Prediction of water inflow after excavation of underground chamber group with long span and high buried depth
-
摘要:
大型地下洞室群开挖后的涌水量预测对于地下工程的安全施工与运行具有重要意义。为预测地下洞室群开挖后的涌水量,以提供排水防渗设计参考,以新疆某抽水蓄能电站大型地下厂房洞室群为研究对象,分别从地下水活动特征、钻孔压水试验成果、岩体结构面发育情况等方面分析坝址区岩体的渗透特性。为体现预测结果的可靠性,分别采用地下水动力学法和数值分析法对地下洞室群开挖后的地下水渗流场变化和正常涌水量进行分析和预测。研究结果表明:地下洞室群开挖后具有明显的渗漏和排水作用,主厂房承担了洞室群渗流的大部分涌水量,最易发生渗透破坏变形的部位位于洞室开挖线边角处。地下水动力学法和数值分析法预测的洞室群开挖后的正常涌水量分别为
7442.88 m3/d和7218.32 m3/d,结果误差为3.1%,两者预测结果吻合较好。基于工程安全角度考虑,选取地下水动力学法佐藤邦明经验式计算结果7442.88 m3/d作为该抽水蓄能电站地下厂房洞室群开挖后正常涌水量预测值。分析成果可为大型地下洞室群开挖施工及排水防渗设计提供参考依据。Abstract:Predict the water inflow after excavation of large underground caverns is crucial for the safe construction and operation of underground engineering. To predict the water inflow of underground caverns after excavation and provide guidance for drainage and anti-seepage design, this study focused on the large underground powerhouse caverns of a pumped storage power station in Xinjiang, and analyzed the seepage characteristics of rock mass in the dam site area in terms of groundwater activity characteristics, borehole water pressure test, and the development of structural planes in the rock mass. To enhance the reliability of the prediction results, the change of groundwater seepage field and normal water inflow after excavation of underground caverns are analyzed and predicted by groundwater dynamics method and numerical analysis method, respectively. The results show that significant seepage and drainage occur after the excavation of the underground caverns, with the main powerhouse bearing the majority of the water inflow from the surrounding cavern group. The most prone to seepage failure and deformation is located at the corner of the excavation line of the cavern. The normal water inflow after excavation of the cavern group predicted by the groundwater dynamics method and the numerical analysis method are 7 442.88 m3/d and 7 218.32 m3/d, respectively, resulting in a 3.1% error, demonstrating strong agreement between the two methods. Based on engineering safety considerations, the calculation result of Sato’s empirical formula 7 442.88 m3/d is selected as the predicted value of normal water inflow after excavation of underground powerhouse cavern group of a pumped storage power station. These findings provide a scientific basis for the drainage and anti-seepage design of a large underground cavern group in the early stage of construction.
-
-
表 1 吕荣值加权平均值计算表
Table 1. Weighted average calculation of Lugeon value
渗透性强弱 范围值
/Lu平均值
/Lu权重
/%加权平均
吕荣值/Lu微透水 0~1.0 0.50 8.8 0.044 弱透水 >1.0~10.0 5.50 63.5 3.492 中透水 >10.0~21.7 15.85 27.7 4.390 平均值 0.044 Lu+3.492 Lu+4.390 Lu=7.926 Lu 平均渗透系数 K=7.926 Lu= 0.03424 m/d表 2 地下洞室群涌水量计算参数表
Table 2. Parameters of water inflow in the underground caverns
