浅埋煤层群开采覆岩垮落及导水裂隙带发育规律研究

尚慧, 柳思航, 甘智慧, 苏理想, 刘阳. 浅埋煤层群开采覆岩垮落及导水裂隙带发育规律研究[J]. 水文地质工程地质, 2025, 52(2): 125-137. doi: 10.16030/j.cnki.issn.1000-3665.202309025
引用本文: 尚慧, 柳思航, 甘智慧, 苏理想, 刘阳. 浅埋煤层群开采覆岩垮落及导水裂隙带发育规律研究[J]. 水文地质工程地质, 2025, 52(2): 125-137. doi: 10.16030/j.cnki.issn.1000-3665.202309025
SHANG Hui, LIU Sihang, GAN Zhihui, SU Lixiang, LIU Yang. Development of overlying strata collapse and water-conducting fractured zone in shallow coal seams mining[J]. Hydrogeology & Engineering Geology, 2025, 52(2): 125-137. doi: 10.16030/j.cnki.issn.1000-3665.202309025
Citation: SHANG Hui, LIU Sihang, GAN Zhihui, SU Lixiang, LIU Yang. Development of overlying strata collapse and water-conducting fractured zone in shallow coal seams mining[J]. Hydrogeology & Engineering Geology, 2025, 52(2): 125-137. doi: 10.16030/j.cnki.issn.1000-3665.202309025

浅埋煤层群开采覆岩垮落及导水裂隙带发育规律研究

  • 基金项目: 国家自然科学基金项目(41702377);陕西省自然科学基础研究计划项目(2017JQ4008)
详细信息
    作者简介: 尚慧(1985—),女,博士,讲师,硕士生导师,从事岩土体稳定性与地质灾害防治、矿山环境方面研究。E-mail:shanghui@xust.edu.cn
    通讯作者: 柳思航(1999—),男,硕士研究生,从事岩土体稳定性与地质灾害防治方面研究。E-mail:393177562@qq.com
  • 中图分类号: TD325

Development of overlying strata collapse and water-conducting fractured zone in shallow coal seams mining

  • Fund Project: National Natural Science Foundation of China (41702377); Natural Science Basic Research Program of Shaanxi Province (2017JQ4008)
More Information
  • 浅埋煤层群井下开采对上覆岩层有较大影响,不仅会加剧地表沉陷,而且可能造成地表和地下水流失,影响生态环境和发展安全。为进一步掌握浅埋煤层群开采过程中覆岩垮落规律和裂隙分布特征,以宁夏石嘴山二矿2#、3#、5#和6#煤层为研究对象,分别采用相似材料模拟试验、数值模拟和经验公式计算,分析导水裂隙带发育规律;同时采用相似材料模拟试验方法,分析一次采动和多次采动覆岩垮落规律。研究结果表明:(1)浅埋近距离煤层群开采时,上层煤周期来压步距大于下层;(2)单层煤开采时,上覆岩层垮落以“铰接结构”和“台阶结构”形式出现,两层及多层煤开采时,“铰接结构”稳定性明显降低,垮落结构主要以“台阶结构”稳定在采空区上方;(3)一次采动时形成“梯形”裂隙区,二次采动时形成“M”形裂隙区,多次采动时形成两个“等腰梯形”裂隙区;(4)导水裂隙带发育高度一次采动时呈平稳增长—缓慢变化趋势,重复采动时,导水裂隙带发育高度则呈快速增长—平稳增长趋势;(5)相似材料模拟试验值及数值模拟结果与实测值较为接近,且均符合煤矿防治水规定。该结果可为类似矿区煤层群高效开采提供参考依据。

  • 加载中
  • 图 1  研究区地理位置图

    Figure 1. 

    图 2  石嘴山二矿2—2'地层剖面图

    Figure 2. 

    图 3  物理模型开采范围及测点布置图(单位:cm)

    Figure 3. 

    图 4  2#煤层覆岩垮落图

    Figure 4. 

    图 5  3#煤层覆岩垮落图

    Figure 5. 

