Rapid modeling and 3D matching of GB InSAR landslide emergency monitoring: Method and application
-
摘要:
针对常规地基干涉合成孔径雷达(GB-InSAR)监测存在依赖地表控制坐标的问题,通过露天可控模拟试验,尝试利用三维激光扫描技术在扫描建模的同时,获取雷达的位置坐标并将其统一到模型的局部坐标系中,直接进行几何映射三维匹配,减少了测量雷达真实坐标及仪器坐标与真实坐标相互转换的步骤。通过在贵州晴隆滑坡抢险行动中的实际应用,能够直观判断危险源位置,分析滑动路径,效果良好。结果表明:将三维激光扫描建模技术与几何映射匹配方法相结合,能够在滑坡现场完成快速建模和匹配,实现雷达变形数据的三维可视化。提出的方法可为快速定位滑坡危险源、分析滑动路径及受灾范围提供便利。
Abstract:Traditional GB InSAR monitoring relies on surface control coordinates, which can be limiting. To quickly generate a digital elevation model (DEM) at the landslide disaster site, match it with radar deformation images, and achieve three-dimensional visualization of monitoring data, through controlled outdoor simulation experiments, three-dimensional laser scanning technology was used to capture the radar position coordinates during scanning. The position coordinates were integrated into the model’s local coordinate system for direct geometric mapping and three-dimensional matching, which reduces the steps of converting the real coordinates of the measuring radar and instrument coordinates to the real coordinates. Applying this method to a landslide rescue operation in Qinglong, Guizhou can intuitively determine the location of the hazard source, analyze the sliding path, and achieve effective results. The findings indicate that combining 3D laser scanning with geometric mapping matching method enhances rapid modeling and matching at landslide sites, and achieves 3D visualization of radar deformation data. This study facilitates quick location of landslide hazards and analysis of sliding paths and affected areas.
-
Key words:
- landslide /
- monitoring /
- emergency /
- GB-InSAR /
- 3D laser scanning technology /
- data matching
-
-
表 1 三维激光扫描仪系统参数
Table 1. Parameters of 3D laser scanner system
参数类别 大小 激光发射频率/MHz 1.2 数据采样率/(点·s−1) 500000 扫描视场范围/(°) 100×360 测距范围/m 2~ 2500 定位精度/(mm· m−1) ±0.02 表 2 雷达端点与角反射器坐标
Table 2. Radarendpoint and corner reflector coordinates
点位 横坐标/m 纵坐标/m 高程/m 雷达左端点S1 7.127 −6.974 −0.139 雷达右端点S2 5.854 −7.289 −0.150 大角反射器P1 −2.209 18.758 −0.892 小角反射器P2 1.368 19.675 −1.110 小角反射器P3 1.469 5.888 −1.116 表 3 角反射器与雷达的斜距
Table 3. Slant distance between corner reflector and radar
编号 形变图像中的斜距/m 模型中的斜距/m 误差分析/% 1 27.084 27.323 0.9 2 27.341 27.309 0.1 3 13.904 13.989 0.6 表 4 角反射器与雷达的方向角
Table 4. Angle between the corner reflector and radar
编号 形变图像中的方位角/(°) 模型中的方位角/(°) 误差分析/% 1 4.500 4.603 2.3 2 3.120 3.101 0.6 3 7.023 7.238 3.0 -
[1] 李湖生. 非常规突发事件应急准备体系的构成及其评估理论与方法研究[J]. 中国应急管理,2013(8):13 − 21. [LI Husheng. Study on the composition of emergency preparedness system for unconventional emergencies and its evaluation theory and method[J]. China Emergency Management,2013(8):13 − 21. (in Chinese)]
LI Husheng. Study on the composition of emergency preparedness system for unconventional emergencies and its evaluation theory and method[J]. China Emergency Management, 2013(8): 13 − 21. (in Chinese)
[2] 马海涛,张亦海,于正兴. 滑坡速度倒数法预测模型加速开始点识别及临滑时间预测研究[J]. 岩石力学与工程学报,2021,40(2):355 − 364. [MA Haitao,ZHANG Yihai,YU Zhengxing. Research on the identification of acceleration starting point in inverse velocity method and the prediction of sliding time[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(2):355 − 364. (in Chinese with English abstract)]
MA Haitao, ZHANG Yihai, YU Zhengxing. Research on the identification of acceleration starting point in inverse velocity method and the prediction of sliding time[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(2): 355 − 364. (in Chinese with English abstract)
[3] 何朝阳,许强,巨能攀,等. 滑坡实时监测预警模型调度算法优化研究[J]. 武汉大学学报(信息科学版),2021,46(7):970 − 982. [HE Chaoyang,XU Qiang,JU Nengpan,et al. Optimization of model scheduling algorithm in real-time monitoring and early warning of landslide[J]. Geomatics and Information Science of Wuhan University,2021,46(7):970 − 982. (in Chinese with English abstract)]
HE Chaoyang, XU Qiang, JU Nengpan, et al. Optimization of model scheduling algorithm in real-time monitoring and early warning of landslide[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 970 − 982. (in Chinese with English abstract)
