软土地区某超深圆形基坑变形特性及流固耦合分析

马昕, 孙德安, 刘树佳. 软土地区某超深圆形基坑变形特性及流固耦合分析[J]. 水文地质工程地质, 2024, 51(6): 74-85. doi: 10.16030/j.cnki.issn.1000-3665.202309064
引用本文: 马昕, 孙德安, 刘树佳. 软土地区某超深圆形基坑变形特性及流固耦合分析[J]. 水文地质工程地质, 2024, 51(6): 74-85. doi: 10.16030/j.cnki.issn.1000-3665.202309064
MA Xin, SUN Dean, LIU Shujia. Deformation characteristics and fluid-solid coupled analysis of a super-deep circular foundation pit in soft soils[J]. Hydrogeology & Engineering Geology, 2024, 51(6): 74-85. doi: 10.16030/j.cnki.issn.1000-3665.202309064
Citation: MA Xin, SUN Dean, LIU Shujia. Deformation characteristics and fluid-solid coupled analysis of a super-deep circular foundation pit in soft soils[J]. Hydrogeology & Engineering Geology, 2024, 51(6): 74-85. doi: 10.16030/j.cnki.issn.1000-3665.202309064

软土地区某超深圆形基坑变形特性及流固耦合分析

  • 基金项目: 上海市社会发展科技攻关项目(21DZ1204200);地质灾害防治与地质环境保护国家重点实验室开放基金项目(SKLGP2019K016)
详细信息
    作者简介: 马昕(1999—),女,硕士研究生,主要从事基坑工程方面的研究。E-mail:1339351072@qq.com
    通讯作者: 孙德安(1962—),男,教授,博士,从事非饱和土与特殊土力学的研究和教学工作。E-mail:sundean@shu.edu.cn
  • 中图分类号: TU46

Deformation characteristics and fluid-solid coupled analysis of a super-deep circular foundation pit in soft soils

More Information
  • 软土地区超深圆形基坑工程具有复杂性、危险性和稀缺性等特点,所以对其进行精确的模拟预测具有重要意义。以上海苏州河深隧工程中开挖深度56.3 m的超深圆形基坑为例,建立基于Biot固结理论的水土双向耦合有限元分析模型,结合实际监测数据研究了软土地区超深圆形基坑的受力与变形特性;探讨比较了双向耦合分析与工程中常用的仅考虑渗流场对土骨架作用的单向耦合分析在机理上的区别,以及2种分析计算结果与实际监测数据的差异。结果表明:(1)圆形围护结构受大偏压荷载一侧比未受偏压荷载一侧的侧向位移增大64.7%,表现出明显的空间效应;(2)双向耦合分析因为考虑了随时间的增加,水逐渐从孔隙排出,超孔隙水压力逐渐消散,并伴随着土体体积变化的过程,所以能够对土体以及围护结构的变形进行有效预测;(3)对于围护结构最大侧向位移,单向与双向耦合分析的计算值与实测值的误差分别为42.35%和14.35%;(4)关于最大环向轴力,单向与双向耦合分析的计算值与实测值的误差分别为14.30%和10.27%,双向耦合计算得到的基坑围护结构内力和变形的结果优于单向耦合计算。研究成果可为软土地区圆形超深基坑的设计和施工提供参考。

  • 加载中
  • 图 1  苗圃竖井地下连续墙布置图

    Figure 1. 

    图 2  苗圃竖井周边环境示意图

    Figure 2. 

    图 3  竖井支护体系剖面图及地层

    Figure 3. 

    图 4  基坑有限元模型图

    Figure 4. 

    图 5  水压力的计算结果与实测结果对比

    Figure 5. 

    图 6  土压力的计算结果与实测结果对比

    Figure 6. 

    图 7  各施工阶段下坑内外孔隙水压力分布图

    Figure 7. 

    图 8  各施工阶段下坑内外土压力分布图

    Figure 8. 

    图 9  坑内孔隙水压力对比

    Figure 9. 

    图 10  沉降测量点位置平面示意图

    Figure 10. 

    图 11  T02测点(深度5 m)处的沉降历时曲线

    Figure 11. 

    图 12  开挖完成时沿地表DB3测线沉降分布

    Figure 12. 

    图 13  底板浇筑完成时圆形围护结构变形云图

    Figure 13. 

