非饱和成层土稳态渗流问题的解析计算

陈佩佩, 乔栋, 吴楠. 非饱和成层土稳态渗流问题的解析计算[J]. 水文地质工程地质, 2024, 51(5): 68-78. doi: 10.16030/j.cnki.issn.1000-3665.202309038
引用本文: 陈佩佩, 乔栋, 吴楠. 非饱和成层土稳态渗流问题的解析计算[J]. 水文地质工程地质, 2024, 51(5): 68-78. doi: 10.16030/j.cnki.issn.1000-3665.202309038
CHEN Peipei, QIAO Dong, WU Nan. Analytical calculation of steady seepage in unsaturated layered soils[J]. Hydrogeology & Engineering Geology, 2024, 51(5): 68-78. doi: 10.16030/j.cnki.issn.1000-3665.202309038
Citation: CHEN Peipei, QIAO Dong, WU Nan. Analytical calculation of steady seepage in unsaturated layered soils[J]. Hydrogeology & Engineering Geology, 2024, 51(5): 68-78. doi: 10.16030/j.cnki.issn.1000-3665.202309038

非饱和成层土稳态渗流问题的解析计算

  • 基金项目: 国家自然科学基金项目(51808026;41972279);金字塔人才培养工程“建大英才”支持计划(JDYC20200325);北京市教委科技计划一般项目(KM201910016003);北京建筑大学研究生创新项目(PG2022038;PG2022042)
详细信息
    作者简介: 陈佩佩(1987—),男,博士,副教授,主要从事无网格数值算法及环境岩土力学等方面的教学和科研。E-mail:chenpeipei@bucea.edu.cn
  • 中图分类号: TU43

Analytical calculation of steady seepage in unsaturated layered soils

  • 广泛存在的成层土非饱和稳态渗流的解析计算研究相对薄弱。基于达西渗流定律和土层界面的连续性条件,构建了描述非饱和成层土稳态渗流过程的数学模型。使用分离变量技术和数学归纳思想,获得了成层土同一剖面的基质吸力、有效饱和度与吸应力沿高程分布的解析表达式。基于COMSOL数值分析平台对解析算法进行了验证计算,从而实现了非饱和成层土稳态渗流过程的解析求解。而后,探讨了土层界面的存在对渗流过程的影响并开展了参数敏感度分析。分析表明:(1)相同入渗条件下相同高程处砂土的基质吸力最大,黏土最小;地表渗流速率的不同对粉土层有效饱和度分布影响最大,砂土最小。(2)黏土层中吸应力近乎线性增长,砂土的吸应力则沿高程先增大后减小;土层界面的存在会影响基质吸力沿高程的增长速率,可使有效饱和度和吸应力沿高程分布发生突变。(3)Gardner模型参数α值越小,相同高程处基质吸力值越大,饱和土渗透系数(ks值)越小,基质吸力增长速率越慢;αks取值越小,有效饱和度降低速率越慢;α取值越小或ks取值越大,地表处的吸应力值越大。研究成果可为诸如边坡稳定等工程地质问题提供一定的理论支撑。

  • 加载中
  • 图 1  成层土剖面示意图

    Figure 1. 

    图 2  稳定状态下各类土层的基质吸力分布特征

    Figure 2. 

    图 3  相同稳定渗流状态下各类土层的基质吸力分布对比

    Figure 3. 

    图 4  稳定渗流状态下各类土层有效饱和度的分布特征

    Figure 4. 

    图 5  稳定渗流状态下各类土层的吸应力分布特征

    Figure 5. 

    图 6  双层土模型示意图

    Figure 6. 

    图 7  稳定渗流状态下双层土的基质吸力分布特征

    Figure 7. 

    图 8  稳定渗流状态下双层土有效饱和度的分布特征

    Figure 8. 

    图 9  稳定渗流状态下双层土的吸应力分布特征

    Figure 9. 

    图 10  参数对基质吸力沿高程分布的影响分析

    Figure 10. 

    图 11  参数对有效饱和度沿高程分布的影响分析

    Figure 11. 

