基于固液耦合的滑坡碎屑流侵蚀流化机理研究

霍子豪, 张仕林, 胡卸文, 谢维维, 唐健峰, 贺旭荣, 王文沛. 基于固液耦合的滑坡碎屑流侵蚀流化机理研究[J]. 水文地质工程地质, 2025, 52(2): 138-149. doi: 10.16030/j.cnki.issn.1000-3665.202401014
引用本文: 霍子豪, 张仕林, 胡卸文, 谢维维, 唐健峰, 贺旭荣, 王文沛. 基于固液耦合的滑坡碎屑流侵蚀流化机理研究[J]. 水文地质工程地质, 2025, 52(2): 138-149. doi: 10.16030/j.cnki.issn.1000-3665.202401014
HUO Zihao, ZHANG Shilin, HU Xiewen, XIE Weiwei, TANG Jianfeng, HE Xurong, WANG Wenpei. Erosion fluidization mechanism of landslide debris flow based on solid-liquid coupling[J]. Hydrogeology & Engineering Geology, 2025, 52(2): 138-149. doi: 10.16030/j.cnki.issn.1000-3665.202401014
Citation: HUO Zihao, ZHANG Shilin, HU Xiewen, XIE Weiwei, TANG Jianfeng, HE Xurong, WANG Wenpei. Erosion fluidization mechanism of landslide debris flow based on solid-liquid coupling[J]. Hydrogeology & Engineering Geology, 2025, 52(2): 138-149. doi: 10.16030/j.cnki.issn.1000-3665.202401014

基于固液耦合的滑坡碎屑流侵蚀流化机理研究

  • 基金项目: 国家重点研发计划项目(2022YFC3004301);国家自然科学基金项目(U2244227);四川省青年基金项目(2025ZNSFSC1203)
详细信息
    作者简介: 霍子豪(1999—),男,硕士研究生,主要从事地质灾害成因与防治方面的研究。E-mail:3266302408@qq.com
    通讯作者: 王文沛(1985—),男,正高级工程师,主要从事工程地质、环境地质方面的研究。E-mail:jcywangwenpei@mail.cgs.gov.cn
  • 中图分类号: P642.22

Erosion fluidization mechanism of landslide debris flow based on solid-liquid coupling

More Information
  • 干燥的滑坡碎屑流在动力传递过程中,往往会在坡面或者沟道内,与松散、高含水基底物质发生剧烈动力侵蚀作用,导致碎屑流流动规模急剧增加,对重要工程和人员生命产生巨大威胁。同时,随着间隙流体和固体颗粒被夹带汇入碎屑流底部,两者发生物质交换,使得流动从单相转变为固液两相状态,从而对碎屑流的流变力学行为产生重要影响。然而,目前对碎屑流流化机理研究甚少。基于光滑粒子流-离散单元-有限元耦合(SPH-DEM-FEM)理论,在大型物理模型试验基础上,针对不同含水率工况,围绕干燥碎屑流与基底物质的复杂动力学过程,开展耦合数值模拟研究。结果表明:碎屑流前缘与基底接触作用主要表现为冲切破坏和犁切作用,接触面以剪切磨蚀为主,随基底应力和孔隙水压力增加,碎屑流与含水物质裹挟混合,并逐渐表现出流态化特征;侵蚀区在碎屑流冲击加载作用下,基底应力出现了“超前波动”的现象,前缘应力因碎屑流冲切作用表现为急剧升高的趋势,而侵蚀区中部基底应力因颗粒的飞跃,呈现幅度小、持续久的抛物曲线,后缘基底应力表现为峰值较前缘降低的曲线;随着基底物质由干燥工况逐渐向非饱和状态转变,接触面剪应力和含水率呈正相关趋势,基底侵蚀率、碎屑流冲击距离和最终堆积厚度随含水率呈现抛物线状相关关系。研究结果对碎屑流流化机理进行了探讨,并为类似机理研究提供了有效科学思路。

  • 加载中
  • 图 1  光滑粒子流粒子近似原理

    Figure 1. 

    图 2  离散单元法接触模型

    Figure 2. 

    图 3  SPH-DEM-FEM耦合接触模型

    Figure 3. 

