Numerical analysis of site deformation and formation stress characteristics of Jingyang–Weinan active fault zone
-
摘要:
西安地铁十号线穿越的泾阳—渭南断裂,该断裂为全新世活动断裂,黏滑发震与同震位错对地铁线路构成潜在安全威胁。为揭示泾阳—渭南断裂带黏滑发震和同震位错作用引起的场地形变与地层应力特征,以西安地铁十号线穿越泾阳—渭南断裂带为工程背景,建立断裂带场地同震位错与黏滑发震地质力学模型,考虑不同位错量及发震强度,开展断裂带场地形变及应力场特征的数值模拟分析。结果表明:同震位错下场地在断裂带附近上、下盘分别出现应力降低区和增强区,场地呈反“S”形差异沉降破坏,差异位移在断裂带处达到峰值且塑性区集中,上盘变形范围与塑性区分别为下盘的1.67倍和2.50倍;黏滑发震作用下场地在断裂带附近位移量及差异形变均达到峰值,大震时场地位移影响范围约为中震的6.50倍,且具有典型的上盘放大效应,远离断裂带时位移呈线性递减;大震时地表峰值加速度放大系数受影响范围为中震时1.14倍,场地呈“V”形剪切破坏,上盘塑性区范围约为中震时1.40倍,而下盘则为1.00倍。研究结果可为西安地铁线路穿越泾阳—渭南断裂带场地的抗震设防提供科学依据与参考借鉴。
Abstract:The Jingyang–Weinan Fault that Xi’an Metro Line 10 crosses is a Holocene active fault, and its future stick-slip earthquakes and coseismic dislocations pose a potential threat to the metro line. To reveal the deformation and stratum stress characteristics of the site caused by the stick-slip seismic and coseismic dislocations of the Jingyang–Weinan Fault zone, based on the Jingyang–Weinan fault zone crossed by Xi’an Metro Line 10, the geomechanical model of the fault zone site coseismic dislocations and stick-slip seismic was established, and the numerical simulation analysis of the stratum deformation and stress field characteristics of fault zone site was carried out considering different dislocation amounts and seismic intensity. The results show that under the coseismic dislocation, the stress reduction and strengthening zones appear in the hanging wall and footwall near the fault zone, and the site presents an inverse “S” shaped differential settlement failure. The differential displacement peaks at the fault zone, and the plastic zone is concentrated here. The deformation range and plastic zone of the hanging wall are 1.67 times and 2.50 times more than that of the footwall, respectively. The displacement and differential deformation of the site near the fault zone reach the peak value under the stick-slip earthquake. The influence range of the site displacement during the large earthquake is approximately 6.50 times more than that during the medium earthquake. It has a typical magnification effect on the hanging wall, and the displacement decreases linearly far away from the fault zone. The amplification factor of peak surface acceleration (PGA) in the large earthquake is 1.14 times more than that in the medium earthquake. The site shows “V” shear failure; the plastic zones of hanging wall and footwall in the large earthquake is about 1.40 times and 1.00 times larger than that in the medium earthquake, respectively. This study can provide a scientific basis for the seismic fortification of Xi’an Metro Line lines crossing the Jingyang–Weinan fault zone.
-
-
图 10 西安地裂缝错动引起地层应力分布模式[29]
Figure 10.