[4] 徐文正,卢书强,林振,等. 联合InSAR与神经网络的范家坪滑坡形变监测及预测研究[J/OL]. 水文地质工程地质,2024,(2024-03-01) [2024-04-08]. [XU Wenzheng,LU Shuqiang,LIN Zhen,et al. Combination of InSAR and neural networks for the deformation monitoring and prediction of Fanjiaping landslide[J/OL]. Hydrogeology & Engineering Geology,2024,(2024-03-01) [2024-04-08]. 10.16030/j.cnki.issn.1000-3665.202308028. (in Chinese with English abstract)]
XU Wenzheng, LU Shuqiang, LIN Zhen, et al. Combination of InSAR and neural networks for the deformation monitoring and prediction of Fanjiaping landslide[J/OL]. Hydrogeology & Engineering Geology, 2024, (2024-03-01) [2024-04-08]. 10.16030/j.cnki.issn.1000-3665.202308028. (in Chinese with English abstract)
[5] 程滔,单新建,董文彤,等. 利用InSAR技术研究黄土地区滑坡分布[J]. 水文地质工程地质,2008,35(1):98 − 101. [CHENG Tao,SHAN Xinjian,DONG Wentong,et al. A study of landslide distribution in loess area with InSAR[J]. Hydrogeology & Engineering Geology,2008,35(1):98 − 101. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-3665.2008.01.022
CHENG Tao, SHAN Xinjian, DONG Wentong, et al. A study of landslide distribution in loess area with InSAR[J]. Hydrogeology & Engineering Geology, 2008, 35(1): 98 − 101. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2008.01.022
[6] NOFERINI L,PIERACCINI M,MECATTI D,et al. Using GB-SAR technique to monitor slow moving landslide[J]. Engineering Geology,2007,95(3/4):88 − 98.
[7] DEL VENTISETTE C,CASAGLI N,FORTUNY-GUASCH J,et al. Ruinon landslide (Valfurva,Italy) activity in relation to rainfall by means of GBInSAR monitoring[J]. Landslides,2012,9(4):497 − 509. doi: 10.1007/s10346-011-0307-3
[8] 于海明,张熠斌,方向辉,等. 综合InSAR技术和多源SAR数据在滑坡变形监测中的应用——以吉林治新村滑坡为例[J]. 中国地质灾害与防治学报,2024,35(1):155 − 162. [YU Haiming,ZHANG Yibin,FANG Xianghui,et al. Application of multiple InSAR techniques and SAR data from multisources to landslide deformation monitoring:A case study of the Zhixincun landslide in Jilin Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):155 − 162. (in Chinese with English abstract)]
YU Haiming, ZHANG Yibin, FANG Xianghui, et al. Application of multiple InSAR techniques and SAR data from multisources to landslide deformation monitoring: A case study of the Zhixincun landslide in Jilin Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 155 − 162. (in Chinese with English abstract)
[9] 张亦海,于正兴,温经林,等. 边坡雷达变形图与航测模型配准方法及应用[J]. 岩石力学与工程学报,2021,40(增刊1):2817 − 2825. [ZHANG Yihai,YU Zhengxing,WEN Jinglin,et al. Application of matching method of the deformation map of slope radar and UAV aerial survey model in landslide monitoring[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Sup 1):2817 − 2825. (in Chinese)]
ZHANG Yihai, YU Zhengxing, WEN Jinglin, et al. Application of matching method of the deformation map of slope radar and UAV aerial survey model in landslide monitoring[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Sup 1): 2817 − 2825. (in Chinese)
[10] 周定义,左小清,喜文飞,等. 基于SBAS-InSAR技术的深切割高山峡谷区滑坡灾害早期识别[J]. 中国地质灾害与防治学报,2022,33(2):16 − 24. [ZHOU Dingyi,ZUO Xiaoqing,XI Wenfei,et al. Early identification of landslide hazards in deep cut alpine canyon using SBAS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):16 − 24. (in Chinese with English abstract)]
ZHOU Dingyi, ZUO Xiaoqing, XI Wenfei, et al. Early identification of landslide hazards in deep cut alpine canyon using SBAS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 16 − 24. (in Chinese with English abstract)
[11] 谢谟文,胡嫚,杜岩,等. TLS技术及其在滑坡监测中的应用进展[J]. 国土资源遥感,2014,26(3):8 − 15. [XIE Mowen,HU Man,DU Yan,et al. Application of TLS technique to landslide monitoring:Summarization and prospect[J]. Remote Sensing for Land & Resources,2014,26(3):8 − 15. (in Chinese with English abstract)]
XIE Mowen, HU Man, DU Yan, et al. Application of TLS technique to landslide monitoring: Summarization and prospect[J]. Remote Sensing for Land & Resources, 2014, 26(3): 8 − 15. (in Chinese with English abstract)