    图 4  大型物理试验数值模型

    Figure 4. 

    图 5  速度、加速度、能量的时间演化曲线

    Figure 5. 

    图 6  数值模拟和试验结果对比图

    Figure 6. 

    图 7  碎屑流动力侵蚀过程

    Figure 7. 

    图 8  监测点受力时间演化曲线

    Figure 8. 

    图 9  碎屑流动力侵蚀效应宏观作用机制

    Figure 9. 

    图 10  侵蚀、堆积与含水率关系曲线

    Figure 10. 

    图 11  监测点应力时间激振曲线

    Figure 11. 

    图 12  相对应力偏差与含水率关系曲线

    Figure 12. 

    表 1  耦合模型材料参数设置

    Table 1.  Material parameter setting of model

    重度/(104 kN·m−3 泊松比 杨氏模量/Pa
    碎屑流 2.5 0.25 3.0×108
    基底物质固相 2.3 0.25 5.0×106
    基底物质液相 1.0
    滑槽与堆积平台 7.0 0.3 3.0×1011
    下载: 导出CSV

    表 2  颗粒接触参数设置

    Table 2.  Contact parameter setting between particles in model

    静摩擦系数 动摩擦系数 法向阻尼系数 切向阻尼系数
    碎屑流 1.0 0.2 0.4 0.2
    基底物质 1.4 0.25 0.7 0.4
    下载: 导出CSV

    表 3  结构接触参数设置

    Table 3.  Contact parameter setting of structure in model

    静摩擦系数 动摩擦系数 阻尼系数
    碎屑流-堆积平台 0.6 0.3 0.6
    基底物质-堆积平台 0.6 0.3 0.6
    碎屑流-滑槽 0.3 0.1 0.3
    基底物质-滑槽 1.0 0.8 0.2
    下载: 导出CSV
  • [1]

    FROUDE M J,PETLEY D N. Global fatal landslide occurrence from 2004 to 2016[J]. Natural Hazards and Earth System Sciences,2018,18(8):2161 − 2181. doi: 10.5194/nhess-18-2161-2018

    [2]

    龙艳梅,宋章,王玉峰,等. 基于物理模型试验的碎屑流流态化运动特征分析[J]. 水文地质工程地质,2022,49(1):126 − 136. [LONG Yanmei,SONG Zhang,WANG Yufeng,et al. An analysis of flow-like motion of avalanches based on physical modeling experiments[J]. Hydrogeology & Engineering Geology,2022,49(1):126 − 136. (in Chinese with English abstract)]

    LONG Yanmei, SONG Zhang, WANG Yufeng, et al. An analysis of flow-like motion of avalanches based on physical modeling experiments[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 126 − 136. (in Chinese with English abstract)

    [3]

    殷跃平,李滨,张田田,等. 印度查莫利“2•7”冰岩山崩堵江溃决洪水灾害链研究[J]. 中国地质灾害与防治学报,2021,32(3):1 − 8. [YIN Yueping,LI Bin,ZHANG Tiantian,et al. The February 7 of 2021 glacier-rock avalanche and the outburst flooding disaster chain in Chamoli,India[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):1 − 8. (in Chinese with English abstract)]

    YIN Yueping, LI Bin, ZHANG Tiantian, et al. The February 7 of 2021 glacier-rock avalanche and the outburst flooding disaster chain in Chamoli, India[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 1 − 8. (in Chinese with English abstract)

    [4]

    高浩源,高杨,殷跃平,等. 青藏高原高位远程滑坡动力学研究的新问题[J]. 地质力学学报,2022,28(6):1090 − 1103. [GAO Haoyuan,GAO Yang,YIN Yueping,et al. New scientific issues in the study of high-elevation and long-runout landslide dynamics in the Qinghai-Tibet Plateau[J]. Journal of Geomechanics,2022,28(6):1090 − 1103. (in Chinese with English abstract)] doi: 10.12090/j.issn.1006-6616.20222831

    GAO Haoyuan, GAO Yang, YIN Yueping, et al. New scientific issues in the study of high-elevation and long-runout landslide dynamics in the Qinghai-Tibet Plateau[J]. Journal of Geomechanics, 2022, 28(6): 1090 − 1103. (in Chinese with English abstract) doi: 10.12090/j.issn.1006-6616.20222831

