Development of overlying strata collapse and water-conducting fractured zone in shallow coal seams mining
-
摘要:
浅埋煤层群井下开采对上覆岩层有较大影响,不仅会加剧地表沉陷,而且可能造成地表和地下水流失,影响生态环境和发展安全。为进一步掌握浅埋煤层群开采过程中覆岩垮落规律和裂隙分布特征,以宁夏石嘴山二矿2#、3#、5#和6#煤层为研究对象,分别采用相似材料模拟试验、数值模拟和经验公式计算,分析导水裂隙带发育规律;同时采用相似材料模拟试验方法,分析一次采动和多次采动覆岩垮落规律。研究结果表明:(1)浅埋近距离煤层群开采时,上层煤周期来压步距大于下层;(2)单层煤开采时,上覆岩层垮落以“铰接结构”和“台阶结构”形式出现,两层及多层煤开采时,“铰接结构”稳定性明显降低,垮落结构主要以“台阶结构”稳定在采空区上方;(3)一次采动时形成“梯形”裂隙区,二次采动时形成“M”形裂隙区,多次采动时形成两个“等腰梯形”裂隙区;(4)导水裂隙带发育高度一次采动时呈平稳增长—缓慢变化趋势,重复采动时,导水裂隙带发育高度则呈快速增长—平稳增长趋势;(5)相似材料模拟试验值及数值模拟结果与实测值较为接近,且均符合煤矿防治水规定。该结果可为类似矿区煤层群高效开采提供参考依据。
Abstract:Shallow underground mining of coal seams has significant impacts on the overlying rock formations, not only exacerbating surface subsidence but also potentially leading to surface and groundwater loss, thereby affecting the development and safety of the ecological environment. To further understand the collapse law and fracture distribution characteristics of overlying strata during the shallow coal seam mining process, a study was conducted on the 2#, 3#, 5#, and 6# coal seams of the Shizuishan No. 2 Mine in Ningxia. Similar material simulation tests, numerical simulations, and empirical formula calculations were employed to analyze the development of water-bearing fracture zones and the collapse characteristic of the overlying strata under single and multiple mining operations. The results indicate that: (1) During the mining of shallow and closely spaced coal seams, the gob-side entry retention time of the upper coal seam is greater than that of the lower coal seam. (2) When mining a single coal seam, the collapse of the overlying strata occurs in the form of “hinged structure” and “step structure”. As to the mining of two or more coal seams, the stability of the “hinged structure” decreases significantly and the collapse structure mainly stabilizes as a “step structure” above the goaf. (3) During the initial mining, a “trapezoidal” fracture zone is formed, while during the secondary mining, an “M-shaped” fracture zone is formed, and during multiple mining operations, two “isosceles trapezoidal” fracture zones are formed. (4) The development height of the water-bearing fracture zone shows a steady increase or slow change during the initial mining. While during repetitive mining, the development height of the water-bearing fracture zone shows a rapid increase to steady growth. (5) The values obtained from the similar material simulation tests and numerical simulations are similar to the measured values, and all of them comply with the regulations for coal mine water control. These results can provide a basis for the efficient mining of coal seam groups in similar mining areas.