    图 14  围护结构的最大侧移平面分布图(单位:mm)

    Figure 14. 

    图 15  各施工阶段围护结构最大侧向位移

    Figure 15. 

    图 16  底板浇筑完成时围护结构侧向位移

    Figure 16. 

    图 17  围护结构最大侧向位移计算值历时曲线

    Figure 17. 

    图 18  开挖完成时圆形围护结构环向轴力云图

    Figure 18. 

    图 19  各施工阶段下围护结构环向轴力

    Figure 19. 

    表 1  各层土体HS-Small模型参数

    Table 1.  Model parameters of HS-Small model for each layer soil

    土层号 γ/(kN·m−3 $ {E}_{\mathrm{oed}}^{{\mathrm{ref}}} $/MPa $ {E}_{50}^{{\mathrm{ref}}} $/MPa $ E_{\mathrm{ur}}^{\mathrm{ref}} $/MPa $ {G}_{0}^{{\mathrm{ref}}} $/MPa c'/kPa φ'/(°) $ {\gamma }_{0.7} $/10−4 $ {\mu }_{\mathrm{u}\mathrm{r}} $ Pref/kPa m K0 Rf 厚度/m
    18.8 4.02 4.54 27.88 102.00 6 36.0 2.7 0.2 100 0.8 0.55 0.9 3.81
    17.0 3.01 3.61 24.05 79.36 3 29.6 2.7 0.2 100 0.8 0.53 0.6 6.30
    17.0 2.41 2.89 19.30 54.03 4 27.9 2.7 0.2 100 0.8 0.53 0.6 8.70
    1 17.6 3.38 4.05 20.25 52.65 5 30.5 2.7 0.2 100 0.8 0.49 0.9 6.70
    3 17.8 4.63 5.55 27.76 72.17 5 31.6 2.7 0.2 100 0.8 0.48 0.9 15.40
    4 19.5 5.74 6.89 34.45 89.58 16 32.4 2.7 0.2 100 0.8 0.46 0.9 3.80
    19.5 11.58 11.58 46.32 138.96 0 34.5 2.7 0.2 100 0.5 0.38 0.9 4.60
    1 18.0 4.75 5.70 28.51 67.50 8 32.4 2.7 0.2 100 0.8 0.46 0.9 4.20
    2 18.5 5.63 6.75 33.75 89.59 8 33.1 2.7 0.2 100 0.8 0.45 0.9 18.90
    1 19.4 14.66 14.66 58.64 146.60 0 37.5 2.7 0.2 100 0.5 0.36 0.9 3.50
    2-1 20.2 15.69 15.69 62.76 156.90 0 37.5 2.7 0.2 100 0.5 0.33 0.9 8.60
    2-2 19.1 17.21 17.21 68.84 172.10 0 36.5 2.7 0.2 100 0.5 0.31 0.9 13.90
    19.9 10.42 12.51 62.53 135.69 19 31.6 2.7 0.2 100 0.8 0.5 0.9 4.10
    19.4 7.70 9.24 46.22 113.55 16 32.0 2.7 0.2 100 0.8 0.43 0.9 8.54
    A 19.3 12.37 12.37 49.48 138.54 0 37.0 2.7 0.2 100 0.5 0.36 0.9 15.70
    21.0 15.40 15.40 61.60 172.48 0 36.0 2.7 0.2 100 0.5 0.32 0.9 26.00
      注:γ为重度;$ E_{\mathrm{oed}}^{\mathrm{ref}} $为固结试验的参考切线模量;$ {E}_{50}^{{\mathrm{ref}}} $为三轴固结排水剪切试验的参考割线模量;$ E_{\mathrm{ur}}^{\mathrm{ref}} $为三轴固结排水卸载再加载试验的参考卸载再加载模量;$ {G}_{0}^{{\mathrm{ref}}} $为小应变刚度试验的参考初始剪切模量;c'为有效黏聚力;φ'为有效内摩擦角;$ {\gamma }_{0.7} $为0.7倍的初始剪切模量时对应的剪应变;$ \mu_{\mathrm{ur}} $为泊松比;Pref为参考应力;m为应力水平相关的幂指数;K0为正常固结条件下的静止侧压力系数;Rf为破坏比。
    下载: 导出CSV