    图 6  5#煤层覆岩垮落图

    Figure 6. 

    图 7  6#煤层覆岩垮落图

    Figure 7. 

    图 8  2#煤层回采裂隙发育图

    Figure 8. 

    图 9  2#煤层推进155 m时地表裂隙图

    Figure 9. 

    图 10  双重扰动覆岩裂隙分布

    Figure 10. 

    图 11  5#煤层回采时裂隙发育情况

    Figure 11. 

    图 12  6#煤层回采覆岩裂隙分布图

    Figure 12. 

    图 13  工作面推进长度与导水裂隙带发育高度曲线

    Figure 13. 

    图 14  3DEC数值模拟模型

    Figure 14. 

    图 15  2#煤层开采覆岩导水裂隙数值模拟图

    Figure 15. 

    图 16  5#煤层开采覆岩导水裂隙数值模拟图

    Figure 16. 

    图 17  6#煤层开采覆岩导水裂隙数值模拟图

    Figure 17. 

    表 1  模型厚度及岩石力学参数

    Table 1.  Model thickness and rock mechanics parameters

    岩性 模型厚度/cm 累计厚度/cm 密度/(kg·m−3 体积模量/MPa 剪切模量/MPa 抗拉强度/MPa 黏聚力/MPa 内摩擦角/(°) 泊松比
    砂岩 31.45 31.45 2 400 45 000 6 000 5.65 35.0 45 0.30
    2# 4.22 35.67 1 900 2 000 200 1.11 3.0 25 0.35
    砂岩 3.16 38.83 2 400 45 000 6 000 5.65 35.0 45 0.30
    3# 7.38 46.21 1 900 2 000 200 1.11 3.0 25 0.35
    砂质页岩 15.83 62.04 2 100 30 000 4 000 3.64 17.0 30 0.30
    页岩 12.78 74.82 2 380 69 700 4 650 3.20 3.1 40 0.40
    砂岩 7.23 82.05 2 400 45 000 6 000 5.65 35.0 45 0.30
    砂质页岩 4.13 86.18 2 100 30 000 4 000 3.64 17.0 30 0.30
    砂岩 4.13 90.31 2 400 45 000 6 000 5.65 35.0 45 0.30
    砂质页岩 20.66 110.97 2 100 30 000 4 000 3.64 17.0 30 0.30
    灰岩 4.13 115.10 2 700 15 700 2 830 8.42 40.0 40 0.23
    砂岩 6.20 121.30 2 400 45 000 6 000 5.65 35.0 45 0.30
    砂质页岩 7.23 128.53 2 100 30 000 4 000 3.64 17.0 30 0.30
    砂岩 8.26 136.79 2 400 45 000 6 000 5.65 35.0 45 0.30
    砂质页岩 3.10 139.89 2 100 30 000 4 000 3.64 17.0 30 0.30
    5# 2.07 141.96 1 900 2 000 200 1.11 3.0 25 0.35
    砂岩 2.07 144.03 2 400 45 000 6 000 5.65 35.0 45 0.30
    砂质页岩 2.58 146.61 2 100 30 000 4 000 3.64 17.0 30 0.30
    6# 11.36 157.97 1 900 2 000 200 1.11 3.0 25 0.35
    砂岩 7.23 165.20 2 400 45 000 6 000 5.65 35.0 45 0.30
    7# 1.55 166.75 1 900 2 000 200 1.11 3.0 25 0.35
    砂岩 3.61 170.36 2 400 45 000 6 000 5.65 35.0 45 0.30
    灰岩 3.10 173.46 2 700 15 700 2 830 8.42 40.0 40 0.23
    下载: 导出CSV

    表 2  岩层材料配比表

    Table 2.  Rock layer material ratios

    岩层名称 累计厚度/cm 配比号 河砂/kg 石膏/kg 大白粉/kg
    砂岩 73.34 728 492.8 42.24 168.98
    26.58 928 229.7 15.31 61.24
    砂质页岩 53.53 864 411.1 92.5 61.67
    页岩 12.78 737 85.88 11.04 25.76
    灰岩 7.23 628 41.64 4.16 16.66
    下载: 导出CSV