计算参数 主厂房 主变室 尾闸室 长/m 239 180 159.5 宽/m 26.6 19.5 8.0 高/m 62.0 34.2 24.4 底板高程/m 1 667.4 1 697.4 1 675.6 地下水位/m 2 037 2 037 2 037 等价圆半径/m 22.92 14.57 7.88 含水层厚度/m 379.6 349.6 371.4 静止水位到等价圆中心距离/m 346.68 325.03 353.52 影响半径/m 684.27 483.82 662.22 降深值/m 94.90 69.92 92.85 表 3 地下水动力学法计算涌水量结果
Table 3. Normal water inflow of cavern group calculated by groundwater dynamics method
厂房部位 多布诺沃里斯基公式/(m3·d−1) 佐藤邦明经验式/(m3·d−1) 主厂房 2603.95 3313.29 主变室 2005.92 2192.40 尾闸室 1906.98 1917.19 总计 6516.85 7442.88 表 4 模型材料物理参数取值表
Table 4. Physical parameters of model material
岩(土)名称 天然密度
/(g·cm−3)饱和密度
/(g·cm−3)孔隙率
/%渗透系数
/(10−6 m·s−1)吸水率
/%饱和含水率
/%各向异性
(Kx/Ky)风化层 2.30 2.46 38.00 23.00 2.60 6.30 0.5 上库白云岩 2.76 2.83 1.56 2.00 0.09 0.23 1.0 凝灰岩 2.72 2.78 0.67 0.50 0.08 0.15 1.0 下库白云岩 2.68 2.76 1.21 0.23 0.39 0.33 1.0 表 5 数值法计算结果
Table 5. Results of numerical method
部位 洞室长度/m 单宽水流量/(10−4 m3·s−1·m−1) 正常涌水量/(m3·d−1) 主厂房 239.0 2.27207 4 691.73 主变室 180.0 0.43757 680.51 尾闸室 159.5 1.34382 1 846.08 总计 — — 7 218.32 表 6 数值法与地下水动力学法计算地下洞室群开挖后正常涌水量结果
Table 6. Normal water inflow after excavation of underground caverns calculated by numerical method and groundwater dynamics method
数值分析法
/(m3·d−1)多布诺沃里斯基公式
/(m3·d−1)佐藤邦明式
/(m3·d−1)主厂房 4 691.73 2 603.95 3 313.29 主变室 680.51 2 005.92 2 192.40 尾水室 1 846.08 1 906.98 1 917.19 总计 7 218.32 6 516.85 7 442.88 -
[1] FAN Qixiang,DENG Zhiyun,LIN Peng,et al. Coordinated deformation control technologies for the high sidewall—Bottom transfixion zone of large underground hydro-powerhouses[J]. Journal of Zhejiang University:Science A,2022,23(7):543 − 563.
[2] 贺振宇,郭佳奇,陈帆,等. 隧道典型致灾构造及突水模式分析[J]. 中国地质灾害与防治学报,2017,28(2):97 − 107. [HE Zhenyu,GUO Jiaqi,CHEN Fan,et al. Analysis of typical disaster-causing structure and water inrush model of tunnel[J]. The Chinese Journal of Geological Hazard and Control,2017,28(2):97 − 107. (in Chinese with English abstract)]
HE Zhenyu, GUO Jiaqi, CHEN Fan, et al. Analysis of typical disaster-causing structure and water inrush model of tunnel[J]. The Chinese Journal of Geological Hazard and Control, 2017, 28(2): 97 − 107. (in Chinese with English abstract)
[3] 唐运刚. 基于解析法的隧洞施工对地下水环境影响预测[J]. 人民长江,2018,49(8):67 − 71. [TANG Yungang. Impact analysis of tunnel construction on groundwater environment by analytical method[J]. Yangtze River,2018,49(8):67 − 71. (in Chinese with English abstract)]
TANG Yungang. Impact analysis of tunnel construction on groundwater environment by analytical method[J]. Yangtze River, 2018, 49(8): 67 − 71. (in Chinese with English abstract)
[4] ZHANG Manman,YAO Duoxi. Groundwater dynamics method of mine discharge and its parameter analysis[C]//Proceedings of the 2019 International Conference on Modeling,Analysis,Simulation Technologies and Applications (MASTA 2019). May 26 − 27,2019. Hangzhou,China. Paris,France:Atlantis Press,2019:320 − 324.
