Geological disaster risk assessment based on ecological niche model: A case study of Longhui County, Shaoyang City
-
摘要:
地质灾害风险评价是地质灾害防治的重要手段。针对湖南省邵阳市隆回县城镇化建设引发的大量崩滑流地质灾害,为采取有效的防治措施,从地形地貌、地质构造、岩土体工程地质、人类工程活动等致灾因素方面选取13个评价因子,采用最大熵物种分布模型(MaxEnt模型)建立地质灾害危险性评价模型。从人口分布、经济背景、环境资源开发、防灾减灾能力等方面选取7个评价因子,利用系统聚类分析模型建立地质灾害易损性评价模型。综合两者的评价结果,构建研究区地质灾害风险评价模型,并将研究区划分为极低风险区、低风险区、中风险区、高风险区、极高风险区。研究结果表明:(1)在危险性评价中最大熵物种分布模型ROC的AUC值为0.918,表明模型在研究区地质灾害危险性预测中适用性较好;(2)陡坎、年平均降雨量、坡度、岩土体建造是影响研究区地质灾害发育主要的评价因子;(3)极高-高风险区面积为194.70 km2,占研究区总面积的6.80%,现有减灾能力条件下极高-高风险区的面积降低了30.38%,减灾效果较好,为隆回县地质灾害风险提供一种新的评价方法,并为政府的风险管理策略提供理论参考。
Abstract:Geological disaster risk assessment is crucial for the prevention and control of geological disasters. This study focuses on the significant number of geological disasters induced by urbanization construction in Longhui County, aiming to propose effective preventive and control measures. The study considered various disaster-inducing factors and selected 13 assessment criteria from topography and geomorphology, geological structure, engineering geology of geotechnical bodies, and human engineering activities. The MaxEnt model is employed to establish the geological disaster hazard assessment model, while 7 assessment factors are selected from population distribution, economic background, environmental resources development, disaster prevention, and mitigation capacity. The systematic cluster analysis model was then utilized to establish a geological disaster vulnerability assessment model. The results of both assessments were integrated to construct a comprehensive geological disaster risk assessment model for the region, classifying areas into extremely low risk, low risk, medium risk, high risk, and extremely high risk. The result show that the AUC value of the MaxEnt model in the hazard assessment is 0.918, indicating its strong applicability in predicting the geological disaster hazard risk in the study area. Steep canyon, average annual rainfall, slope, and geotechnical construction are identified as the main factors influencing the development of geological disasters in the study area. The area classified as extremely high to high risk covers is 194.70 km², accounting for 6.80% of the total area. Under existing disaster reduction capacity, the area with extremely high to high risk has been reduced by 30.38%, reflecting a positive impact on disaster reduction. This study introduces a novel method for the risk assessment of geological disasters in Longhui County and provides a theoretical basis for the government’s risk management strategy.
-
Key words:
- geological disasters /
- MaxEnt model /
- systematic cluster analysis model /
- hazard /
- vulnerability /
- risk assessment
-
-
表 1 地质灾害危险性分区统计表
Table 1. Geological disaster zoning statistics
危险性
等级栅格
数量/个各等级
面积/km2面积
占比/%灾害点
数量/个灾害点
占比/%灾积比 极低 1102959 996.103 34.74 14 6.31 0.182 低 867889 781.100 27.24 14 6.31 0.232 中 619650 557.685 19.45 24 10.81 0.556 高 375322 337.790 11.78 65 29.28 2.486 极高 216697 195.027 6.80 105 47.30 6.955 表 2 研究区各乡镇易损性评价因子
Table 2. Vulnerability assessment factors for each town in the study area