表 1 地层土体材料参数表
Table 1. Material parameters of soils
材料类型 $ \gamma $ /(kN·m−3)$ E $ /MPa$ \mu $ $ c $ /kPa$ \varphi $ /(º)杂填土 17.1 10 0.33 10 30 黄土状土 17.1 20 0.38 26 18 黄土 17.5 30 0.33 30 20 古土壤 18.6 40 0.30 31 23 粉质黏土 19.4 45 0.32 32 25 粉质黏土夹砂层 20.2 58 0.31 20 26 表 2 断裂带接触面计算参数
Table 2. Calculation parameters of fracture zone contact surface
接触面名称 c/kPa $ \varphi $ /(°)$ K_{\mathrm{n}} $ /kPa$ K_{\mathrm{s}} $ /kPa断裂带 10 15 2800 280 表 3 岩土体材料计算参数
Table 3. Calculation parameters of rock and soil mass materials
岩土材料 $ \gamma $ /(kN·m−3)$ E_{\mathrm{d}} $ /MPa$ \mu_{\mathrm{d}} $ $ c_{\mathrm{d}} $ /kPa$ \varphi_{\mathrm{d}} $ /(°)杂填土 17.1 49.9 0.34 12 32 黄土状土 17.1 110.4 0.34 28 20 黄土 17.5 238.9 0.34 30 21 古土壤 18.6 269.6 0.34 35 22 粉质黏土 19.4 300.1 0.34 40 24 粉质黏土夹砂层 20.2 319.0 0.35 22 28 表 4 泾阳—渭南活动断裂带不同活动方式场地变形与应力状态对比
Table 4. Comparison of deformation and stress state of Jinyang–Weinan active fault zone
活动方式 相同点 差异性 同震位错 ①上盘沉降变形,且上盘变形量大于下盘
②塑性区主要分布在场地浅部,影响范围呈现出上盘效应①场地失稳形式为上盘沉降,下盘由沉降过渡至隆起;
②离断裂越远上盘沉降越大、下盘沉降越小并出现隆起变形;
③在断裂处,上盘地层沉降量随深度而增加,下盘地层沉降量随深度而减小;
④塑性区集中于地层浅部断裂附近,沿断裂向深处少量分布;
⑤同震位错作用下地应力及竖向位移的上盘影响范围约为下盘的1.67倍,塑性区上盘影响宽度约为下盘的2.50倍;
⑥随着深度增加,竖向位移变化率增大、竖向地层影响范围减小,上盘差异变化大于下盘黏滑发震 ①场地失稳形式以上下盘沉降为主,中震下下盘可出现微弱隆起;
②竖向位移在断裂处及上盘靠近断裂处有最大值,远离断裂竖向位移逐渐趋于0;
③塑性区均匀分布,集中于场地浅部,以剪切破坏为主;
④中震与大震作用下,竖向位移上盘沉降差值分别约为下盘的1.04倍及2.60倍、塑性区分别为1.00倍及1.40倍,PGA上盘影响范围分别为下盘的2.50倍和3.00倍;
⑤大震时场地最大竖向位移量、PGA影响范围分别为中震的6.50倍及1.14倍 -
[1] 丁祖德,王顺国,陈誉升,等. 跨活断层隧道组合支护结构断层错动响应模型试验研究[J]. 铁道科学与工程学报,2023,20(6):2173 − 2187. [DING Zude,WANG Shunguo,CHEN Yusheng,et al. Model test study on fault dislocation response of tunnel composite support structure across active faults[J]. Journal of Railway Science and Engineering,2023,20(6):2173 − 2187. (in Chinese with English abstract)]
DING Zude, WANG Shunguo, CHEN Yusheng, et al. Model test study on fault dislocation response of tunnel composite support structure across active faults[J]. Journal of Railway Science and Engineering, 2023, 20(6): 2173 − 2187. (in Chinese with English abstract)
[2] 黄强兵,彭建兵,王飞永,等. 特殊地质城市地下空间开发利用面临的问题与挑战[J]. 地学前缘,2019,26(3):85 − 94. [HUANG Qiangbing,PENG Jianbing,WANG Feiyong,et al. Issues and challenges in the development of urban underground space in adverse geological environment[J]. Earth Science Frontiers,2019,26(3):85 − 94. (in Chinese with English abstract)]
HUANG Qiangbing, PENG Jianbing, WANG Feiyong, et al. Issues and challenges in the development of urban underground space in adverse geological environment[J]. Earth Science Frontiers, 2019, 26(3): 85 − 94. (in Chinese with English abstract)
[3] 张培震,邓起东,张竹琪,等. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学:地球科学,2013,43(10):1607 − 1620. [ZHANG Peizhen,DENG Qidong,ZHANG Zhuqi,et al. Active faults,earthquake disasters and their dynamic processes in Chinese mainland[J]. Scientia Sinica (Terrae),2013,43(10):1607 − 1620. (in Chinese)] doi: 10.1360/zd-2013-43-10-1607
ZHANG Peizhen, DENG Qidong, ZHANG Zhuqi, et al. Active faults, earthquake disasters and their dynamic processes in Chinese mainland[J]. Scientia Sinica (Terrae), 2013, 43(10): 1607 − 1620. (in Chinese) doi: 10.1360/zd-2013-43-10-1607
[4] 徐德玺,陈佑斌,房军. 都汶公路龙溪隧道变形破坏原因分析[J]. 资源环境与工程,2009,23(增刊1):76 − 84. [XU Dexi,CHEN Youbin,FANG Jun. Cause analysis of deformation and failure of Longxi Tunnel on Duwen Highway[J]. Resources Environment & Engineering,2009,23(Sup 1):76 − 84. (in Chinese)]
XU Dexi, CHEN Youbin, FANG Jun. Cause analysis of deformation and failure of Longxi Tunnel on Duwen Highway[J]. Resources Environment & Engineering, 2009, 23(Sup 1): 76 − 84. (in Chinese)
