,ZHU Jiewang. Dynamic response analyses and improvement countermeasures of shed-tunnel destruction under rolling stone impact:a case study of the shed-tunnel in the southern foot of the Anjiula Mountain on the Sichuan-Tibet Highway[J]. Hydrogeology & Engineering Geology,2019,46(6):57 − 66. (in Chinese with English abstract)] doi: 10.16030/j.cnki.issn.1000-3665.2019.06.08
YUAN Bo, ZHU Jiewang. Dynamic response analyses and improvement countermeasures of shed-tunnel destruction under rolling stone impact: a case study of the shed-tunnel in the southern foot of the Anjiula Mountain on the Sichuan-Tibet Highway[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 57 − 66. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2019.06.08
[21] 黄帅,刘传正,张景发,等. 用于强震区高位滑坡的分布式主动消能结构及施工方法:CN113718670B[P]. 2022-07-22. [HUANG Shuai, LIU Chuanzheng, ZHANG Jingfa, et al. Distributed active energy dissipation structure for high-position landslide in strong earthquake area and construction method:CN113718670B[P]. 2022-07-22. (in Chinese)]
HUANG Shuai, LIU Chuanzheng, ZHANG Jingfa, et al. Distributed active energy dissipation structure for high-position landslide in strong earthquake area and construction method: CN113718670B[P]. 2022-07-22. (in Chinese)
[22] 陈洪凯,周云涛,唐红梅. 基于时程分析的滑塌式危岩清除爆破动力稳定性计算方法[J]. 振动与冲击,2014,33(15):31 − 34. [CHEN Hongkai,ZHOU Yuntao,TANG Hongmei. Dynamic stability calculation method for unstable sliding rock under excavation blasting based on time history analysis[J]. Journal of Vibration and Shock,2014,33(15):31 − 34. (in Chinese with English abstract)]
CHEN Hongkai, ZHOU Yuntao, TANG Hongmei. Dynamic stability calculation method for unstable sliding rock under excavation blasting based on time history analysis[J]. Journal of Vibration and Shock, 2014, 33(15): 31 − 34. (in Chinese with English abstract)
[23] 阿发友,孔纪名,倪振强,等. 滑塌式危岩体稳定性影响因素敏感性分析[J]. 勘察科学技术,2011(2):1 − 5. [A Fayou,KONG Jiming,NI Zhenqiang,et al. Sensitivity analysis on influential factors of slip-collapse unstable rock mass stability[J]. Site Investigation Science and Technology,2011(2):1 − 5. (in Chinese with English abstract)] doi: 10.3969/j.issn.1001-3946.2011.02.001
A Fayou, KONG Jiming, NI Zhenqiang, et al. Sensitivity analysis on influential factors of slip-collapse unstable rock mass stability[J]. Site Investigation Science and Technology, 2011(2): 1 − 5. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-3946.2011.02.001
[24] 祝介旺,张路青,张爱社,等. 锚固装置、预应力锚固结构及其施工方法:CN112663605B[P]. 2022-05-27. [ZHU Jiewang,ZHANG Luqing,ZHANG Aishe,et al. Anchoring device,prestress anchoring structure and construction method of prestress anchoring structure:CN112663605B[P]. 2022-05-27. (in Chinese)]
ZHU Jiewang, ZHANG Luqing, ZHANG Aishe, et al. Anchoring device, prestress anchoring structure and construction method of prestress anchoring structure: CN112663605B[P]. 2022-05-27. (in Chinese)
[25] 吕艳,陈天宝,王祚鹏,等. 太行山大峡谷崩塌发育特征及成因模式研究[J]. 工程地质学报,2022,30(4):1304 − 1315. [LÜ Yan,CHEN Tianbao,WANG Zuopeng,et al. Study on the development characteristics and genetic patterns of collapses in the Taihang Mountain grand canyon,China[J]. Journal of Engineering Geology,2022,30(4):1304 − 1315. (in Chinese with English abstract)] doi: 10.13544/j.cnki.jeg.2022-0144
LÜ Yan, CHEN Tianbao, WANG Zuopeng, et al. Study on the development characteristics and genetic patterns of collapses in the Taihang Mountain grand canyon, China[J]. Journal of Engineering Geology, 2022, 30(4): 1304 − 1315. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2022-0144
[26] 中华人民共和国住房和城乡建设部,国家质量监督检验检疫总局. 建筑抗震设计规范:GB 50011—2010[S]. 北京:中国建筑工业出版社,2010. [Ministry of Housing and Urban-Rural Development of the People's Republic of China,General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China. Code for seismic design of buildings:GB 50011—2010[S]. Beijing:China Architecture & Building Press,2010. (in Chinese)]
Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Code for seismic design of buildings: GB 50011—2010[S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
[27] 王亚勇,刘小弟,程民宪. 建筑结构时程分析法输入地震波的研究[J]. 建筑结构学报,1991,12(2):51 − 60. [WANG Yayong,LIU Xiaodi,CHENG Minxian. Study on the input of earthquake ground motion for time-history analysis of structures[J]. Journal of Building Structures,1991,12(2):51 − 60. (in Chinese with English abstract)] doi: 10.14006/j.jzjgxb.1991.02.006
WANG Yayong, LIU Xiaodi, CHENG Minxian. Study on the input of earthquake ground motion for time-history analysis of structures[J]. Journal of Building Structures, 1991, 12(2): 51 − 60. (in Chinese with English abstract) doi: 10.14006/j.jzjgxb.1991.02.006
[28] 杨溥,李英民,赖明. 结构时程分析法输入地震波的选择控制指标[J]. 土木工程学报,2000,33(6):33 − 37. [YANG Pu,LI Yingmin,LAI Ming. A new method for selecting inputting waves for time-history analysis[J]. China Civil Engineering Journal,2000,33(6):33 − 37. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-131X.2000.06.005
YANG Pu, LI Yingmin, LAI Ming. A new method for selecting inputting waves for time-history analysis[J]. China Civil Engineering Journal, 2000, 33(6): 33 − 37. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-131X.2000.06.005
[29] 李振伟. 带悬挑全转换结构抗震性能振动台试验研究[D]. 重庆:重庆大学,2022. [LI Zhenwei. Shaking table test study on seismic performance of full transfer structure with cantilever[D]. Chongqing:Chongqing University,2022. (in Chinese with English abstract)]
LI Zhenwei. Shaking table test study on seismic performance of full transfer structure with cantilever[D]. Chongqing: Chongqing University, 2022. (in Chinese with English abstract)
[30] 石鑫朔. 高延性混凝土加固夯土墙房屋振动台试验及有限元分析[D]. 保定:河北农业大学,2022. [SHI Xinshuo. Shaking table test and finite element analysis of high ductility concrete reinforced rammed earth wall building[D]. Baoding:Agricultural University of Hebei,2022. (in Chinese with English abstract)]
SHI Xinshuo. Shaking table test and finite element analysis of high ductility concrete reinforced rammed earth wall building[D]. Baoding: Agricultural University of Hebei, 2022. (in Chinese with English abstract)
[31] 陈祖煜,汪小刚,杨健,等. 岩质边坡稳定分析——原理方法程序[M]. 北京:中国水利水电出版社,2005. [CHEN Zuyu,WANG Xiaogang,YANG Jian,et al. Stability analysis of rock slope:Principle,method and procedure[M]. Beijing:China Water & Power Press,2005. (in Chinese)]
CHEN Zuyu, WANG Xiaogang, YANG Jian, et al. Stability analysis of rock slope: Principle, method and procedure[M]. Beijing: China Water & Power Press, 2005. (in Chinese)
[32] 贾召亮,郑川,吴艳梅,等. 基于Newmark模型的地震滑坡承灾体风险评估——以2014年云南鲁甸6.5级地震为例[J]. 地震研究,2023,46(3):366 − 375. [JIA Zhaoliang,ZHENG Chuan,WU Yanmei,et al. Risk assessment the hazard-bearing bodies by the earthquake-induced landslides based on the newmark model:A case study of the 2014 Ludian,Yunnan MS6.5 earthquake[J]. Journal of Seismological Research,2023,46(3):366 − 375. (in Chinese with English abstract)] doi: 10.20015/j.cnki.ISSN1000-0666.2023.0043
JIA Zhaoliang, ZHENG Chuan, WU Yanmei, et al. Risk assessment the hazard-bearing bodies by the earthquake-induced landslides based on the newmark model: A case study of the 2014 Ludian, Yunnan MS6.5 earthquake[J]. Journal of Seismological Research, 2023, 46(3): 366 − 375. (in Chinese with English abstract) doi: 10.20015/j.cnki.ISSN1000-0666.2023.0043
[33] WILSON R C,KEEFER D. Dynamic analysis of a slope failure from the 6 August 1979 Coyote lake,California,earthquake[J]. Bulletin of En-gineering Geology and the Environment,1983,73(3):863 − 877.
[34] JIBSON R W,HARP E L,MICHAEL J A. A method for producing digital probabilistic seismic landslide hazard maps[J]. Engineering Geology,2000,58(3/4):271 − 289.
-