    表 3  2#煤层回采来压步距

    Table 3.  Pressure step of 2# coal seam mining

    来压次数 推进距离/m 来压步距/m 来压次数 推进距离/m 来压步距/m
    初次来压 53 18 5 155 24
    1 71 18 6 177 22
    2 89 18 7 201 24
    3 109 20 8 219 18
    4 131 22 9 240 21
    下载: 导出CSV

    表 4  3#煤层回采来压步距

    Table 4.  Pressure step of 3# coal seam mining

    来压次数 推进距离/m 来压步距/m 来压次数 推进距离/m 来压步距/m
    初次来压 31 31 11 131 6
    1 45 14 12 143 12
    2 53 8 13 151 8
    3 61 8 14 163 12
    4 67 6 15 169 6
    5 74 7 16 189 20
    6 87 13 17 195 6
    7 93 6 18 203 8
    8 109 16 19 210 7
    9 115 6 20 217 7
    10 125 10
    下载: 导出CSV

    表 5  5#煤层回采来压步距

    Table 5.  Pressure step of 5# coal seam mining

    来压次数 推进距离/m 来压步距/m 来压次数 推进距离/m 来压步距/m
    初次来压 56 24 5 182 26
    1 80 24 6 206 24
    2 104 24 7 224 18
    3 130 26 8 240 16
    4 156 26      
    下载: 导出CSV

    表 6  6#煤层回采来压步距

    Table 6.  Pressure step of 6# coal seam mining

    来压次数 推进距离/m 来压步距/m 来压次数 推进距离/m 来压步距/m
    初次来压 28 28 8 132 12
    1 38 10 9 148 16
    2 56 18 10 159 11
    3 74 18 11 168 9
    4 86 12 12 174 6
    5 98 12 13 200 26
    6 112 14 14 210 10
    7 120 8 15 220 10
    下载: 导出CSV

    表 7  不同方法导水裂隙带发育高度对比表

    Table 7.  Comparison of development height of water-conducting fracture zone in different methods

    取值类型2#煤导水裂隙带发育高度/m5#煤导水裂隙带发育高度/m误差/%6#煤导水裂隙带发育高度/m误差/%
    实测值31.4535.000104.000
    相似材料模拟试验值31.4533.424.593.1210.4
    数值模拟值31.4525.2028.095.628.0
    经验公式值36.14~62.6616.41~39.3990.97~117.49
    下载: 导出CSV
  • [1]

    杜君武,黄庆享. 浅埋煤层群不同煤柱错距覆岩结构演化规律及煤柱稳定性分析[J]. 采矿与岩层控制工程学报,2022,4(1):12 − 20. [DU Junwu,HUANG Qingxiang. Overburden structure evolution and coal pillar stability analysis with different offset distance of coal Pillars in shallow multi-seam[J]. Journal of Mining and Strata Control Engineering,2022,4(1):12 − 20. (in Chinese with English abstract)]

    DU Junwu, HUANG Qingxiang. Overburden structure evolution and coal pillar stability analysis with different offset distance of coal Pillars in shallow multi-seam[J]. Journal of Mining and Strata Control Engineering, 2022, 4(1): 12 − 20. (in Chinese with English abstract)

    [2]

    卢少帅,高超,霍军鹏,等. 韩家湾煤矿浅埋近距离煤层群覆岩破坏规律研究[J]. 煤炭工程,2022,54(1):107 − 111. [LU Shaoshuai,GAO Chao,HUO Junpeng,et al. Failure law of overburden under shallow contiguous coal seams in Hanjiawan Coal Mine[J]. Coal Engineering,2022,54(1):107 − 111. (in Chinese with English abstract)]

    LU Shaoshuai, GAO Chao, HUO Junpeng, et al. Failure law of overburden under shallow contiguous coal seams in Hanjiawan Coal Mine[J]. Coal Engineering, 2022, 54(1): 107 − 111. (in Chinese with English abstract)

    [3]