乡镇 H1 H2 H3 H4 H5 H6 H7 虎形山瑶族乡 140.845 10.842 0.181 0.00011 0.125 2.132 弱 鸭田镇 286.955 16.813 0.273 0.00354 0.040 2.688 弱 罗洪镇 289.877 12.231 0.299 0.00017 0.062 1.806 弱 羊古坳镇 426.478 31.142 0.323 0.00086 0.049 2.830 弱 南岳庙镇 356.873 12.500 0.276 0.00166 0.044 2.391 弱 七江镇 401.064 8.535 0.287 0.00134 0.038 2.856 较弱 小沙江镇 131.465 12.821 0.128 0.00011 0.223 2.341 较弱 麻塘山乡 133.450 14.412 0.146 0.00021 0.243 2.638 较弱 大水田乡 98.898 12.522 0.104 0.00068 0.170 2.438 较弱 荷田乡 262.137 10.598 0.178 0.00095 0.037 1.755 较弱 西洋江镇 315.639 8.607 0.212 0.00496 0.030 1.737 较弱 北山镇 263.664 11.747 0.284 0.00515 0.040 2.312 较弱 山界回族乡 362.163 28.278 0.325 0.00003 0.021 1.558 较弱 金石桥镇 271.976 3.877 0.227 0.00490 0.100 2.202 中 司门前镇 271.812 4.369 0.215 0.00560 0.048 2.213 中 高坪镇 361.363 3.150 0.286 0.00273 0.044 2.068 中 六都寨镇 289.302 3.977 0.198 0.00943 0.049 2.501 中 横板桥镇 376.186 7.177 0.294 0.00998 0.112 2.590 中 荷香桥镇 378.725 5.631 0.272 0.00727 0.024 1.803 中 滩头镇 309.045 3.666 0.305 0.00770 0.057 2.587 较强 岩口镇 240.378 3.597 0.217 0.00377 0.051 1.990 较强 周旺镇 297.469 14.647 0.286 0.01244 0.093 2.925 较强 三阁司镇 423.705 9.555 0.318 0.00844 0.076 3.120 较强 桃花坪街道 1043.569 2.392 0.274 0.09696 0.042 2.631 强 花门街道 955.751 2.863 0.336 0.12386 0.107 2.554 强 表 3 乡镇(街道)减灾能力评估指标权重
Table 3. Weights of indicators for assessing the disaster reduction capacity of towns (streets)
一级指标 一级指标权重 二级指标 二级指标权重 灾害管理能力 0.4 队伍管理能力 0.34 风险评估能力 0.33 财政投入能力 0.33 灾害备灾能力 0.3 物资储备能力 0.60 医疗保障能力 0.40 自救转移能力 0.3 自救互救能力 0.34 公众避险能力 0.33 转移安置能力 0.33 表 4 乡镇(街道)减灾能力等级
Table 4. Disaster reduction capacity levels of towns (streets)
减灾能力指数值 [μ+1.5δ,1] [μ+0.5δ,μ+1.5δ) [μ−0.5δ,μ+0.5δ) [μ−1.5δ,μ-0.5δ) [0,μ−1.5δ) 等级 强 较强 中 较弱 弱 注:μ——评估区域乡镇(街道)减灾能力指数的均值;δ——评估区域乡镇(街道)减灾能力指数的标准差。 -
[1] SHU Bo,CHEN Yang,AMANI-BENI M,et al. Spatial distribution and influencing factors of mountainous geological disasters in Southwest China:A fine-scale multi-type assessment[J]. Frontiers in Environmental Science,2022,10:1049333. doi: 10.3389/fenvs.2022.1049333
[2] 铁永波,孙强,徐勇,等. 南方山地丘陵区典型地质灾害成因机制与风险评价[J]. 中国地质调查,2022,9(4):1 − 9. [TIE Yongbo,SUN Qiang,XU Yong,et al. Genetic mechanism and risk assessment of typical geological hazards in mountainous and hilly areas of South China[J]. Geological Survey of China,2022,9(4):1 − 9. (in Chinese with English abstract)]
TIE Yongbo, SUN Qiang, XU Yong, et al. Genetic mechanism and risk assessment of typical geological hazards in mountainous and hilly areas of South China[J]. Geological Survey of China, 2022, 9(4): 1 − 9. (in Chinese with English abstract)
[3] 解明礼,巨能攀,刘蕴琨,等. 崩塌滑坡地质灾害风险排序方法研究[J]. 水文地质工程地质,2021,48(5):184 − 192. [XIE Mingli,JU Nengpan,LIU Yunkun,et al. A study of the risk ranking method of landslides and collapses[J]. Hydrogeology & Engineering Geology,2021,48(5):184 − 192. (in Chinese with English abstract)]
XIE Mingli, JU Nengpan, LIU Yunkun, et al. A study of the risk ranking method of landslides and collapses[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 184 − 192. (in Chinese with English abstract)
[4] 姬怡微,李成,高帅,等. 陕西省韩城市地质灾害风险评估[J]. 灾害学,2018,33(3):194 − 200. [JI Yiwei,LI Cheng,GAO Shuai,et al. Risk assessment of geological hazards of Hancheng City in Shaanxi Province[J]. Journal of Catastrophology,2018,33(3):194 − 200. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-811X.2018.03.037