    图 12  参数对吸应力沿高程分布的影响分析

    Figure 12. 

    表 1  砂土、粉土与黏土的典型参数

    Table 1.  Typical parameters of sandy, powdery and clayey soils

    土的类型 n α/kPa−1 ks/(m·s−1
    砂土 5.0 0.100 3×10−5
    粉土 4.0 0.010 1×10−7
    黏土 2.0 0.005 5×10−8
    下载: 导出CSV

    表 2  解析方法的拟合优度R2

    Table 2.  Goodness of fit R2 of analytical method

    拟合优度 渗流速率/(m·s−1 R2
    砂土 粉土 黏土
    计算值 −3.14×10−8 1.000 0.977 1.000
    −3.14×10−9 1.000 0.996 1.000
    0 1.000 1.000 1.000
    1.15×10−9 1.000 0.999 0.997
    1.15×10−8 1.000 0.987 0.977
    下载: 导出CSV
  • [1]

    BAI Bing,ZHOU Rui,CAI Guoqing,et al. Coupled thermo-hydro-mechanical mechanism in view of the soil particle rearrangement of granular thermodynamics[J]. Computers and Geotechnics,2021,137:104272. doi: 10.1016/j.compgeo.2021.104272

    [2]

    刘宗宾,李超,路研,等. 基于孔隙结构表征的低渗透砂岩流体赋存特征及渗透率评价[J]. 吉林大学学报(地球科学版),2024,54(4):1124 − 1136. [ LIU Zongbin,LI Chao,LU Yan et al. Fluid Occurrence State and Permeability Evaluation of Low-Permeability Sandstone Based on Pore Structure Characterization[J]. Journal of Jilin University (Earth Science Edition). 2024,54 (4):1124 − 1136. (in Chinese with English abstract)]

    LIU Zongbin, LI Chao, LU Yan et al. Fluid Occurrence State and Permeability Evaluation of Low-Permeability Sandstone Based on Pore Structure Characterization[J]. Journal of Jilin University (Earth Science Edition). 2024, 54 (4): 1124 − 1136. (in Chinese with English abstract)

    [3]

    刘亚玲,黎广荣,周义朋,等. 新疆512矿床砂岩型铀矿孔隙特征及渗流模拟[J]. 地质科技通报,2024,43(4):205 − 218. [LIU Yaling,LI Guangrong,ZHOU Yipeng,et al. Pore characteristics and seepage simulation of sandstone-type uranium ore in the 512 deposit, Xinjiang[J]. Bulletin of Geological Science and Technology,2024,43(4):205 − 218. (in Chinese with English abstract)]

    LIU Yaling, LI Guangrong, ZHOU Yipeng, et al. Pore characteristics and seepage simulation of sandstone-type uranium ore in the 512 deposit, Xinjiang[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 205 − 218. (in Chinese with English abstract)

    [4]

    SUN Guanhua,WANG Wei,SHI Lu. Steady seepage analysis in soil-rock-mixture slope using the numerical manifold method[J]. Engineering Analysis with Boundary Elements,2021,131:27 − 40. doi: 10.1016/j.enganabound.2021.06.017

    [5]

    余岱金,黄强兵,康孝森,等. 黄土填方边坡界面渗流破坏机制模型试验研究[J]. 水文地质工程地质,2022,49(5):119 − 128. [YU Daijin,HUANG Qiangbing,KANG Xiaosen,el. A model test study of the interface seepage and failure mechanism of loess-filled slope[J]. Hydrogeology & Engineering Geology,2022,49(5):119 − 128. (in Chinese with English abstract)]

    YU Daijin, HUANG Qiangbing, KANG Xiaosen, el. A model test study of the interface seepage and failure mechanism of loess-filled slope[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 119 − 128. (in Chinese with English abstract)

    [6]

    饶鸿,王金淑,赵志明,等. 基于有限元软件自定义本构模型的膨胀土边坡降雨入渗分析[J]. 水文地质工程地质,2021,48(1):154 − 162. [RAO Hong,WANG Jinshu,ZHAO Zhiming,el. An analysis of rainfall infiltration of expansive soil slope based on the finite element software custom constitutive model[J]. Hydrogeology & Engineering Geology,2021,48(1):154 − 162. (in Chinese with English abstract)]