    [5]

    HU Wei,ZHENG Yangshuai,MCSAVENY M,et al. Fluidization of bed material caused by shear thinning during rock avalanche entrainment:Insights from flume tests and rheological experiments[J]. Engineering Geology,2023,325:107276. doi: 10.1016/j.enggeo.2023.107276

    [6]

    SONG Dongri,CHEN Xiaoqing,ZHOU G G D,et al. Impact dynamics of debris flow against rigid obstacle in laboratory experiments[J]. Engineering Geology,2021,291:106211. doi: 10.1016/j.enggeo.2021.106211

    [7]

    殷跃平,高少华. 高位远程地质灾害研究:回顾与展望[J]. 中国地质灾害与防治学报,2024,35(1):1 − 18. [YIN Yueping,GAO Shaohua. Research on high-altitude and long-runout rockslides:Review and prospects[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):1 − 18. (in Chinese with English abstract)]

    YIN Yueping, GAO Shaohua. Research on high-altitude and long-runout rockslides: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 1 − 18. (in Chinese with English abstract)

    [8]

    张议芳,刘阳,苏鹏程,等. 西藏地区冰崩灾害研究进展[J]. 中国地质灾害与防治学报,2023,34(2):132 − 145. [ZHANG Yifang,LIU Yang,SU Pengcheng,et al. Advances in the study of glacier avalanches in Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):132 − 145. (in Chinese with English abstract)]

    ZHANG Yifang, LIU Yang, SU Pengcheng, et al. Advances in the study of glacier avalanches in Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 132 − 145. (in Chinese with English abstract)

    [9]

    高少华,殷跃平,李滨,等. 雅鲁藏布江大峡谷则隆弄高位冰岩崩灾害链动力学特征[J]. 工程地质学报,2024,32(3):996 − 1009. [GAO Shaohua,YIN Yueping,LI Bin,et al. Dynamic characteristics of the rock-ice avalanche disas-ter chain in the Zelongnong basin,Yarlung Zangbo river canyon region[J]. Journal of Engineering Geology,2024,32(3):996 − 1009. (in Chinese with English abstract)]

    GAO Shaohua, YIN Yueping, LI Bin, et al. Dynamic characteristics of the rock-ice avalanche disas-ter chain in the Zelongnong basin, Yarlung Zangbo river canyon region[J]. Journal of Engineering Geology, 2024, 32(3): 996 − 1009. (in Chinese with English abstract)

    [10]

    CROSTA G B,CHEN H,LEE C F. Replay of the 1987 Val Pola Landslide,Italian alps[J]. Geomorphology,2004,60(1/2):127 − 146.

    [11]

    OLDRICH H,EVANS S G,BOVIS M J,et al. A review of the classification of landslides of the flow type[J]. Environmental & Engineering Geoscience,2001,7(3):221 − 238.

    [12]

    杨龙伟. 高位滑坡远程动力成灾机理及减灾措施研究[D]. 西安:长安大学,2021. [YANG Longwei. Research on dynamic disaster mechanism and mitigation measures of the high-locality and long-runout landslide[D]. Xi’an:Chang’an University,2021. (in Chinese with English abstract)]

    YANG Longwei. Research on dynamic disaster mechanism and mitigation measures of the high-locality and long-runout landslide[D]. Xi’an: Chang’an University, 2021. (in Chinese with English abstract)

    [13]

    KWANS J S E,SZEH E H Y,LAM C. Finite element analysis for rockfall and debris flow mitigation works[J]. Canadian Geotechnical Journal,2018,56(9):1225 − 1250.