-
-
表 1 模型厚度及岩石力学参数
Table 1. Model thickness and rock mechanics parameters
岩性 模型厚度/cm 累计厚度/cm 密度/(kg·m−3) 体积模量/MPa 剪切模量/MPa 抗拉强度/MPa 黏聚力/MPa 内摩擦角/(°) 泊松比 砂岩 31.45 31.45 2 400 45 000 6 000 5.65 35.0 45 0.30 2#煤 4.22 35.67 1 900 2 000 200 1.11 3.0 25 0.35 砂岩 3.16 38.83 2 400 45 000 6 000 5.65 35.0 45 0.30 3#煤 7.38 46.21 1 900 2 000 200 1.11 3.0 25 0.35 砂质页岩 15.83 62.04 2 100 30 000 4 000 3.64 17.0 30 0.30 页岩 12.78 74.82 2 380 69 700 4 650 3.20 3.1 40 0.40 砂岩 7.23 82.05 2 400 45 000 6 000 5.65 35.0 45 0.30 砂质页岩 4.13 86.18 2 100 30 000 4 000 3.64 17.0 30 0.30 砂岩 4.13 90.31 2 400 45 000 6 000 5.65 35.0 45 0.30 砂质页岩 20.66 110.97 2 100 30 000 4 000 3.64 17.0 30 0.30 灰岩 4.13 115.10 2 700 15 700 2 830 8.42 40.0 40 0.23 砂岩 6.20 121.30 2 400 45 000 6 000 5.65 35.0 45 0.30 砂质页岩 7.23 128.53 2 100 30 000 4 000 3.64 17.0 30 0.30 砂岩 8.26 136.79 2 400 45 000 6 000 5.65 35.0 45 0.30 砂质页岩 3.10 139.89 2 100 30 000 4 000 3.64 17.0 30 0.30 5#煤 2.07 141.96 1 900 2 000 200 1.11 3.0 25 0.35 砂岩 2.07 144.03 2 400 45 000 6 000 5.65 35.0 45 0.30 砂质页岩 2.58 146.61 2 100 30 000 4 000 3.64 17.0 30 0.30 6#煤 11.36 157.97 1 900 2 000 200 1.11 3.0 25 0.35 砂岩 7.23 165.20 2 400 45 000 6 000 5.65 35.0 45 0.30 7#煤 1.55 166.75 1 900 2 000 200 1.11 3.0 25 0.35 砂岩 3.61 170.36 2 400 45 000 6 000 5.65 35.0 45 0.30 灰岩 3.10 173.46 2 700 15 700 2 830 8.42 40.0 40 0.23 表 2 岩层材料配比表
Table 2. Rock layer material ratios
岩层名称 累计厚度/cm 配比号 河砂/kg 石膏/kg 大白粉/kg 砂岩 73.34 728 492.8 42.24 168.98 煤 26.58 928 229.7 15.31 61.24 砂质页岩 53.53 864 411.1 92.5 61.67 页岩 12.78 737 85.88 11.04 25.76 灰岩 7.23 628 41.64 4.16 16.66 表 3 2#煤层回采来压步距
Table 3. Pressure step of 2# coal seam mining
来压次数 推进距离/m 来压步距/m 来压次数 推进距离/m 来压步距/m 初次来压 53 18 5 155 24 1 71 18 6 177 22 2 89 18 7 201 24 3 109 20 8 219 18 4 131 22 9 240 21 表 4 3#煤层回采来压步距
Table 4. Pressure step of 3# coal seam mining
来压次数 推进距离/m 来压步距/m 来压次数 推进距离/m 来压步距/m 初次来压 31 31 11 131 6 1 45 14 12 143 12 2 53 8 13 151 8 3 61 8 14 163 12 4 67 6 15 169 6 5 74 7 16 189 20 6 87 13 17 195 6 7 93 6 18 203 8 8 109 16 19 210 7 9 115 6 20 217 7 10 125 10 表 5 5#煤层回采来压步距
Table 5. Pressure step of 5# coal seam mining
来压次数 推进距离/m 来压步距/m 来压次数 推进距离/m 来压步距/m 初次来压 56 24 5 182 26 1 80 24 6 206 24 2 104 24 7 224 18 3 130 26 8 240 16 4 156 26 表 6 6#煤层回采来压步距
Table 6. Pressure step of 6# coal seam mining
来压次数 推进距离/m 来压步距/m 来压次数 推进距离/m 来压步距/m 初次来压 28 28 8 132 12 1 38 10 9 148 16 2 56 18 10 159 11 3 74 18 11 168 9 4 86 12 12 174 6 5 98 12 13 200 26 6 112 14 14 210 10 7 120 8 15 220 10 表 7 不同方法导水裂隙带发育高度对比表
Table 7. Comparison of development height of water-conducting fracture zone in different methods
取值类型 2#煤导水裂隙带发育高度/m 5#煤导水裂隙带发育高度/m 误差/% 6#煤导水裂隙带发育高度/m 误差/% 实测值 31.45 35.00 0 104.00 0 相似材料模拟试验值 31.45 33.42 4.5 93.12 10.4 数值模拟值 31.45 25.20 28.0 95.62 8.0 经验公式值 36.14~62.66 16.41~39.39 90.97~117.49 -
[1] 杜君武,黄庆享. 浅埋煤层群不同煤柱错距覆岩结构演化规律及煤柱稳定性分析[J]. 采矿与岩层控制工程学报,2022,4(1):12 − 20. [DU Junwu,HUANG Qingxiang. Overburden structure evolution and coal pillar stability analysis with different offset distance of coal Pillars in shallow multi-seam[J]. Journal of Mining and Strata Control Engineering,2022,4(1):12 − 20. (in Chinese with English abstract)]
DU Junwu, HUANG Qingxiang. Overburden structure evolution and coal pillar stability analysis with different offset distance of coal Pillars in shallow multi-seam[J]. Journal of Mining and Strata Control Engineering, 2022, 4(1): 12 − 20. (in Chinese with English abstract)