JI Yiwei, LI Cheng, GAO Shuai, et al. Risk assessment of geological hazards of Hancheng City in Shaanxi Province[J]. Journal of Catastrophology, 2018, 33(3): 194 − 200. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2018.03.037
[5] ÖZDEMIR A,DELIKANLI M. A geotechnical investigation of the retrogressive Yaka Landslide and the debris flow threatening the town of Yaka (Isparta,SW Turkey)[J]. Natural Hazards,2009,49(1):113 − 136. doi: 10.1007/s11069-008-9282-y
[6] YALCIN A,REIS S,AYDINOGLU A C,et al. A GIS-based comparative study of frequency ratio,analytical hierarchy process,bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon,NE Turkey[J]. CATENA,2011,85(3):274 − 287. doi: 10.1016/j.catena.2011.01.014
[7] YOUSSEF A M,POURGHASEMI H R. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin,Asir Region,Saudi Arabia[J]. Geoscience Frontiers,2021,12(2):639 − 655. doi: 10.1016/j.gsf.2020.05.010
[8] 张钟远,邓明国,徐世光,等. 镇康县滑坡易发性评价模型对比研究[J]. 岩石力学与工程学报,2022,41(1):157 − 171. [ZHANG Zhongyuan,DENG Mingguo,XU Shiguang,et al. Comparison of landslide susceptibility assessment models in Zhenkang County,Yunnan Province,China[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(1):157 − 171. (in Chinese with English abstract)]
ZHANG Zhongyuan, DENG Mingguo, XU Shiguang, et al. Comparison of landslide susceptibility assessment models in Zhenkang County, Yunnan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 157 − 171. (in Chinese with English abstract)
[9] 刘宝生,陈刚,程刚建. 江苏南京地质灾害风险评价[J]. 中国地质灾害与防治学报,2023,34(4):97 − 104. [LIU Baosheng,CHEN Gang,CHENG Gangjian. Risk assessment of geological disasters in Nanjing,Jiangsu Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):97 − 104. (in Chinese with English abstract)]
LIU Baosheng, CHEN Gang, CHENG Gangjian. Risk assessment of geological disasters in Nanjing, Jiangsu Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 97 − 104. (in Chinese with English abstract)
[10] 张群,易靖松,张勇,等. 西南山区县域单元的地质灾害风险评价——以怒江流域泸水市为例[J]. 自然灾害学报,2022,31(5):212 − 221. [ZHANG Qun,YI Jingsong,ZHANG Yong,et al. Geohazard risk assessment about county units in southwest mountainous areas of China:Take Lushui County of Nujiang River Basin as an example[J]. Journal of Natural Disasters,2022,31(5):212 − 221. (in Chinese with English abstract)]
ZHANG Qun, YI Jingsong, ZHANG Yong, et al. Geohazard risk assessment about county units in southwest mountainous areas of China: Take Lushui County of Nujiang River Basin as an example[J]. Journal of Natural Disasters, 2022, 31(5): 212 − 221. (in Chinese with English abstract)
[11] 陈水满,赵辉龙,许震,等. 基于人工神经网络模型的福建南平市滑坡危险性评价[J]. 中国地质灾害与防治学报,2022,33(2):133 − 140. [CHEN Shuiman,ZHAO Huilong,XU Zhen,et al. Landslide risk assessment in Nanping City based on artificial neural networks model[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):133 − 140. (in Chinese with English abstract)]
CHEN Shuiman, ZHAO Huilong, XU Zhen, et al. Landslide risk assessment in Nanping City based on artificial neural networks model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 133 − 140. (in Chinese with English abstract)