    [14]

    LUO Gang,ZHAO Yongjie. Dynamics of bouldery debris flow impacting onto rigid barrier by a coupled SPH-DEM-FEM method[J]. Computers and Geotechnics,2022,150:104936. doi: 10.1016/j.compgeo.2022.104936

    [15]

    LIU Chun,LIANG Linong. A coupled SPH–DEM–FEM approach for modeling of debris flow impacts on flexible barriers[J]. Arabian Journal of Geosciences,2022,15(5):420. doi: 10.1007/s12517-022-09739-3

    [16]

    MAO Wuwei,WANG Yuhan,YANG Ping,et al. Dynamics of granular debris flows against slit dams based on the CFD–DEM method:effect of grain size distribution and ambient environments[J]. Acta Geotechnica,2023,18(11):5811 − 5838. doi: 10.1007/s11440-023-01944-y

    [17]

    ZENG Qingyuan,ZHENG Mingxin,HUANG Dan. Numerical simulation of impact and entrainment behaviors of debris flow by using SPH–DEM–FEM coupling method[J]. Open Geosciences,2022,14(1):1020 − 1047. doi: 10.1515/geo-2022-0407

    [18]

    GAO Yang,YIN Yueping,LI Bin,et al. The role of fluid drag force in the dynamic process of two-phase flow-like landslides[J]. Landslides,2022,19(7):1791 − 1805. doi: 10.1007/s10346-022-01858-y

    [19]

    BAO Yiding,ZHANG Yansong,CHEN Jianping,et al. Numerical investigation of river blocking process of Gangda paleolandslide at the upstream reaches of the Jinsha River,Tibentan Plateau[J]. Landslides,2023,20(9):1865 − 1882. doi: 10.1007/s10346-023-02078-8

    [20]

    涂正楠,冯君,邓应进,等. 四川甘洛县比依市村滑坡运动特征分析[J]. 中国地质灾害与防治学报,2024,35(1):92 − 99. [TU Zhengnan,FENG Jun,DENG Yingjin,et al. Analysis of the landslide movement characteristics in Biyi Village,Ganluo County,Sichuan Province,through SPH numerical simulation[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):92 − 99. (in Chinese with English abstract)]

    TU Zhengnan, FENG Jun, DENG Yingjin, et al. Analysis of the landslide movement characteristics in Biyi Village, Ganluo County, Sichuan Province, through SPH numerical simulation[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 92 − 99. (in Chinese with English abstract)

    [21]

    于虹,李昊,许标,等. 基于SPH-FEM耦合方法的泥石流冲击输电塔基础的动力分析[J]. 防灾减灾工程学报,2024,44(1):68 − 78. [YU Hong,LI Hao,XU Biao,et al. Dynamic response of transmission tower foundation impacted by debris flow using coupled SPH-FEM method[J]. Journal of Disaster Prevention and Mitigation Engineering,2024,44(1):68 − 78. (in Chinese with English abstract)]

    YU Hong, LI Hao, XU Biao, et al. Dynamic response of transmission tower foundation impacted by debris flow using coupled SPH-FEM method[J]. Journal of Disaster Prevention and Mitigation Engineering, 2024, 44(1): 68 − 78. (in Chinese with English abstract)

    [22]

    LIU Chun,YU Zhixiang,ZHAO Shichun. A coupled SPH-DEM-FEM model for fluid-particle-structure interaction and a case study of Wenjia gully debris flow impact estimation[J]. Landslides,2021,18(7):2403 − 2425. doi: 10.1007/s10346-021-01640-6

    [23]

    SHA Shiyin,DYSON A P,KEFAYATI G,et al. Simulation of debris flow-barrier interaction using the smoothed particle hydrodynamics and coupled Eulerian Lagrangian methods[J]. Finite Elements in Analysis and Design,2023,214:103864. doi: 10.1016/j.finel.2022.103864

    [24]

    张卫杰,张炜,陈宇,等. 黏聚力随机场波动范围的各向异性对流态性滑坡滑动距离的影响[J]. 岩土力学,2024,45(4):1039 − 1050. [ZHANG Weijie,ZHANG Wei,CHEN Yu,et al. Influence of anisotropy of fluctuation scale of cohesion random field on the run-out distance of flow-like landslides[J]. Rock and Soil Mechanics,2024,45(4):1039 − 1050. (in Chinese with English abstract)]

    ZHANG Weijie, ZHANG Wei, CHEN Yu, et al. Influence of anisotropy of fluctuation scale of cohesion random field on the run-out distance of flow-like landslides[J]. Rock and Soil Mechanics, 2024, 45(4): 1039 − 1050. (in Chinese with English abstract)