[5] 闫茜,王连俊,毛忠良,等. 活断层蠕滑与震动对高铁路基变形影响分析[J]. 铁道工程学报,2020,37(12):38 − 43. [YAN Qian,WANG Lianjun,MAO Zhongliang,et al. Analysis of high-speed railway subgrade deformation under the action of active fault creep and vibration[J]. Journal of Railway Engineering Society,2020,37(12):38 − 43. (in Chinese with English abstract)] doi: 10.3969/j.issn.1006-2106.2020.12.008
YAN Qian, WANG Lianjun, MAO Zhongliang, et al. Analysis of high-speed railway subgrade deformation under the action of active fault creep and vibration[J]. Journal of Railway Engineering Society, 2020, 37(12): 38 − 43. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-2106.2020.12.008
[6] 何川,耿萍. 强震活动断裂带铁路隧道建设面临的挑战与对策[J]. 中国铁路,2020(12):61 − 68. [HE Chuan,GENG Ping. Challenges and countermeasures of railway tunnel construction in macroseismic active fault zone[J]. China Railway,2020(12):61 − 68. (in Chinese with English abstract)]
HE Chuan, GENG Ping. Challenges and countermeasures of railway tunnel construction in macroseismic active fault zone[J]. China Railway, 2020(12): 61 − 68. (in Chinese with English abstract)
[7] 朱勇,周辉,张传庆,等. 跨活断层隧道断错灾变与防控技术研究现状和展望[J]. 岩石力学与工程学报,2022,41(增刊1):2711 − 2724. [ZHU Yong,ZHOU Hui,ZHANG Chuanqing,et al. Present situation and prospect of research on fault catastrophe and prevention and control technology of tunnel crossing active fault[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(Sup 1):2711 − 2724. (in Chinese with English abstract)]
ZHU Yong, ZHOU Hui, ZHANG Chuanqing, et al. Present situation and prospect of research on fault catastrophe and prevention and control technology of tunnel crossing active fault[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Sup 1): 2711 − 2724. (in Chinese with English abstract)
[8] 崔臻,盛谦,李建贺,等. 蠕滑错断-强震时序作用下跨活断裂隧道变形破坏机制初步研究[J]. 岩土力学,2022,43(5):1364 − 1373. [CUI Zhen,SHENG Qian,LI Jianhe,et al. Deformation and failure of a tunnel subjected to the coupling effect of a quasi-static faulting and seismic impact[J]. Rock and Soil Mechanics,2022,43(5):1364 − 1373. (in Chinese with English abstract)]
CUI Zhen, SHENG Qian, LI Jianhe, et al. Deformation and failure of a tunnel subjected to the coupling effect of a quasi-static faulting and seismic impact[J]. Rock and Soil Mechanics, 2022, 43(5): 1364 − 1373. (in Chinese with English abstract)
[9] 张永双,任三绍,郭长宝,等. 活动断裂带工程地质研究[J]. 地质学报,2019,93(4):763 − 775. [ZHANG Yongshuang,REN Sanshao,GUO Changbao,et al. Research on engineering geology related with active fault zone[J]. Acta Geologica Sinica,2019,93(4):763 − 775. (in Chinese with English abstract)]
ZHANG Yongshuang, REN Sanshao, GUO Changbao, et al. Research on engineering geology related with active fault zone[J]. Acta Geologica Sinica, 2019, 93(4): 763 − 775. (in Chinese with English abstract)
[10] OKADA Y. Internal deformation due to shear and tensile faults in a half-space[J]. The Bulletin of the Seismological Society of America,1992,82(2):1018 − 1040. doi: 10.1785/BSSA0820021018
[11] ZAKIAN P,ASADI HAYEH H. Finite element simulation for elastic dislocation of the North-Tehran fault:the effects of geologic layering and slip distribution for the segment located in Karaj[J]. Frontiers of Structural and Civil Engineering,2022,16(4):533 − 549. doi: 10.1007/s11709-022-0802-8
[12] LIU Yang,ZHANG Kaiwen,TIAN Denghang,et al. Research on deep-site failure mechanism of high-steep slope under active fault creeping dislocation[J]. Shock and Vibration,2021,2021:4482523.