[2] 卢少帅,高超,霍军鹏,等. 韩家湾煤矿浅埋近距离煤层群覆岩破坏规律研究[J]. 煤炭工程,2022,54(1):107 − 111. [LU Shaoshuai,GAO Chao,HUO Junpeng,et al. Failure law of overburden under shallow contiguous coal seams in Hanjiawan Coal Mine[J]. Coal Engineering,2022,54(1):107 − 111. (in Chinese with English abstract)]
LU Shaoshuai, GAO Chao, HUO Junpeng, et al. Failure law of overburden under shallow contiguous coal seams in Hanjiawan Coal Mine[J]. Coal Engineering, 2022, 54(1): 107 − 111. (in Chinese with English abstract)
[3] 刘谋,王俊杰,吴广涛,等. 矿井涌水量预测及其对沙漠植被的影响[J]. 水文地质工程地质,2023,50(3):65 − 75. [LIU Mou,WANG Junjie,WU Guangtao,et al. Prediction of mine water inflow and analyses of its influence on desert vegetation[J]. Hydrogeology & Engineering Geology,2023,50(3):65 − 75. (in Chinese with English abstract)]
LIU Mou, WANG Junjie, WU Guangtao, et al. Prediction of mine water inflow and analyses of its influence on desert vegetation[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 65 − 75. (in Chinese with English abstract)
[4] 陈建平,李金柱,王雪冬,等. 改进脆弱性指数法在煤矿底板突水评价中的应用[J]. 中国地质灾害与防治学报,2019,30(3):67 − 74. [CHEN Jianping,LI Jinzhu,WANG Xuedong,et al. Improved vulnerability index method for evaluating water inrush from the floor of coal seam[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):67 − 74. (in Chinese with English abstract)]
CHEN Jianping, LI Jinzhu, WANG Xuedong, et al. Improved vulnerability index method for evaluating water inrush from the floor of coal seam[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(3): 67 − 74. (in Chinese with English abstract)
[5] 田华,杨嘉懿,韩强强,等. 煤炭开采对地下水的影响预测[J]. 煤炭技术,2021,40(12):110 − 114. [TIAN Hua,YANG Jiayi,HAN Qiangqiang,et al. Prediction of impact of coal mining on groundwater[J]. Coal Technology,2021,40(12):110 − 114. (in Chinesee with English abstract)]
TIAN Hua, YANG Jiayi, HAN Qiangqiang, et al. Prediction of impact of coal mining on groundwater[J]. Coal Technology, 2021, 40(12): 110 − 114. (in Chinesee with English abstract)
[6] DU Feng,WANG Wenqiang,LI Zhenhu. Study on the evolution law of fracture field in full-mechanized caving mining of double system and extrathick coal seam[J]. Advances in Civil Engineering,2020,2020:8880526.
[7] PRAKASH A,KUMAR A,VERMA A,et al. Trait of subsidence under high rate of coal extraction by longwall mining:some inferences[J]. Sādhanā,2021,46(4):216.
[8] 韦华鹏,罗奇斌,康卫东,等. 基于不同开采方式的煤矿涌水量预测及其环境影响分析[J]. 水文地质工程地质,2023,50(1):21 − 31. [WEI Huapeng,LUO Qibin,KANG Weidong,et al. Prediction of coal mine water inflow by different mining methods and environment impact analyses[J]. Hydrogeology & Engineering Geology,2023,50(1):21 − 31. (in Chinese with English abstract)]
WEI Huapeng, LUO Qibin, KANG Weidong, et al. Prediction of coal mine water inflow by different mining methods and environment impact analyses[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 21 − 31. (in Chinese with English abstract)
[9] 甘智慧,尚慧,杜荣军,等. 基于FLAC3D和DEM数据的缓倾斜煤层开采沉陷分析[J]. 煤田地质与勘探,2021,49(3):158 − 166. [GAN Zhihui,SHANG Hui,DU Rongjun,et al. Mining subsidence analysis of gently inclined coal seams based on FLAC3D and DEM data[J]. Coal Geology & Exploration,2021,49(3):158 − 166. (in Chinese with English abstract)]
GAN Zhihui, SHANG Hui, DU Rongjun, et al. Mining subsidence analysis of gently inclined coal seams based on FLAC3D and DEM data[J]. Coal Geology & Exploration, 2021, 49(3): 158 − 166. (in Chinese with English abstract)
[10] JENA S K,LOKHANDE R D,PRADHAN M,et al. Development of a model to estimate strata behavior during bord and pillar extraction in underground coal mining[J]. Arabian Journal of Geosciences,2019,12(7):242.