[12] 罗路广,裴向军,谷虎,等. 基于GIS的“8.8” 九寨沟地震景区地质灾害风险评价[J]. 自然灾害学报,2020,29(3):193 − 202. [LUO Luguang,PEI Xiangjun,GU Hu,et al. Risk assessment of geohazards induced by “8.8” earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters,2020,29(3):193 − 202. (in Chinese with English abstract)]
LUO Luguang, PEI Xiangjun, GU Hu, et al. Risk assessment of geohazards induced by “8.8” earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters, 2020, 29(3): 193 − 202. (in Chinese with English abstract)
[13] 李冠宇,李鹏,郭敏,等. 基于聚类分析法的地质灾害风险评价——以韩城市为例[J]. 科学技术与工程,2021,21(25):10629 − 10638. [LI Guanyu,LI Peng,GUO Min,et al. Application of cluster analysis method in geological hazard risk assessment:A case study of Hancheng City[J]. Science Technology and Engineering,2021,21(25):10629 − 10638. (in Chinese with English abstract)]
LI Guanyu, LI Peng, GUO Min, et al. Application of cluster analysis method in geological hazard risk assessment: A case study of Hancheng City[J]. Science Technology and Engineering, 2021, 21(25): 10629 − 10638. (in Chinese with English abstract)
[14] PHILLIPS S J,ANDERSON R P,SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling,2006,190(3/4):231 − 259.
[15] TAFESSE B,BEKELE T,DEMISSEW S,et al. Conservation implications of mapping the potential distribution of an Ethiopian endemic versatile medicinal plant,Echinops kebericho Mesfin[J]. Ecology and Evolution,2023,13(5):e10061. doi: 10.1002/ece3.10061
[16] 刘凡,邓亚虹,慕焕东,等. 基于最大熵-无限边坡模型的降雨诱发浅层黄土滑坡稳定性评价方法研究[J]. 水文地质工程地质,2023,50(5):146 − 158. [LIU Fan,DENG Yahong,MU Huandong,et al. A study of the stability evaluation method of rainfall-induced shallow loess landslides based on the Maxent-Sinmap slope model[J]. Hydrogeology & Engineering Geology,2023,50(5):146 − 158. (in Chinese with English abstract)]
LIU Fan, DENG Yahong, MU Huandong, et al. A study of the stability evaluation method of rainfall-induced shallow loess landslides based on the Maxent-Sinmap slope model[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 146 − 158. (in Chinese with English abstract)
[17] 万洋,郭捷,马凤山,等. 基于最大熵模型的中尼交通廊道滑坡易发性分析[J]. 中国地质灾害与防治学报,2022,33(2):88 − 95. [WAN Yang,GUO Jie,MA Fengshan,et al. Landslide susceptibility assessment based on MaxEnt model of along Sino-Nepal traffic corridor[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):88 − 95. (in Chinese with English abstract)]
WAN Yang, GUO Jie, MA Fengshan, et al. Landslide susceptibility assessment based on MaxEnt model of along Sino-Nepal traffic corridor[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 88 − 95. (in Chinese with English abstract)
[18] BOUSSOUF S,FERNÁNDEZ T,HART A B. Landslide susceptibility mapping using maximum entropy (MaxEnt) and geographically weighted logistic regression (GWLR) models in the Río Aguas catchment (Almería,SE Spain)[J]. Natural Hazards,2023,117(1):207 − 235. doi: 10.1007/s11069-023-05857-7
[19] MEMARIAN H,ABDI BASTAMI S,AKBARI M,et al. An integrative approach of the physical-based stability index mapping with the maximum entropy stochastic model for risk analysis of mass movements[J]. Environment,Development and Sustainability,2023,25(3):2808 − 2830.