    表 2  基坑施工工况

    Table 2.  Foundation pit construction step

    计算步 工况 开始日期 结束日期
    Step0 初始渗流场计算
    Step1 初始应力场计算
    Step2 基坑周边主要建筑物施工
    Step3 地下连续墙施工
    Step4 表层土开挖(挖深1.80 m)
    并施工顶圈梁
    2020-10-16 2020-10-29
    Step5 开挖第2层土方(挖深9.50 m)
    并施工第1道环梁
    2020-12-16 2021-01-04
    Step6 开挖第3层土方(挖深18.00 m)
    并施工第2道环梁
    2021-02-28 2021-03-24
    Step7 开挖第4层土方(挖深29.05 m)
    并施工第3道环梁
    2021-04-02 2021-04-24
    Step8 开挖第5层土方(挖深39.50 m)
    并施工第4道环梁
    2021-05-07 2021-06-03
    Step9 开挖第6层土方(挖深49.50 m)
    并施工第5道环梁
    2021-06-13 2021-07-17
    Step10 开挖第7层土方(挖深56.30 m) 2021-07-29 2021-08-10
    Step11 底板施工 2021-08-17 2021-09-05
    Step12 内衬墙施工 2021-09-22 2022-02-24
    下载: 导出CSV
  • [1]

    宋广,宋二祥. 基坑开挖数值模拟中土体本构模型的选取[J]. 工程力学,2014,31(5):86 − 94. [SONG Guang,SONG Erxiang. Selection of soil constitutive models for numerical simulation of foundation pit excavation[J]. Engineering Mechanics,2014,31(5):86 − 94. (in Chinese with English abstract)]

    SONG Guang, SONG Erxiang. Selection of soil constitutive models for numerical simulation of foundation pit excavation[J]. Engineering Mechanics, 2014, 31(5): 86 − 94. (in Chinese with English abstract)

    [2]

    林鸣,徐伟,杨玉泉,等. 深基坑工程信息化施工技术[M]. 北京:中国建筑工业出版社,2006:1 − 2. [LIN Ming,XU Wei,YANG Yuquan,et al. Information construction technology of deep foundation engineering[M]. Beijing:China Architecture & Building Press,2006:1 − 2. (in Chinese)]

    LIN Ming, XU Wei, YANG Yuquan, et al. Information construction technology of deep foundation engineering[M]. Beijing: China Architecture & Building Press, 2006: 1 − 2. (in Chinese)

    [3]

    阳吉宝. 深厚软土地区基坑墙底抗隆起稳定性Prandlt计算式的讨论[J]. 水文地质工程地质,2021,48(2):61 − 69. [YANG Jibao. A discussion of the Prandlt calculation formula for anti-uplift stability of the bottom of a foundation pit wall in deep soft soil areas[J]. Hydrogeology & Engineering Geology,2021,48(2):61 − 69. (in Chinese with English abstract)]

    YANG Jibao. A discussion of the Prandlt calculation formula for anti-uplift stability of the bottom of a foundation pit wall in deep soft soil areas[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 61 − 69. (in Chinese with English abstract)

    [4]

    蒋涛,崔圣华,冉耀. 开挖和降雨耦合诱发滑坡机理分析——以四川万源前进广场滑坡为例[J]. 中国地质灾害与防治学报,2023,34(3):20 − 30. [JIANG Tao,CUI Shenghua,RAN Yao. Analysis of landslide mechanism induced by excavation and rainfall:A case study of the Qianjin Square landslide in Wanyuan City,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):20 − 30. (in Chinese with English abstract)]

    JIANG Tao, CUI Shenghua, RAN Yao. Analysis of landslide mechanism induced by excavation and rainfall: A case study of the Qianjin Square landslide in Wanyuan City, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 20 − 30. (in Chinese with English abstract)

    [5]

    潘涛. 软土地区双线区间盾构隧道施工对周边地表以及建筑物沉降的影响[J]. 水文地质工程地质,2022,49(1):101 − 108. [PAN Tao. Influences of double-track shield tunnel construction on settlements of adjacent ground and buildings in a soft soil area[J]. Hydrogeology & Engineering Geology,2022,49(1):101 − 108. (in Chinese with English abstract)]

    PAN Tao. Influences of double-track shield tunnel construction on settlements of adjacent ground and buildings in a soft soil area[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 101 − 108. (in Chinese with English abstract)