[11] ZHANG Dingyang,SUI Wanghua. Orthogonal array analysis of overburden failure due to mining of multiple coal seams[J]. Journal of the Southern African Institute of Mining and Metallurgy,2019,119(10):801 − 810.
[12] ZHOU Yang,YU Xueyi. Study of the evolution of water-conducting fracture zones in overlying rock of a fully mechanized caving face in gently inclined extra-thick coal seams[J]. Applied Sciences,2022,12(18):9057. doi: 10.3390/app12189057
[13] 杨科,刘文杰,焦彪,等. 深部厚硬顶板综放开采覆岩运移三维物理模拟试验研究[J]. 岩土工程学报,2021,43(1):85 − 93. [YANG Ke,LIU Wenjie,JIAO Biao,et al. Three-dimensional physical simulation of overburden migration in deep thick hard roof fully-mechanized caving mining[J]. Chinese Journal of Geotechnical Engineering,2021,43(1):85 − 93. (in Chinese with English abstract)]
YANG Ke, LIU Wenjie, JIAO Biao, et al. Three-dimensional physical simulation of overburden migration in deep thick hard roof fully-mechanized caving mining[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 85 − 93. (in Chinese with English abstract)
[14] 康国彪,卞涛,蒲平武. 大采高工作面覆岩导水裂隙带发育高度及其影响因素研究[J]. 煤炭科学技术,2021,49(增刊2):19 − 24. [KANG Guobiao,BIAN Tao,PU Pingwu. Study on development height and influencing factors of overburden water conducting fracture zone in large mining height face[J]. Coal Science and Technology,2021,49(S2):19 − 24. (in Chinese with English abstract)]
KANG Guobiao, BIAN Tao, PU Pingwu. Study on development height and influencing factors of overburden water conducting fracture zone in large mining height face[J]. Coal Science and Technology, 2021, 49(S2): 19 − 24. (in Chinese with English abstract)
[15] 张纪星,师修昌. 浅埋采空区大采高条件下覆岩破坏规律[J]. 中国地质灾害与防治学报,2019,30(5):92 − 97. [ZHANG Jixing,SHI Xiuchang. Failure of overburden rock under large mining height in shallow buried goaf area[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):92 − 97. (in Chinese with English abstract)]
ZHANG Jixing, SHI Xiuchang. Failure of overburden rock under large mining height in shallow buried goaf area[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(5): 92 − 97. (in Chinese with English abstract)
[16] QI Yun,WANG Wei,GE Jiaqi,et al. Development characteristics of the rock fracture field in strata overlying a mined coal seam group[J]. PLoS One,2022,17(10):e0268955. doi: 10.1371/journal.pone.0268955
[17] ZHANG Dingyang,SUI Wanghua,LIU Jiawei. Overburden failure associated with mining coal seams in close proximity in ascending and descending sequences under a large water body[J]. Mine Water and the Environment,2018,37(2):322 − 335. doi: 10.1007/s10230-017-0502-0
[18] 来兴平,张旭东,单鹏飞,等. 厚松散层下三软煤层开采覆岩导水裂隙发育规律[J]. 岩石力学与工程学报,2021,40(9):1739 − 1750. [LAI Xingping,ZHANG Xudong,SHAN Pengfei,et al. Study on development law of water-conducting fractures in overlying strata of three soft coal seam mining under thick loose layers[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(9):1739 − 1750. (in Chinese with English abstract)]
LAI Xingping, ZHANG Xudong, SHAN Pengfei, et al. Study on development law of water-conducting fractures in overlying strata of three soft coal seam mining under thick loose layers[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(9): 1739 − 1750. (in Chinese with English abstract)