    RAO Hong, WANG Jinshu, ZHAO Zhiming, el. An analysis of rainfall infiltration of expansive soil slope based on the finite element software custom constitutive model[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 154 − 162. (in Chinese with English abstract)

    [7]

    陈亮胜,韦秉旭,廖欢,等. 膨胀土边坡非饱和渗流及渐进性破坏耦合分析[J]. 水文地质工程地质,2020,47(4):132 − 140. [CHEN Liangsheng,WEI Bingxu,LIAO Huan,el. A coupling analysis of unsaturated seepage and progressive failure of an expansive soil slope[J]. Hydrogeology & Engineering Geology,2020,47(4):132 − 140. (in Chinese with English abstract)]

    CHEN Liangsheng, WEI Bingxu, LIAO Huan, el. A coupling analysis of unsaturated seepage and progressive failure of an expansive soil slope[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 132 − 140. (in Chinese with English abstract)

    [8]

    CHEN Fen,ZHENG Bin,LIN Ji,et al. Numerical Solution of Steady-State Free Boundary Problems using the Singular Boundary Method[J]. Advances in Applied Mathematics and Mechanics,2021,13(1):163 − 175. doi: 10.4208/aamm.OA-2019-0188

    [9]

    CHAPUIS R P. Steady state groundwater seepage in sloping unconfined aquifers[J]. Bulletin of Engineering Geology and the Environment,2011,70(1):89 − 99. doi: 10.1007/s10064-010-0282-2

    [10]

    ZHAI Yulong,LI Li,CHAPUIS R P. Analytical,numerical and experimental studies on steady-state seepage through 3D rockfill trapezoidal dikes[J]. Mine Water and the Environment,2021,40(4):931 − 942. doi: 10.1007/s10230-021-00798-8

    [11]

    REMAR J,BRUCH Jr J,SLOSS J. Numerical solutions to some free surface flows through nonhomogeneous media[J]. International Journal for Numerical Methods in Engineering,1984,20(1):143 − 167. doi: 10.1002/nme.1620200111

    [12]

    GRIFFITHS D,LU N. Unsaturated slope stability analysis with steady infiltration or evaporation using elasto‐plastic finite elements[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2005,29(3):249 − 267. doi: 10.1002/nag.413

    [13]

    ZHAN T L,NG C W. Analytical analysis of rainfall infiltration mechanism in unsaturated soils[J]. International Journal of Geomechanics,2004,4(4):273 − 284. doi: 10.1061/(ASCE)1532-3641(2004)4:4(273)

    [14]

    LU Zhiming,ZHANG Dongxiao. Analytical solutions to steady state unsaturated flow in layered,randomly heterogeneous soils via Kirchhoff transformation[J]. Advances in Water Resources,2004,27(8):775 − 784. doi: 10.1016/j.advwatres.2004.05.007

    [15]

    TRACY F T. 1-D,2-D,and 3-D analytical solutions of unsaturated flow in groundwater[J]. Journal of Hydrology,1995,179:199 − 214.

    [16]

    ANDERSSON J,SHAPIRO A M. Stochastic analysis of one-dimensional steady state unsaturated flow:A comparison of monte carlo and perturbation methods[J]. Water Resources Research,1983,19(1):121 − 133. doi: 10.1029/WR019i001p00121

    [17]

    HOPMANS J,SCHUKKING H,TORFS P. Two-dimensional steady state unsaturated water flow in heterogeneous soils with autocorrelated soil hydraulic properties[J]. Water Resources Research,1988,24(12):2005 − 2017. doi: 10.1029/WR024i012p02005

    [18]

    LU Zhiming,NEUMAN S P,GUADAGNINI A,et al. Conditional moment analysis of steady state unsaturated flow in bounded,randomly heterogeneous soils[J]. Water Resources Research,2002,38(4):1038.