    刘谋,王俊杰,吴广涛,等. 矿井涌水量预测及其对沙漠植被的影响[J]. 水文地质工程地质,2023,50(3):65 − 75. [LIU Mou,WANG Junjie,WU Guangtao,et al. Prediction of mine water inflow and analyses of its influence on desert vegetation[J]. Hydrogeology & Engineering Geology,2023,50(3):65 − 75. (in Chinese with English abstract)]

    LIU Mou, WANG Junjie, WU Guangtao, et al. Prediction of mine water inflow and analyses of its influence on desert vegetation[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 65 − 75. (in Chinese with English abstract)

    [4]

    陈建平,李金柱,王雪冬,等. 改进脆弱性指数法在煤矿底板突水评价中的应用[J]. 中国地质灾害与防治学报,2019,30(3):67 − 74. [CHEN Jianping,LI Jinzhu,WANG Xuedong,et al. Improved vulnerability index method for evaluating water inrush from the floor of coal seam[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):67 − 74. (in Chinese with English abstract)]

    CHEN Jianping, LI Jinzhu, WANG Xuedong, et al. Improved vulnerability index method for evaluating water inrush from the floor of coal seam[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(3): 67 − 74. (in Chinese with English abstract)

    [5]

    田华,杨嘉懿,韩强强,等. 煤炭开采对地下水的影响预测[J]. 煤炭技术,2021,40(12):110 − 114. [TIAN Hua,YANG Jiayi,HAN Qiangqiang,et al. Prediction of impact of coal mining on groundwater[J]. Coal Technology,2021,40(12):110 − 114. (in Chinesee with English abstract)]

    TIAN Hua, YANG Jiayi, HAN Qiangqiang, et al. Prediction of impact of coal mining on groundwater[J]. Coal Technology, 2021, 40(12): 110 − 114. (in Chinesee with English abstract)

    [6]

    DU Feng,WANG Wenqiang,LI Zhenhu. Study on the evolution law of fracture field in full-mechanized caving mining of double system and extrathick coal seam[J]. Advances in Civil Engineering,2020,2020:8880526.

    [7]

    PRAKASH A,KUMAR A,VERMA A,et al. Trait of subsidence under high rate of coal extraction by longwall mining:some inferences[J]. Sādhanā,2021,46(4):216.

    [8]

    韦华鹏,罗奇斌,康卫东,等. 基于不同开采方式的煤矿涌水量预测及其环境影响分析[J]. 水文地质工程地质,2023,50(1):21 − 31. [WEI Huapeng,LUO Qibin,KANG Weidong,et al. Prediction of coal mine water inflow by different mining methods and environment impact analyses[J]. Hydrogeology & Engineering Geology,2023,50(1):21 − 31. (in Chinese with English abstract)]

    WEI Huapeng, LUO Qibin, KANG Weidong, et al. Prediction of coal mine water inflow by different mining methods and environment impact analyses[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 21 − 31. (in Chinese with English abstract)

    [9]

    甘智慧,尚慧,杜荣军,等. 基于FLAC3D和DEM数据的缓倾斜煤层开采沉陷分析[J]. 煤田地质与勘探,2021,49(3):158 − 166. [GAN Zhihui,SHANG Hui,DU Rongjun,et al. Mining subsidence analysis of gently inclined coal seams based on FLAC3D and DEM data[J]. Coal Geology & Exploration,2021,49(3):158 − 166. (in Chinese with English abstract)]

    GAN Zhihui, SHANG Hui, DU Rongjun, et al. Mining subsidence analysis of gently inclined coal seams based on FLAC3D and DEM data[J]. Coal Geology & Exploration, 2021, 49(3): 158 − 166. (in Chinese with English abstract)

    [10]

    JENA S K,LOKHANDE R D,PRADHAN M,et al. Development of a model to estimate strata behavior during bord and pillar extraction in underground coal mining[J]. Arabian Journal of Geosciences,2019,12(7):242.