    [6]

    张向东,刘刚,李军. 土岩组合地区基坑开挖对扩展基础桥墩沉降影响研究[J]. 中国地质灾害与防治学报,2018,29(2):115 − 121. [ZHANG Xiangdong,LIU Gang,LI Jun. Study on influence of foundation pit excavation on settlement of spread foundation piers in soil-rock combined area[J]. The Chinese Journal of Geological Hazard and Control,2018,29(2):115 − 121. (in Chinese with English abstract)]

    ZHANG Xiangdong, LIU Gang, LI Jun. Study on influence of foundation pit excavation on settlement of spread foundation piers in soil-rock combined area[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(2): 115 − 121. (in Chinese with English abstract)

    [7]

    郑刚,曾超峰. 基坑开挖前潜水降水引起的地下连续墙侧移研究[J]. 岩土工程学报,2013,35(12):2153 − 2163. [ZHENG Gang,ZENG Chaofeng. Lateral displacement of diaphragm wall by dewatering of phreatic water before excavation[J]. Chinese Journal of Geotechnical Engineering,2013,35(12):2153 − 2163. (in Chinese with English abstract)]

    ZHENG Gang, ZENG Chaofeng. Lateral displacement of diaphragm wall by dewatering of phreatic water before excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2153 − 2163. (in Chinese with English abstract)

    [8]

    胡长明,林成. 黄土深基坑潜水区降水诱发地面沉降的简化算法[J]. 中国地质灾害与防治学报,2021,32(3):76 − 83. [HU Changming,LIN Cheng. Simplified calculation of settlement due to dewatering of phreatic aquifer in loess area[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):76 − 83. (in Chinese with English abstract)]

    HU Changming, LIN Cheng. Simplified calculation of settlement due to dewatering of phreatic aquifer in loess area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 76 − 83. (in Chinese with English abstract)

    [9]

    TAN Yong,LU Ye,XU Changjie,et al. Investigation on performance of a large circular pit-in-pit excavation in clay-gravel-cobble mixed strata[J]. Tunnelling and Underground Space Technology,2018,79(9):356 − 374.

    [10]

    宗露丹,王卫东,徐中华,等. 软土地区56 m超深圆形竖井基坑支护结构力学分析[J]. 隧道建设(中英文),2022,42(7):1248 − 1256. [ZONG Ludan,WANG Weidong,XU Zhonghua,et al. Mechanical properties of a 56-m deep circular shaft foundation pit support structure in soft soils[J]. Tunnel Construction,2022,42(7):1248 − 1256. (in Chinese with English abstract)]

    ZONG Ludan, WANG Weidong, XU Zhonghua, et al. Mechanical properties of a 56-m deep circular shaft foundation pit support structure in soft soils[J]. Tunnel Construction, 2022, 42(7): 1248 − 1256. (in Chinese with English abstract)

    [11]

    XU Qianwei,XIE Jinlin,ZHU Hehua,et al. Supporting behavior evolution of ultra-deep circular diaphragm walls during excavation:Monitoring and assessment methods comparison[J]. Tunnelling and Underground Space Technology,2024,143(1):105495.

    [12]

    王春波,丁文其,陈志国,等. 超深基坑工程渗流耦合理论研究进展[J]. 同济大学学报(自然科学版),2014,42(2):238 − 245. [WANG Chunbo,DING Wenqi,CHEN Zhiguo,et al. Research progress on seepage coupling theory of super-deep foundation pit engineering[J]. Journal of Tongji University (Natural Science),2014,42(2):238 − 245. (in Chinese with English abstract)]

    WANG Chunbo, DING Wenqi, CHEN Zhiguo, et al. Research progress on seepage coupling theory of super-deep foundation pit engineering[J]. Journal of Tongji University (Natural Science), 2014, 42(2): 238 − 245. (in Chinese with English abstract)

    [13]

    向朱锋,徐金明. 悬挂式止水帷幕条件下深基坑开挖变形特性研究[J]. 水文地质工程地质,2023,50(5):96 − 106. [XIANG Zhufeng,XU Jinming. Deformation characteristics of deep foundation pit with suspended waterproof curtain during excavation[J]. Hydrogeology & Engineering Geology,2023,50(5):96 − 106. (in Chinese with English abstract)]