    [19]

    ZHU Jianting,MOHANTY B P. Analytical solutions for steady state vertical infiltration[J]. Water Resources Research,2002,38(8):1145.

    [20]

    ROCKHOLD M L,SIMMONS C S,FAYER M J. An analytical solution technique for one-dimensional,steady vertical water flow in layered soils[J]. Water Resources Research,1997,33(4):897 − 902. doi: 10.1029/96WR03746

    [21]

    ZHAI Qian,YE Weimin,RAHARDJO H ,et al. Estimation of the hydraulic conductivity of unsaturated soil incorporating the film flow[J]. Canadian Geotechnical Journal,2022,59 (9):1679 − 1684.

    [22]

    ZHAI Qian,YE Weimin,RAHARDJO H ,et al. Theoretical method for the estimation of vapour conductivity for unsaturated soil[J]. Engineering Geology,2021,295:1 − 6.

    [23]

    SRIVASTAVA R,YEH T C J. Analytical solutions for one‐dimensional,transient infiltration toward the water table in homogeneous and layered soils[J]. Water Resources Research,1991,27(5):753 − 762. doi: 10.1029/90WR02772

    [24]

    吴礼舟,张利民,黄润秋. 成层非饱和土渗流的耦合解析解[J]. 岩土力学,2011,32(8):2391 − 2396. [WU Lizhou,ZHANG Limin,HUANG Runqiu. Analytic solution to coupled seepage in layered unsaturated solis[J]. Rock and Soil Mechanics,2011,32(8):2391 − 2396. (in Chinese with English abstract)]

    WU Lizhou, ZHANG Limin, HUANG Runqiu. Analytic solution to coupled seepage in layered unsaturated solis[J]. Rock and Soil Mechanics, 2011, 32(8): 2391 − 2396. (in Chinese with English abstract)

    [25]

    SORAGANVI V S,ABABOU R,KUMAR M M. Effective flow and transport properties of heterogeneous unsaturated soils[J]. Advances in Water Resources,2020,143:1 − 22.

    [26]

    GARDNER W. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J]. Soil Science,1958,85(4):228 − 232. doi: 10.1097/00010694-195804000-00006

    [27]

    ZHANG Zaiyong,WANG Wenke,GONG Chengcheng,et al. Finite analytic method:Analysis of one-dimensional vertical unsaturated flow in layered soils[J]. Journal of Hydrology,2021,597:1 − 9.

    [28]

    YEH T C J. One‐dimensional steady state infiltration in heterogeneous soils[J]. Water Resources Research,1989,25(10):2149 − 2158. doi: 10.1029/WR025i010p02149

    [29]

    LU Ning,GRIFFITHS D. Profiles of steady-state suction stress in unsaturated soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2004,130(10):1063 − 1076. doi: 10.1061/(ASCE)1090-0241(2004)130:10(1063)

    [30]

    VANAPALLI S K,FREDLUND D G. Comparison of different procedures to predict unsaturated soil shear strength[C]//Advances in Unsaturated Geotechnics. Denver,Colorado,USA. Reston,VA: American Society of Civil Engineers,2000: 195 − 209.

    [31]

    ESCARIO V,JUCA J F T. Strength and deformation of partly saturated soils[C]//Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering. International Society for Soil Mechanics and Geotechnical Engineering,1990:43 − 46.

    [32]

    ABDOLLAHI M, VAHEDIFARD F. Model for lateral swelling pressure in unsaturated expansive soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2021,147(10):04021096. doi: 10.1061/(ASCE)GT.1943-5606.0002605

    [33]

    GU Tianfeng,WANG Jiading,WANG Chenxing,et al. Experimental study of the shear strength of soil from the Heifangtai Platform of the Loess Plateau of China[J]. Journal of Soils and Sediments,2019,19(10):3463 − 3475. doi: 10.1007/s11368-019-02303-9

  • 加载中

(12)

(2)

计量
  • 文章访问数:  41
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2023-09-14
修回日期:  2023-12-07
刊出日期:  2024-09-15

目录