[5] 梁犁丽,胡宇丰,柳长顺,等. 矿井涌水量多方法预测与对比分析[J]. 人民黄河,2021,43(增刊2):66 − 68. [LIANG Lili,HU Yufeng,LIU Changshun,et al. Multi-method prediction and comparative analysis of mine water inflow[J]. Yellow River,2021,43(Sup 2):66 − 68. (in Chinese)]
LIANG Lili, HU Yufeng, LIU Changshun, et al. Multi-method prediction and comparative analysis of mine water inflow[J]. Yellow River, 2021, 43(Sup 2): 66 − 68. (in Chinese)
[6] 张帅,黄勇,刘雪莹. 某抽水蓄能电站施工期地下洞室涌水量预测分析[J]. 水资源与水工程学报,2017,28(2):142 − 146. [ZHANG Shuai,HUANG Yong,LIU Xueying. Water inflow prediction of underground tunnels for a pumped storage power station during the construction period[J]. Journal of Water Resources and Water Engineering,2017,28(2):142 − 146. (in Chinese with English abstract)] doi: 10.11705/j.issn.1672-643X.2017.02.24
ZHANG Shuai, HUANG Yong, LIU Xueying. Water inflow prediction of underground tunnels for a pumped storage power station during the construction period[J]. Journal of Water Resources and Water Engineering, 2017, 28(2): 142 − 146. (in Chinese with English abstract) doi: 10.11705/j.issn.1672-643X.2017.02.24
[7] 甘圣丰,乔伟,雷利剑,等. 招贤煤矿水文地质特征及涌水量预测研究[J]. 煤炭科学技术,2018,46(7):205 − 212. [GAN Shengfeng,QIAO Wei,LEI Lijian,et al. Study on hydrogeological features and mine water inflow prediction in Zhaoxian Mine[J]. Coal Science and Technology,2018,46(7):205 − 212. (in Chinese with English abstract)]
GAN Shengfeng, QIAO Wei, LEI Lijian, et al. Study on hydrogeological features and mine water inflow prediction in Zhaoxian Mine[J]. Coal Science and Technology, 2018, 46(7): 205 − 212. (in Chinese with English abstract)
[8] 池龙哲,吴世勇. 常用渗流有限元计算软件比较分析[J]. 中国农村水利水电,2014(6):186 − 187. [CHI Longzhe,WU Shiyong. Comparative analysis of commonly used seepage finite element calculation software[J]. China Rural Water and Hydropower,2014(6):186 − 187. (in Chinese)] doi: 10.3969/j.issn.1007-2284.2014.06.045
CHI Longzhe, WU Shiyong. Comparative analysis of commonly used seepage finite element calculation software[J]. China Rural Water and Hydropower, 2014(6): 186 − 187. (in Chinese) doi: 10.3969/j.issn.1007-2284.2014.06.045
[9] 廖勇,乐建,胡力,等. 基于Fredlund & Xing模型的渗流分析在川东红层梯田滑坡中的应用[J]. 水文地质工程地质,2023,50(3):104 − 114. [LIAO Yong,LE Jian,HU Li,et al. Application of seepage analyses based on Fredlund & Xing model in red beds terrace landslides in eastern Sichuan[J]. Hydrogeology & Engineering Geology,2023,50(3):104 − 114. (in Chinese with English abstract)]
LIAO Yong, LE Jian, HU Li, et al. Application of seepage analyses based on Fredlund & Xing model in red beds terrace landslides in eastern Sichuan[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 104 − 114. (in Chinese with English abstract)
[10] 李凡,李家科,马越,等. 地下水数值模拟研究与应用进展[J]. 水资源与水工程学报,2018,29(1):99 − 104. [LI Fan,LI Jiake,MA Yue,et al. The research and application progress of numerical simulation on groundwater[J]. Journal of Water Resources and Water Engineering,2018,29(1):99 − 104. (in Chinese with English abstract)] doi: 10.11705/j.issn.1672-643X.2018.01.16
LI Fan, LI Jiake, MA Yue, et al. The research and application progress of numerical simulation on groundwater[J]. Journal of Water Resources and Water Engineering, 2018, 29(1): 99 − 104. (in Chinese with English abstract) doi: 10.11705/j.issn.1672-643X.2018.01.16
[11] 王振宇,陈银鲁,刘国华,等. 隧道涌水量预测计算方法研究[J]. 水利水电技术,2009,40(7):41 − 44. [WANG Zhenyu,CHEN Yinlu,LIU Guohua,et al. Study on method for predicting amount of water gushing in tunnel[J]. Water Resources and Hydropower Engineering,2009,40(7):41 − 44. (in Chinese with English abstract)]
WANG Zhenyu, CHEN Yinlu, LIU Guohua, et al. Study on method for predicting amount of water gushing in tunnel[J]. Water Resources and Hydropower Engineering, 2009, 40(7): 41 − 44. (in Chinese with English abstract)