    XIANG Zhufeng, XU Jinming. Deformation characteristics of deep foundation pit with suspended waterproof curtain during excavation[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 96 − 106. (in Chinese with English abstract)

    [14]

    郑启宇,夏小和,李明广,等. 深基坑降承压水对墙体变形和地表沉降的影响[J]. 上海交通大学学报,2020,54(10):1094 − 1100. [ZHENG Qiyu,XIA Xiaohe,LI Mingguang,et al. Influence of dewatering in confined aquifers on wall deformation and ground settlements in deep excavation[J]. Journal of Shanghai Jiao Tong University,2020,54(10):1094 − 1100. (in Chinese with English abstract)]

    ZHENG Qiyu, XIA Xiaohe, LI Mingguang, et al. Influence of dewatering in confined aquifers on wall deformation and ground settlements in deep excavation[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1094 − 1100. (in Chinese with English abstract)

    [15]

    黄戡,杨伟军,马启昂,等. 基于渗流应力耦合的基坑开挖受力特性及其对邻近地铁隧道的影响[J]. 中南大学学报(自然科学版),2019,50(1):198 − 205. [HUANG Kan,YANG Weijun,MA Qi’ang,et al. Influence of foundation excavation pit on adjacent metro tunnel using fluid-solid mechanics theory[J]. Journal of Central South University (Science and Technology),2019,50(1):198 − 205. (in Chinese with English abstract)] doi: 10.11817/j.issn.1672-7207.2019.01.025

    HUANG Kan, YANG Weijun, MA Qi’ang, et al. Influence of foundation excavation pit on adjacent metro tunnel using fluid-solid mechanics theory[J]. Journal of Central South University (Science and Technology), 2019, 50(1): 198 − 205. (in Chinese with English abstract) doi: 10.11817/j.issn.1672-7207.2019.01.025

    [16]

    BORGES J L,GUERRA G T. Cylindrical excavations in clayey soils retained by jet grout walls:Numerical analysis and parametric study considering the influence of consolidation[J]. Computers and Geotechnics,2014,55:42 − 56. doi: 10.1016/j.compgeo.2013.07.008

    [17]

    WU Yongxia,SHEN Shuilong,LYU Haimin,et al. Analyses of leakage effect of waterproof curtain during excavation dewatering[J]. Journal of Hydrology,2020,583:124582. doi: 10.1016/j.jhydrol.2020.124582

    [18]

    李航,李泽文,廖少明,等. 上海超深基坑环境变形时空分布特性实测分析[J]. 岩土工程学报,2023,45(8):1595 − 1604. [LI Hang,LI Zewen,LIAO Shaoming,et al. Field measurement of time-space distribution behaviors of environmental settlement of an ultra-deep excavation in Shanghai soft ground[J]. Chinese Journal of Geotechnical Engineering,2023,45(8):1595 − 1604. (in Chinese with English abstract)] doi: 10.11779/CJGE20220661

    LI Hang, LI Zewen, LIAO Shaoming, et al. Field measurement of time-space distribution behaviors of environmental settlement of an ultra-deep excavation in Shanghai soft ground[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1595 − 1604. (in Chinese with English abstract) doi: 10.11779/CJGE20220661

    [19]

    华东建筑设计研究院有限公司,上海建工集团股份有限公司. 基坑工程技术标准:DG/TJ 508-61—2018[S]. 上海:同济大学出版社,2018. [East China Architectural Design & Research Institute Co. Ltd.,Shanghai Construction Group Co. Ltd. Technical code for excavation engineering:DG/TJ 508-61—2018[S]. Shanghai:Tongji University Press,2018. (in Chinese)]

    East China Architectural Design & Research Institute Co. Ltd., Shanghai Construction Group Co. Ltd. Technical code for excavation engineering: DG/TJ 508-61—2018[S]. Shanghai: Tongji University Press, 2018. (in Chinese)

    [20]

    BURLAND J B. Ninth laurits bjerrum memorial lecture:“small is beautiful”—The stiffness of soils at small strains[J]. Canadian Geotechnical Journal,1989,26(4):499 − 516.

    [21]

    JARDINE R J,POTTS D M,FOURIE A B,et al. Studies of the influence of non-linear stress–strain characteristics in soil–structure interaction[J]. Géotechnique,1986,36(3):377 − 396.