[20] ALI N,CHEN Jian,FU Xiaodong,et al. Classification of reservoir quality using unsupervised machine learning and cluster analysis:Example from kadanwari gas field,SE Pakistan[J]. Geosystems and Geoenvironment,2023,2(1):100123. doi: 10.1016/j.geogeo.2022.100123
[21] 李芳菲,李丽,吴巩胜,等. 基于最大熵模型的青海祁连山雪豹生境适宜性评价[J]. 生态学报,2023,43(6):2202 − 2209. [LI Fangfei,LI Li,WU Gongsheng,et al. Habitat suitability assessment of Panthera uncia in Qilian Mountains of Qinghai based on MAXENT modeling[J]. Acta Ecologica Sinica,2023,43(6):2202 − 2209. (in Chinese with English abstract)]
LI Fangfei, LI Li, WU Gongsheng, et al. Habitat suitability assessment of Panthera uncia in Qilian Mountains of Qinghai based on MAXENT modeling[J]. Acta Ecologica Sinica, 2023, 43(6): 2202 − 2209. (in Chinese with English abstract)
[22] 陈立华,李立丰,吴福,等. 基于GIS与信息量法的北流市地质灾害易发性评价[J]. 地球与环境,2020,48(4):471 − 479. [CHEN Lihua,LI Lifeng,WU Fu,et al. Evaluation of the geological hazard vulnerability in the Beiliu City based on GIS and information value model[J]. Earth and Environment,2020,48(4):471 − 479. (in Chinese with English abstract)]
CHEN Lihua, LI Lifeng, WU Fu, et al. Evaluation of the geological hazard vulnerability in the Beiliu City based on GIS and information value model[J]. Earth and Environment, 2020, 48(4): 471 − 479. (in Chinese with English abstract)
[23] CONVERTINO M,TROCCOLI A,CATANI F. Detecting fingerprints of landslide drivers:A MaxEnt model[J]. Journal of Geophysical Research:Earth Surface,2013,118(3):1367 − 1386. doi: 10.1002/jgrf.20099
[24] RUSK J,MAHARJAN A,TIWARI P,et al. Multi-hazard susceptibility and exposure assessment of the Hindu Kush Himalaya[J]. Science of the Total Environment,2022,804:150039. doi: 10.1016/j.scitotenv.2021.150039
[25] 石莉莉,乔建平. 基于GIS和贡献权重迭加方法的区域滑坡灾害易损性评价[J]. 灾害学,2009,24(3):46 − 50. [SHI Lili,QIAO Jianping. Vulnerability evaluation on regional landslides based on GIS and contribution weight superposition approach[J]. Journal of Catastrophology,2009,24(3):46 − 50. (in Chinese with English abstract)]
SHI Lili, QIAO Jianping. Vulnerability evaluation on regional landslides based on GIS and contribution weight superposition approach[J]. Journal of Catastrophology, 2009, 24(3): 46 − 50. (in Chinese with English abstract)
[26] 周超,常鸣,徐璐,等. 贵州省典型城镇矿山地质灾害风险评价[J]. 武汉大学学报(信息科学版),2020,45(11):1782 − 1791. [ZHOU Chao,CHANG Ming,XU Lu,et al. Risk assessment of typical urban mine geological disasters in Guizhou Province[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1782 − 1791. (in Chinese with English abstract)]
ZHOU Chao, CHANG Ming, XU Lu, et al. Risk assessment of typical urban mine geological disasters in Guizhou Province[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1782 − 1791. (in Chinese with English abstract)
[27] 李玲玲,刘劲松,李智,等. 人口密度随机森林模型优化实验研究[J]. 地理学报,2023,78(5):1304 − 1320. [LI Lingling,LIU Jinsong,LI Zhi,et al. Experimental study of population density using an optimized random forest model[J]. Acta Geographica Sinica,2023,78(5):1304 − 1320. (in Chinese with English abstract)]
LI Lingling, LIU Jinsong, LI Zhi, et al. Experimental study of population density using an optimized random forest model[J]. Acta Geographica Sinica, 2023, 78(5): 1304 − 1320. (in Chinese with English abstract)
-