[13] Wang Tianqiang,Geng Ping,Li Peisong,et al. Deformation and failure of overburden soil subjected to normal fault dislocation and its impact on tunnel[J]. Engineering Failure Analysis,2022,142:106747. doi: 10.1016/j.engfailanal.2022.106747
[14] BAO Liangliang,WEI Feng. Study on the response of tunnel lining under fault dislocation[J]. Sustainability,2023,15(6):5150. doi: 10.3390/su15065150
[15] 吕征,杨强,王守光. 颗粒断层黏滑运动特征及水对其影响的试验研究[J]. 岩石力学与工程学报,2019,38(增刊1):2636 − 2645. [LV Zheng,YANG Qiang,WANG Shouguang. Experimental study on the characteristics of stick-slip motion of particle fault and the influence of water on it[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(Sup 1):2636 − 2645. (in Chinese with English abstract)]
LV Zheng, YANG Qiang, WANG Shouguang. Experimental study on the characteristics of stick-slip motion of particle fault and the influence of water on it[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(Sup 1): 2636 − 2645. (in Chinese with English abstract)
[16] 董鹏,夏开文,郭彦双. 平直断层黏滑及动态破裂扩展的实验研究[J]. 岩石力学与工程学报,2018,37(增刊2):3990 − 3997. [DONG Peng,XIA Kaiwen,GUO Yanshuang. Experimental study on viscous slip and dynamic fracture propagation of flat faults[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(Sup 2):3990 − 3997. (in Chinese with English abstract)]
DONG Peng, XIA Kaiwen, GUO Yanshuang. Experimental study on viscous slip and dynamic fracture propagation of flat faults[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(Sup 2): 3990 − 3997. (in Chinese with English abstract)
[17] 邓志辉,马胜利,马瑾,等. 粘滑失稳及其物理场时空分布的实验研究[J]. 地震地质,1995,17(4):305 − 310. [DENG Zhihui,MA Shengli,MA Jin,et al. Experimental study on stick-slip instability and its spatial and temporal distribution of physical field[J]. Seismology and Geology,1995,17(4):305 − 310. (in Chinese with English abstract)]
DENG Zhihui, MA Shengli, MA Jin, et al. Experimental study on stick-slip instability and its spatial and temporal distribution of physical field[J]. Seismology and Geology, 1995, 17(4): 305 − 310. (in Chinese with English abstract)
[18] 王爱国,马巍,石玉成. 活动断裂地震变形与重大工程场地安全距离研究[J]. 地震研究,2005,28(4):359 − 364. [WANG Aiguo,MA Wei,SHI Yucheng. Study on the potential earthquake deformation of active fault and the safe distance of important project site to active fault[J]. Journal of Seismological Research,2005,28(4):359 − 364. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-0666.2005.04.011
WANG Aiguo, MA Wei, SHI Yucheng. Study on the potential earthquake deformation of active fault and the safe distance of important project site to active fault[J]. Journal of Seismological Research, 2005, 28(4): 359 − 364. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0666.2005.04.011
[19] 杨承先. 活动断层的地震灾害效应[J]. 地质灾害与防治,1991,2(2):27 − 32. [Yang Chcngxian. The hazard effect on earthquake of active faults[J]. Journal of Geological Hazard and Control,1991,2(2):27 − 32. (in Chinese with English abstract)]
Yang Chcngxian. The hazard effect on earthquake of active faults[J]. Journal of Geological Hazard and Control, 1991, 2(2): 27 − 32. (in Chinese with English abstract)
[20] 杨志华,郭长宝,吴瑞安,等. 青藏高原巴塘断裂带地震滑坡危险性预测研究[J]. 水文地质工程地质,2021,48(5):91 − 101. [YANG Zhihua,GUO Changbao,WU Ruian,et al. Predicting seismic landslide hazard in the Batang fault zone of the Qinghai-Tibet Plateau[J]. Hydrogeology & Engineering Geology,2021,48(5):91 − 101. (in Chinese with English abstract)]
YANG Zhihua, GUO Changbao, WU Ruian, et al. Predicting seismic landslide hazard in the Batang fault zone of the Qinghai-Tibet Plateau[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 91 − 101. (in Chinese with English abstract)
[21] 孟振江,彭建兵,李超,等. 耦合型地裂缝活动特征与成因机制模拟研究——以北京宋庄地裂缝为例[J]. 水文地质工程地质,2023,50(3):138 − 148. [MENG Zhenjiang,PENG Jianbing,LI Chao,et al. A simulation study of the activity characteristics and genetic mechanism of coupled ground fissures:Exemplified by the Songzhuang ground fissure in Beijing[J]. Hydrogeology & Engineering Geology,2023,50(3):138 − 148. (in Chinese with English abstract)]
MENG Zhenjiang, PENG Jianbing, LI Chao, et al. A simulation study of the activity characteristics and genetic mechanism of coupled ground fissures: Exemplified by the Songzhuang ground fissure in Beijing[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 138 − 148. (in Chinese with English abstract)