[12] 刘谋,王俊杰,吴广涛,等. 矿井涌水量预测及其对沙漠植被的影响[J]. 水文地质工程地质,2023,50(3):65 − 75. [LIU Mou,WANG Junjie,WU Guangtao,et al. Prediction of mine water inflow and analyses of its influence on desert vegetation[J]. Hydrogeology & Engineering Geology,2023,50(3):65 − 75. (in Chinese with English abstract)]
LIU Mou, WANG Junjie, WU Guangtao, et al. Prediction of mine water inflow and analyses of its influence on desert vegetation[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 65 − 75. (in Chinese with English abstract)
[13] 李舒,杨泽元,马雄德,等. 神府南区延安组含水层富水性对矿井涌水量的影响研究[J]. 煤田地质与勘探,2023,51(6):92 − 102. [LI Shu,YANG Zeyuan,MA Xiongde,et al. Influence of water yield property of Yan’an Formation aquifer on water yield of mines in southern Shenmu-Fugu mining area[J]. Coal Geology & Exploration,2023,51(6):92 − 102. (in Chinese with English abstract)] doi: 10.12363/issn.1001-1986.22.11.0874
LI Shu, YANG Zeyuan, MA Xiongde, et al. Influence of water yield property of Yan’an Formation aquifer on water yield of mines in southern Shenmu-Fugu mining area[J]. Coal Geology & Exploration, 2023, 51(6): 92 − 102. (in Chinese with English abstract) doi: 10.12363/issn.1001-1986.22.11.0874
[14] 王恩志,张东,刘晓丽,等. 裂隙岩体多结构多流态渗流模型与模拟[J]. 地球科学与环境学报,2022,44(6):894 − 902. [WANG Enzhi,ZHANG Dong,LIU Xiaoli,et al. Seepage model and simulation of multi-structure and multi-flow in fractured rock mass[J]. Journal of Earth Sciences and Environment,2022,44(6):894 − 902. (in Chinese with English abstract)]
WANG Enzhi, ZHANG Dong, LIU Xiaoli, et al. Seepage model and simulation of multi-structure and multi-flow in fractured rock mass[J]. Journal of Earth Sciences and Environment, 2022, 44(6): 894 − 902. (in Chinese with English abstract)
[15] 邬忠虎,崔恒涛,宋怀雷,等. 动力扰动下岩溶隧道突涌水渗流-应力-损伤试验研究[J]. 科学技术与工程,2023,23(5):2093 − 2099. [WU Zhonghu,CUI Hengtao,SONG Huailei,et al. Experimental study on seepage-stress-damage of Karst tunnel gushing water under dynamic disturbance[J]. Science Technology and Engineering,2023,23(5):2093 − 2099. (in Chinese with English abstract)] doi: 10.3969/j.issn.1671-1815.2023.05.037
WU Zhonghu, CUI Hengtao, SONG Huailei, et al. Experimental study on seepage-stress-damage of Karst tunnel gushing water under dynamic disturbance[J]. Science Technology and Engineering, 2023, 23(5): 2093 − 2099. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2023.05.037
[16] BELEW A Z,BELAY S K,WOSENIE M D,et al. A comparative evaluation of seepage and stability of embankment dams using GeoStudio and plaxis models:The case of gomit dam in Amhara Region,Ethiopia[J]. Water Conservation Science and Engineering,2022,7(4):429 − 441. doi: 10.1007/s41101-022-00152-1
[17] 王林峰,夏万春,冉楗,等. 考虑库水升降和滑带弱化作用的岸坡启滑机制分析[J]. 中国地质灾害与防治学报,2023,34(2):30 − 41. [WANG Linfeng,XIA Wanchun,RAN Jian,et al. Analysis on the mechanism of bank slope sliding considering the effect of reservoir water fluctuation and sliding zone weakening[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):30 − 41. (in Chinese with English abstract)]
WANG Linfeng, XIA Wanchun, RAN Jian, et al. Analysis on the mechanism of bank slope sliding considering the effect of reservoir water fluctuation and sliding zone weakening[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 30 − 41. (in Chinese with English abstract)
[18] 周洪福,聂德新,韦玉婷. 充填胶结碎裂结构岩体的成因机制及工程地质特性研究[J]. 沉积与特提斯地质,2010,30(2):108 − 112. [ZHOU Hongfu,NIE Dexin,WEI Yuting. Filling-cemented cataclastic rock masses:genetic mechanism and engineering geology[J]. Sedimentary Geology and Tethyan Geology,2010,30(2):108 − 112. (in Chinese with English abstract)] doi: 10.3969/j.issn.1009-3850.2010.02.018
ZHOU Hongfu, NIE Dexin, WEI Yuting. Filling-cemented cataclastic rock masses: genetic mechanism and engineering geology[J]. Sedimentary Geology and Tethyan Geology, 2010, 30(2): 108 − 112. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-3850.2010.02.018