    [25]

    ZOU Li,SUN Jiazhao,SUN Zhe,et al. Study of two free-falling spheres interaction by coupled SPH–DEM method[J]. European Journal of Mechanics-B/Fluids,2022,92:49 − 64. doi: 10.1016/j.euromechflu.2021.09.006

    [26]

    EL SHAMY U,SIZKOW S F. Coupled smoothed particle hydrodynamics-discrete element method simulations of soil liquefaction and its mitigation using gravel drains[J]. Soil Dynamics and Earthquake Engineering,2021,140:106460. doi: 10.1016/j.soildyn.2020.106460

    [27]

    ZENG Qingyun,PAN Jianping,SUN Hanzheng. SPH simulation of structures impacted by tailing debris flow and its application to the buffering effect analysis of debris checking Dams[J]. Mathematical Problems in Engineering,2020,2020:9304921.

    [28]

    REN Yuhao,CAI Fei,YANG Qingqing,et al. Importance of liquid bridge forces in dynamics of rock-ice avalanches:insights from discrete element simulations[J]. Computers and Geotechnics,2024,165:105904. doi: 10.1016/j.compgeo.2023.105904

    [29]

    徐文杰. 滑坡涌浪流–固耦合分析方法与应用[J]. 岩石力学与工程学报,2020,39(7):1420 − 1433. [XU Wenjie. Fluid-solid coupling method of landslide tsunamis and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(7):1420 − 1433. (in Chinese with English abstract)]

    XU Wenjie. Fluid-solid coupling method of landslide tsunamis and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1420 − 1433. (in Chinese with English abstract)

    [30]

    蔡国庆,刁显锋,杨芮,等. 基于CFD-DEM的流-固耦合数值建模方法研究进展[J]. 哈尔滨工业大学学报,2024,56(1):17 − 32. [CAI Guoqing,DIAO Xianfeng,YANG Rui,et al. Research progress of fluid-solid coupling model based on CFD-DEM coupling[J]. Journal of Harbin Institute of Technology,2024,56(1):17 − 32. (in Chinese with English abstract)] doi: 10.11918/202309001

    CAI Guoqing, DIAO Xianfeng, YANG Rui, et al. Research progress of fluid-solid coupling model based on CFD-DEM coupling[J]. Journal of Harbin Institute of Technology, 2024, 56(1): 17 − 32. (in Chinese with English abstract) doi: 10.11918/202309001

    [31]

    IWAMOTO T,NAKASE H,NISHIURA D,et al. Application of SPH-DEM coupled method to failure simulation of a caisson type composite breakwater during a tsunami[J]. Soil Dynamics and Earthquake Engineering,2019,127:105806. doi: 10.1016/j.soildyn.2019.105806

    [32]

    JO Y B,PARK S H,YOO H S,et al. GPU-based SPH-DEM Method to Examine the three-phase hydrodynamic interactions between multiphase flow and solid particles[J]. International Journal of Multiphase Flow,2022,153:104125. doi: 10.1016/j.ijmultiphaseflow.2022.104125

    [33]

    赵德博,郝梦洁,熊昊. 基于SPH-DEM的泥石流冲击刚性防护结构的动力过程研究[J]. 自然灾害学报,2023,32(6):47 − 57. [ZHAO Debo,HAO Mengjie,XIONG Hao. Research on the dynamic process of debris flow impacting rigid barrier based on SPH-DEM[J]. Journal of Natural Disasters,2023,32(6):47 − 57. (in Chinese with English abstract)]

    ZHAO Debo, HAO Mengjie, XIONG Hao. Research on the dynamic process of debris flow impacting rigid barrier based on SPH-DEM[J]. Journal of Natural Disasters, 2023, 32(6): 47 − 57. (in Chinese with English abstract)

    [34]

    XU Wenjie,YAO Zhenguo,LUO Yanting,et al. Study on landslide-induced wave disasters using a 3D coupled SPH-DEM method[J]. Bulletin of Engineering Geology and the Environment,2020,79(1):467 − 483. doi: 10.1007/s10064-019-01558-3

    [35]

    SIZKOW S F,EL SHAMY U. SPH-DEM simulations of saturated granular soils liquefaction incorporating particles of irregular shape[J]. Computers and Geotechnics,2021,134:104060. doi: 10.1016/j.compgeo.2021.104060

    [36]

    ZHANG Shilin,YIN Yueping,HU Xiewen,et al. Block-grain phase transition in rock avalanches:insights from large-scale experiments[J]. Journal of Geophysical Research:Earth Surface,128(11):e2023JF007204.