[12] 林德才,马海涛,宋宝宏. 边坡雷达在滑坡应急救援行动中的应用[J]. 中国安全生产科学技术,2016,12(增刊1):284 − 289. [LIN Decai,MA Haitao,SONG Baohong. Application of slope radar in emergency rescue of landslide[J]. Journal of Safety Science and Technology,2016,12(Sup 1):284 − 289. (in Chinese)]
LIN Decai, MA Haitao, SONG Baohong. Application of slope radar in emergency rescue of landslide[J]. Journal of Safety Science and Technology, 2016, 12(Sup 1): 284 − 289. (in Chinese)
[13] 吴星辉,璩世杰,马海涛,等. 边坡雷达系统在露天矿边坡监测中的应用[J]. 金属矿山,2018(2):188 − 191. [WU Xinghui,QU Shijie,MA Haitao,et al. Application of slope radar system in slope displacement monitoring of surface mine[J]. Metal Mine,2018(2):188 − 191. (in Chinese with English abstract)]
WU Xinghui, QU Shijie, MA Haitao, et al. Application of slope radar system in slope displacement monitoring of surface mine[J]. Metal Mine, 2018(2): 188 − 191. (in Chinese with English abstract)
[14] 董秀军,黄润秋. 三维激光扫描技术在高陡边坡地质调查中的应用[J]. 岩石力学与工程学报,2006,25(增刊2):3629 − 3635. [DONG Xiujun,HUANG Runqiu. Application of three-dimensional laser scanning technology in geological survey of high and steep slopes[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(Sup 2):3629 − 3635. (in Chinese)]
DONG Xiujun, HUANG Runqiu. Application of three-dimensional laser scanning technology in geological survey of high and steep slopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(Sup 2): 3629 − 3635. (in Chinese)
[15] 张永红,张继贤,杨崇源. 基于影像模拟的SAR几何校正准自动方法[J]. 遥感学报,2003,7(2):106 − 111. [ZHANG Yonghong,ZHANG Jixian,YANG Chongyuan. A quasi-automatic rectification method of SAR image based on image simulation[J]. Journal of Remote Sensing,2003,7(2):106 − 111. (in Chinese with English abstract)] doi: 10.11834/jrs.20030205
ZHANG Yonghong, ZHANG Jixian, YANG Chongyuan. A quasi-automatic rectification method of SAR image based on image simulation[J]. Journal of Remote Sensing, 2003, 7(2): 106 − 111. (in Chinese with English abstract) doi: 10.11834/jrs.20030205
[16] 郑翔天. 基于边坡雷达的形变灾害特征提取方法研究[D]. 北京:中国矿业大学(北京),2019. [ZHENG Xiangtian. Research on feature extraction method of deformation disaster based on slope radar[D]. Beijing:China University of Mining & Technology(Beijing),2019. (in Chinese with English abstract)]
ZHENG Xiangtian. Research on feature extraction method of deformation disaster based on slope radar[D]. Beijing: China University of Mining & Technology(Beijing), 2019. (in Chinese with English abstract)
[17] 赵东寅,申其鸿,马海涛,等. 国产地基合成孔径雷达监测预警系统在紫金山金铜矿露天采场边坡位移监测的应用[J]. 中国安全生产科学技术,2015,11(4):54 − 58. [ZHAO Dongyin,SHEN Qihong,MA Haitao,et al. Application of domestic ground based synthetic aperture radar monitoring and warning system in slope displacement monitoring on open pit of Zijinshan gold/copper mine[J]. Journal of Safety Science and Technology,2015,11(4):54 − 58. (in Chinese with English abstract)]
ZHAO Dongyin, SHEN Qihong, MA Haitao, et al. Application of domestic ground based synthetic aperture radar monitoring and warning system in slope displacement monitoring on open pit of Zijinshan gold/copper mine[J]. Journal of Safety Science and Technology, 2015, 11(4): 54 − 58. (in Chinese with English abstract)
[18] 杨晓琳,谭维贤,林赟,等. 基于单特显点调频连续波阵列SAR系统幅相误差校正方法研究[J]. 电子与信息学报,2014,36(11):2672 − 2677. [YANG Xiaolin,TAN Weixian,LIN Yun,et al. Amplitude and phase errors correction method for FMCW array SAR system using single prominent point echo[J]. Journal of Electronics & Information Technology,2014,36(11):2672 − 2677. (in Chinese with English abstract)]
YANG Xiaolin, TAN Weixian, LIN Yun, et al. Amplitude and phase errors correction method for FMCW array SAR system using single prominent point echo[J]. Journal of Electronics & Information Technology, 2014, 36(11): 2672 − 2677. (in Chinese with English abstract)
[19] 谢志昆. 基于点云特征的SAR图像配准技术研究[D]. 成都:电子科技大学,2023. [XIE Zhikun. Research on SAR image registration technology based on point cloud features[D]. Chengdu:University of Electronic Science and Technology of China,2023. (in Chinese with English abstract)]
XIE Zhikun. Research on SAR image registration technology based on point cloud features[D]. Chengdu: University of Electronic Science and Technology of China, 2023. (in Chinese with English abstract)
-