    [11]

    ZHANG Dingyang,SUI Wanghua. Orthogonal array analysis of overburden failure due to mining of multiple coal seams[J]. Journal of the Southern African Institute of Mining and Metallurgy,2019,119(10):801 − 810.

    [12]

    ZHOU Yang,YU Xueyi. Study of the evolution of water-conducting fracture zones in overlying rock of a fully mechanized caving face in gently inclined extra-thick coal seams[J]. Applied Sciences,2022,12(18):9057. doi: 10.3390/app12189057

    [13]

    杨科,刘文杰,焦彪,等. 深部厚硬顶板综放开采覆岩运移三维物理模拟试验研究[J]. 岩土工程学报,2021,43(1):85 − 93. [YANG Ke,LIU Wenjie,JIAO Biao,et al. Three-dimensional physical simulation of overburden migration in deep thick hard roof fully-mechanized caving mining[J]. Chinese Journal of Geotechnical Engineering,2021,43(1):85 − 93. (in Chinese with English abstract)]

    YANG Ke, LIU Wenjie, JIAO Biao, et al. Three-dimensional physical simulation of overburden migration in deep thick hard roof fully-mechanized caving mining[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 85 − 93. (in Chinese with English abstract)

    [14]

    康国彪,卞涛,蒲平武. 大采高工作面覆岩导水裂隙带发育高度及其影响因素研究[J]. 煤炭科学技术,2021,49(增刊2):19 − 24. [KANG Guobiao,BIAN Tao,PU Pingwu. Study on development height and influencing factors of overburden water conducting fracture zone in large mining height face[J]. Coal Science and Technology,2021,49(S2):19 − 24. (in Chinese with English abstract)]

    KANG Guobiao, BIAN Tao, PU Pingwu. Study on development height and influencing factors of overburden water conducting fracture zone in large mining height face[J]. Coal Science and Technology, 2021, 49(S2): 19 − 24. (in Chinese with English abstract)

    [15]

    张纪星,师修昌. 浅埋采空区大采高条件下覆岩破坏规律[J]. 中国地质灾害与防治学报,2019,30(5):92 − 97. [ZHANG Jixing,SHI Xiuchang. Failure of overburden rock under large mining height in shallow buried goaf area[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):92 − 97. (in Chinese with English abstract)]

    ZHANG Jixing, SHI Xiuchang. Failure of overburden rock under large mining height in shallow buried goaf area[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(5): 92 − 97. (in Chinese with English abstract)

    [16]

    QI Yun,WANG Wei,GE Jiaqi,et al. Development characteristics of the rock fracture field in strata overlying a mined coal seam group[J]. PLoS One,2022,17(10):e0268955. doi: 10.1371/journal.pone.0268955

    [17]

    ZHANG Dingyang,SUI Wanghua,LIU Jiawei. Overburden failure associated with mining coal seams in close proximity in ascending and descending sequences under a large water body[J]. Mine Water and the Environment,2018,37(2):322 − 335. doi: 10.1007/s10230-017-0502-0

    [18]

    来兴平,张旭东,单鹏飞,等. 厚松散层下三软煤层开采覆岩导水裂隙发育规律[J]. 岩石力学与工程学报,2021,40(9):1739 − 1750. [LAI Xingping,ZHANG Xudong,SHAN Pengfei,et al. Study on development law of water-conducting fractures in overlying strata of three soft coal seam mining under thick loose layers[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(9):1739 − 1750. (in Chinese with English abstract)]

    LAI Xingping, ZHANG Xudong, SHAN Pengfei, et al. Study on development law of water-conducting fractures in overlying strata of three soft coal seam mining under thick loose layers[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(9): 1739 − 1750. (in Chinese with English abstract)

    [19]

    李建华,王帅,贺艳军,等. 煤层群叠加开采采空区覆岩裂隙演化规律研究[J]. 煤炭工程,2021,53(12):92 − 96. [LI Jianhua,WANG Shuai,HE Yanjun,et al. Fissure evolution of gob overlying strata under superimposed mining in coal seams group[J]. Coal Engineering,2021,53(12):92 − 96. (in Chinese with English abstract)]