[19] 王俊智,李清波,王贵军,等. 近水平层状坝基岩体渗透结构及其工程意义[J]. 水文地质工程地质,2022,49(1):12 − 19. [WANG Junzhi,LI Qingbo,WANG Guijun,et al. Permeability structure of the horizontally-stratified dam foundation rock mass and its engineering significance[J]. Hydrogeology & Engineering Geology,2022,49(1):12 − 19. (in Chinese with English abstract)]
WANG Junzhi, LI Qingbo, WANG Guijun, et al. Permeability structure of the horizontally-stratified dam foundation rock mass and its engineering significance[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 12 − 19. (in Chinese with English abstract)
[20] 中华人民共和国住房和城乡建设部,国家质量监督检验检疫总局. 水利水电工程地质勘察规范:GB 50487—2008[S]. 北京:中国计划出版社,2009. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China,General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China. Code for engineering geological invcstigation of water resources and hydropower:GB 50487—2008[S]. Beijing:China Planning Press,2009. (in Chinese)]
Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for engineering geological invcstigation of water resources and hydropower: GB 50487—2008[S]. Beijing: China Planning Press, 2009. (in Chinese)
[21] 张晓明. 地下厂房涌水量的估算[J]. 东北水利水电,2007,25(5):14 − 16. [ZHANG Xiaoming. Estimation of water yield in underground water power station[J]. Water Resources & Hydropower of Northeast China,2007,25(5):14 − 16. (in Chinese with English abstract)] doi: 10.3969/j.issn.1002-0624.2007.05.006
ZHANG Xiaoming. Estimation of water yield in underground water power station[J]. Water Resources & Hydropower of Northeast China, 2007, 25(5): 14 − 16. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-0624.2007.05.006
[22] 中华人民共和国铁道部. 铁路工程水文地质勘察规程:TB 10049—2004[S]. 北京:中国铁道出版社,2004. [Ministry of Railways of the People’s Republic of China. Code for hydrogeological investigation of railway engineering:TB 10049—2004[S]. Beijing:China Railway Publishing House,2004. (in Chinese)]
Ministry of Railways of the People’s Republic of China. Code for hydrogeological investigation of railway engineering: TB 10049—2004[S]. Beijing: China Railway Publishing House, 2004. (in Chinese)
[23] 中华人民共和国国家发展和改革委员会. 水电水利工程钻孔抽水试验规程:DL/T 5213—2005[S]. 北京:中国电力出版社,2005. [National Development and Reform Commission of the People’s Republic of China. Code of pumping test in borehole for hydropower and water conservancy engineering:DL/T 5213—2005[S]. Beijing:China Electric Power Press,2005. (in Chinese)]
National Development and Reform Commission of the People’s Republic of China. Code of pumping test in borehole for hydropower and water conservancy engineering: DL/T 5213—2005[S]. Beijing: China Electric Power Press, 2005. (in Chinese)
[24] 周亚东,姜龙飞,郭帅杰,等. 饱和-非饱和土一维大变形固结模型[J]. 防灾减灾工程学报,2022,42(3):553 − 560. [ZHOU Yadong,JIANG Longfei,GUO Shuaijie,et al. A one-dimensional large strain consolidation model for saturated-unsaturated soil[J]. Journal of Disaster Prevention and Mitigation Engineering,2022,42(3):553 − 560. (in Chinese with English abstract)]
ZHOU Yadong, JIANG Longfei, GUO Shuaijie, et al. A one-dimensional large strain consolidation model for saturated-unsaturated soil[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(3): 553 − 560. (in Chinese with English abstract)
[25] 葛中华. 土体裂缝注浆防渗的临界水力梯度及其防渗机理[J]. 南京大学学报(自然科学版),1997,33(4):571 − 579. [GE Zhonghua. The criteria hydraulic grandient and the anti-seep mechanism of the injection into the soil fracture[J]. Journal of Nanjing University (Natural Science),1997,33(4):571 − 579. (in Chinese)]
GE Zhonghua. The criteria hydraulic grandient and the anti-seep mechanism of the injection into the soil fracture[J]. Journal of Nanjing University (Natural Science), 1997, 33(4): 571 − 579. (in Chinese)
-