[19] 李建华,王帅,贺艳军,等. 煤层群叠加开采采空区覆岩裂隙演化规律研究[J]. 煤炭工程,2021,53(12):92 − 96. [LI Jianhua,WANG Shuai,HE Yanjun,et al. Fissure evolution of gob overlying strata under superimposed mining in coal seams group[J]. Coal Engineering,2021,53(12):92 − 96. (in Chinese with English abstract)]
LI Jianhua, WANG Shuai, HE Yanjun, et al. Fissure evolution of gob overlying strata under superimposed mining in coal seams group[J]. Coal Engineering, 2021, 53(12): 92 − 96. (in Chinese with English abstract)
[20] 潘瑞凯,曹树刚,李勇,等. 浅埋近距离双厚煤层开采覆岩裂隙发育规律[J]. 煤炭学报,2018,43(8):2261 − 2268. [PAN Ruikai,CAO Shugang,LI Yong,et al. Development of overburden fractures for shallow double thick seams mining[J]. Journal of China Coal Society,2018,43(8):2261 − 2268. (in Chinese with English abstract)]
PAN Ruikai, CAO Shugang, LI Yong, et al. Development of overburden fractures for shallow double thick seams mining[J]. Journal of China Coal Society, 2018, 43(8): 2261 − 2268. (in Chinese with English abstract)
[21] SUI Wanghua,HANG Yuan,MA Luxing,et al. Interactions of overburden failure zones due to multiple-seam mining using longwall caving[J]. Bulletin of Engineering Geology and the Environment,2015,74(3):1019 − 1035. doi: 10.1007/s10064-014-0674-9
[22] 张杰,何义峰,罗南洪,等. 浅埋煤层群重复采动覆岩运移及裂隙演化规律研究[J]. 煤矿安全,2022,53(3):58 − 65. [ZHANG Jie,HE Yifeng,LUO Nanhong,et al. Research on overburden movement and fracture evolution of repeated mining in shallow coal seams group[J]. Safety in Coal Mines,2022,53(3):58 − 65. (in Chinese with English abstract)]
ZHANG Jie, HE Yifeng, LUO Nanhong, et al. Research on overburden movement and fracture evolution of repeated mining in shallow coal seams group[J]. Safety in Coal Mines, 2022, 53(3): 58 − 65. (in Chinese with English abstract)
[23] 曹晓毅,刘小平,田延哲. 煤层重复采动对水渠稳定性及渗漏性影响评价[J]. 煤田地质与勘探,2018,46(4):93 − 98. [CAO Xiaoyi,LIU Xiaoping,TIAN Yanzhe. Evaluation on influence of repeated coal mining on the stability and leakage of irrigation canal[J]. Coal Geology & Exploration,2018,46(4):93 − 98. (in Chinese with English abstract)]
CAO Xiaoyi, LIU Xiaoping, TIAN Yanzhe. Evaluation on influence of repeated coal mining on the stability and leakage of irrigation canal[J]. Coal Geology & Exploration, 2018, 46(4): 93 − 98. (in Chinese with English abstract)
[24] 尚慧. 宁夏矿山地质环境评价与动态监测分析[D]. 西安:长安大学,2013. [SHANG Hui. Assessment and Dynamic Monitoring of Mining Geo-environment in Ningxia[D]. Xi’an:Chang’an University,2013. (in Chinese with English abstract)]
SHANG Hui. Assessment and Dynamic Monitoring of Mining Geo-environment in Ningxia[D]. Xi’an: Chang’an University, 2013. (in Chinese with English abstract)
[25] 皮希宇. 煤层群采动卸压煤与覆岩裂隙演化特征及其对瓦斯抽采的影响[D]. 北京:北京科技大学,2021. [PI Xiyu. Evolution Characteristics of Cracks in Coal and Overlying Strata Caused by Mining of Coal Seams and Their Influence on Gas Drainage[D]. Beijing:University of Science and Technology Beijing,2021. (in Chinese with English abstract)]
PI Xiyu. Evolution Characteristics of Cracks in Coal and Overlying Strata Caused by Mining of Coal Seams and Their Influence on Gas Drainage[D]. Beijing: University of Science and Technology Beijing, 2021. (in Chinese with English abstract)
-