    LI Jianhua, WANG Shuai, HE Yanjun, et al. Fissure evolution of gob overlying strata under superimposed mining in coal seams group[J]. Coal Engineering, 2021, 53(12): 92 − 96. (in Chinese with English abstract)

    [20]

    潘瑞凯,曹树刚,李勇,等. 浅埋近距离双厚煤层开采覆岩裂隙发育规律[J]. 煤炭学报,2018,43(8):2261 − 2268. [PAN Ruikai,CAO Shugang,LI Yong,et al. Development of overburden fractures for shallow double thick seams mining[J]. Journal of China Coal Society,2018,43(8):2261 − 2268. (in Chinese with English abstract)]

    PAN Ruikai, CAO Shugang, LI Yong, et al. Development of overburden fractures for shallow double thick seams mining[J]. Journal of China Coal Society, 2018, 43(8): 2261 − 2268. (in Chinese with English abstract)

    [21]

    SUI Wanghua,HANG Yuan,MA Luxing,et al. Interactions of overburden failure zones due to multiple-seam mining using longwall caving[J]. Bulletin of Engineering Geology and the Environment,2015,74(3):1019 − 1035. doi: 10.1007/s10064-014-0674-9

    [22]

    张杰,何义峰,罗南洪,等. 浅埋煤层群重复采动覆岩运移及裂隙演化规律研究[J]. 煤矿安全,2022,53(3):58 − 65. [ZHANG Jie,HE Yifeng,LUO Nanhong,et al. Research on overburden movement and fracture evolution of repeated mining in shallow coal seams group[J]. Safety in Coal Mines,2022,53(3):58 − 65. (in Chinese with English abstract)]

    ZHANG Jie, HE Yifeng, LUO Nanhong, et al. Research on overburden movement and fracture evolution of repeated mining in shallow coal seams group[J]. Safety in Coal Mines, 2022, 53(3): 58 − 65. (in Chinese with English abstract)

    [23]

    曹晓毅,刘小平,田延哲. 煤层重复采动对水渠稳定性及渗漏性影响评价[J]. 煤田地质与勘探,2018,46(4):93 − 98. [CAO Xiaoyi,LIU Xiaoping,TIAN Yanzhe. Evaluation on influence of repeated coal mining on the stability and leakage of irrigation canal[J]. Coal Geology & Exploration,2018,46(4):93 − 98. (in Chinese with English abstract)]

    CAO Xiaoyi, LIU Xiaoping, TIAN Yanzhe. Evaluation on influence of repeated coal mining on the stability and leakage of irrigation canal[J]. Coal Geology & Exploration, 2018, 46(4): 93 − 98. (in Chinese with English abstract)

    [24]

    尚慧. 宁夏矿山地质环境评价与动态监测分析[D]. 西安:长安大学,2013. [SHANG Hui. Assessment and Dynamic Monitoring of Mining Geo-environment in Ningxia[D]. Xi’an:Chang’an University,2013. (in Chinese with English abstract)]

    SHANG Hui. Assessment and Dynamic Monitoring of Mining Geo-environment in Ningxia[D]. Xi’an: Chang’an University, 2013. (in Chinese with English abstract)

    [25]

    皮希宇. 煤层群采动卸压煤与覆岩裂隙演化特征及其对瓦斯抽采的影响[D]. 北京:北京科技大学,2021. [PI Xiyu. Evolution Characteristics of Cracks in Coal and Overlying Strata Caused by Mining of Coal Seams and Their Influence on Gas Drainage[D]. Beijing:University of Science and Technology Beijing,2021. (in Chinese with English abstract)]

    PI Xiyu. Evolution Characteristics of Cracks in Coal and Overlying Strata Caused by Mining of Coal Seams and Their Influence on Gas Drainage[D]. Beijing: University of Science and Technology Beijing, 2021. (in Chinese with English abstract)

  • 加载中

(17)

(7)

计量
  • 文章访问数:  55
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2023-09-09
修回日期:  2023-12-22
录用日期:  2024-01-09
刊出日期:  2025-03-15

目录