    [37]

    GAO Yang,LI Bin,ZHANG Han,et al. Numerical modeling of mixed two-phase in long runout flow-like landslide using LPF3D[J]. Landslides,2024,21:641 − 660. doi: 10.1007/s10346-023-02159-8

    [38]

    SHEN Weigang,ZHAO Tao,ZHAO Jidong,et al. Quantifying the impact of dry debris flow against a rigid barrier by DEM analyses[J]. Engineering Geology,2018,241:86 − 96. doi: 10.1016/j.enggeo.2018.05.011

    [39]

    IVERSON R M,REID M E,LOGAN M,et al. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment[J]. Nature Geoscience,2011,4(2):116 − 121. doi: 10.1038/ngeo1040

    [40]

    陆鹏源,侯天兴,杨兴国,等. 滑坡冲击铲刮效应物理模型试验及机制探讨[J]. 岩石力学与工程学报,2016,35(6):1225 − 1232. [LU Pengyuan,HOU Tianxing,YANG Xingguo,et al. Physical modeling test for entrainment effect of landslides and the related mechanism discussion[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(6):1225 − 1232. (in Chinese with English abstract)]

    LU Pengyuan, HOU Tianxing, YANG Xingguo, et al. Physical modeling test for entrainment effect of landslides and the related mechanism discussion[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(6): 1225 − 1232. (in Chinese with English abstract)

    [41]

    MANGENEY A,ROCHE O,HUNGR O,et al. Erosion and mobility in granular collapse over sloping beds[J]. Journal of Geophysical Research:Earth Surface,2010,115:F03040.

    [42]

    CHOI C E,SONG Pengjia. New unsaturated erosion model for landslide:effects of flow particle size and debunking the importance of frictional stress[J]. Engineering Geology,2023,315:107024. doi: 10.1016/j.enggeo.2023.107024

    [43]

    DE HAAS T,MCARDELL B W,NIJLAND W,et al. Flow and bed conditions jointly control debris-flow erosion and bulking[J]. Geophysical Research Letters,2022,49(10):e2021GL097611. doi: 10.1029/2021GL097611

    [44]

    YIN Yueping,LI Bin,GAO Yang,et al,Geostructures,dynamics and risk mitigation of high-altitude and long-runout rockslides[J]. Journal of Rock Mechanics and Geotechnical Engineering,2022,15(1):66 − 101.

    [45]

    SONG Pengjia,CHOI C E. Revealing the importance of capillary and collisional stresses on soil bed erosion induced by debris flows[J]. Journal of Geophysical Research:Earth Surface,2021,126(5):e2020JF005930. doi: 10.1029/2020JF005930

    [46]

    ROELOFS L,NOTA E W,FLIPSEN T C W,et al. How bed composition affects erosion by debris flows-an experimental assessment[J]. Geophysical Research Letters,2023,50(14):e2023GL103294. doi: 10.1029/2023GL103294

    [47]

    ZHENG Hongchao,SHI Zhenming,YU Songbo,et al. Erosion mechanisms of debris flow on the sediment bed[J]. Water Resources Research,2021,57(12):e2021WR030707. doi: 10.1029/2021WR030707

    [48]

    CAGNOLI B,ROMANO G P. Granular pressure at the base of dry flows of angular rock fragments as a function of grain size and flow volume:A relationship from laboratory experiments[J]. Journal of Geophysical Research:Solid Earth,2012,117(B10):B10202.

  • 加载中

(12)

(3)

计量
  • 文章访问数:  47
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2024-01-08
修回日期:  2024-04-28
录用日期:  2024-04-28
刊出日期:  2025-03-15

目录