[22] 彭建兵. 西安地裂缝灾害[M]. 北京:科学出版社,2012. [PENG Jianbing. Ground fracture disaster in Xi’an[M]. Beijing:Science Press,2012. (in Chinese with English abstract)]
PENG Jianbing. Ground fracture disaster in Xi’an[M]. Beijing: Science Press, 2012. (in Chinese with English abstract)
[23] 陕西工程勘察研究院. 西安市地铁十号线一期工程断裂及活动断裂勘察报告[R]. 2017. [Shaanxi Engineering Survey and Research Institute. Investigation report of faults and active faults in the first phase of Xi’an Metro Line 10 Project[R]. 2017.(in Chinese)]
Shaanxi Engineering Survey and Research Institute. Investigation report of faults and active faults in the first phase of Xi’an Metro Line 10 Project[R]. 2017.(in Chinese)
[24] 西安市城市轨道交通十号线一期工程场地地震安全性评价报告[R]. 2018. [Seismic safety evaluation report of Xi’an Urban Rail Transit Line 10 phase I project site[R]. 2017.(in Chinese)]
Seismic safety evaluation report of Xi’an Urban Rail Transit Line 10 phase I project site[R]. 2017.(in Chinese)
[25] 李光辉,铁永波,白永建,等. 则木河断裂带(普格段)地质灾害发育规律及易发性评价[J]. 中国地质灾害与防治学报,2022,33(3):123 − 133. [LI Guanghui,TIE Yongbo,BAI Yongjian,et al. Distribution and susceptibility assessment of geological hazards in Zemuhe fault zone(Puge section)[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):123 − 133. (in Chinese with English abstract)]
LI Guanghui, TIE Yongbo, BAI Yongjian, et al. Distribution and susceptibility assessment of geological hazards in Zemuhe fault zone(Puge section)[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 123 − 133. (in Chinese with English abstract)
[26] 毕鸿基,聂磊,曾超,等. 基于三种多变量不安定指数分析模型的汶川县地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(1):123 − 131. [BI Hongji,NIE Lei,ZENG Chao,et al. Geological hazard susceptibility evaluation in Wenchuan Area based on three models of multivariate instability index analysis[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):123 − 131. (in Chinese with English abstract)]
BI Hongji, NIE Lei, ZENG Chao, et al. Geological hazard susceptibility evaluation in Wenchuan Area based on three models of multivariate instability index analysis[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 123 − 131. (in Chinese with English abstract)
[27] 谭成轩,孙炜锋,孙叶,等. 地应力测量及其地下工程应用的思考[J]. 地质学报,2006,80(10):1627 − 1632. [TAN Chengxuan,SUN Weifeng,SUN Ye,et al. A consideration on In-situ crustal stress measuring and its underground engineering application[J]. Acta Geologica Sinica,2006,80(10):1627 − 1632. (in Chinese with English abstract)] doi: 10.3321/j.issn:0001-5717.2006.10.018
TAN Chengxuan, SUN Weifeng, SUN Ye, et al. A consideration on In-situ crustal stress measuring and its underground engineering application[J]. Acta Geologica Sinica, 2006, 80(10): 1627 − 1632. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2006.10.018
[28] KUHLEMEYER R L,LYSMER J. Finite element method accuracy for wave propagation problems[J]. Journal of the Soil Mechanics and Foundations Division,1973,99(5):421 − 427. doi: 10.1061/JSFEAQ.0001885
[29] 黄强兵,彭建兵,闫金凯,等. 地裂缝活动对土体应力与变形影响的试验研究[J]. 岩土力学,2009,30(4):903 − 908. [HUANG Qiangbing,PENG Jianbing,YAN Jinkai,et al. Model test study of influence of ground fissure movement on stress and deformation of soil mass[J]. Rock and Soil Mechanics,2009,30(4):903 − 908. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-7598.2009.04.007
HUANG Qiangbing, PENG Jianbing, YAN Jinkai, et al. Model test study of influence of ground fissure movement on stress and deformation of soil mass[J]. Rock and Soil Mechanics, 2009, 30(4): 903 − 908. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2009.04.007
[30] 黄祖智,唐荣昌. 四川地区强震发生条件的综合分析[J]. 地震研究,1997,20(2):185 − 192. [HUANG Zuzhi,TANG Rongchang. Comprehensive analyses of strong earthquake occurrence condition in sichuan area[J]. Journal of Seismological Research,1997,20(2):185 − 192. (in Chinese with English abstract)]
HUANG Zuzhi, TANG Rongchang. Comprehensive analyses of strong earthquake occurrence condition in sichuan area[J]. Journal of Seismological Research, 1997, 20(2): 185 − 192. (in Chinese with English abstract)
-