    [22]

    BENZ T. Small-strain stiffness of soils and its numerical consequences[D]. Stuttgart:University of Stuttgart,2007.

    [23]

    梁发云,贾亚杰,丁钰津,等. 上海地区软土HSS模型参数的试验研究[J]. 岩土工程学报,2017,39(2):269 − 278. [LIANG Fayun,JIA Yajie,DING Yujin,et al. Experimental study on parameters of HSS model for soft soils in Shanghai[J]. Chinese Journal of Geotechnical Engineering,2017,39(2):269 − 278. (in Chinese with English abstract)] doi: 10.11779/CJGE201702010

    LIANG Fayun, JIA Yajie, DING Yujin, et al. Experimental study on parameters of HSS model for soft soils in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 269 − 278. (in Chinese with English abstract) doi: 10.11779/CJGE201702010

    [24]

    王卫东,王浩然,徐中华. 基坑开挖数值分析中土体硬化模型参数的试验研究[J]. 岩土力学,2012,33(8):2283 − 2290. [WANG Weidong,WANG Haoran,XU Zhonghua. Experimental study of parameters of hardening soil model for numerical analysis of excavations of foundation pits[J]. Rock and Soil Mechanics,2012,33(8):2283 − 2290. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-7598.2012.08.008

    WANG Weidong, WANG Haoran, XU Zhonghua. Experimental study of parameters of hardening soil model for numerical analysis of excavations of foundation pits[J]. Rock and Soil Mechanics, 2012, 33(8): 2283 − 2290. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2012.08.008

    [25]

    陈赟,罗敏敏,夏能武,等. 软土HSS模型参数现有试验成果统计分析[J]. 岩土工程学报,2021,43(增刊2):197 − 201. [CHEN Yun,LUO Minmin,XIA Nengwu,et al. Statistical analysis of existing test results of HSS model parameters for soft soils[J]. Chinese Journal of Geotechnical Engineering,2021,43(Sup.2):197 − 201. (in Chinese with English abstract)]

    CHEN Yun, LUO Minmin, XIA Nengwu, et al. Statistical analysis of existing test results of HSS model parameters for soft soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(Sup.2): 197 − 201. (in Chinese with English abstract)

    [26]

    顾晓强,吴瑞拓,梁发云,等. 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学,2021,42(3):833 − 845. [GU Xiaoqiang,WU Ruituo,LIANG Fayun,et al. On HSS model parameters for Shanghai soils with engineering verification[J]. Rock and Soil Mechanics,2021,42(3):833 − 845. (in Chinese with English abstract)]

    GU Xiaoqiang, WU Ruituo, LIANG Fayun, et al. On HSS model parameters for Shanghai soils with engineering verification[J]. Rock and Soil Mechanics, 2021, 42(3): 833 − 845. (in Chinese with English abstract)

    [27]

    徐中华,李靖,翁其平,等. 超深圆形基坑计算分析方法及工程应用[J]. 施工技术(中英文),2022,51(1):13 − 20. [XU Zhonghua,LI Jing,WENG Qiping,et al. Analysis method of ultra-deep circular excavation and its application[J]. Construction Technology,2022,51(1):13 − 20. (in Chinese with English abstract)]

    XU Zhonghua, LI Jing, WENG Qiping, et al. Analysis method of ultra-deep circular excavation and its application[J]. Construction Technology, 2022, 51(1): 13 − 20. (in Chinese with English abstract)

    [28]

    BIOT M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics,1941,12(2):155 − 164. doi: 10.1063/1.1712886

    [29]

    刘国彬,刘登攀,刘丽雯,等. 基坑坑底施工阶段围护墙变形监测分析[J]. 岩石力学与工程学报,2007,26(增刊2):4386 − 4394. [LIU Guobin,LIU Dengpan,LIU Liwen,et al. Monitoring and analysis of lateral deformation of retaining wall during bottom excavation in deep pit[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(Sup 2):4386 − 4394. (in Chinese with English abstract)]

    LIU Guobin, LIU Dengpan, LIU Liwen, et al. Monitoring and analysis of lateral deformation of retaining wall during bottom excavation in deep pit[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(Sup 2): 4386 − 4394. (in Chinese with English abstract)

  • 加载中

(19)

(2)

计量
  • 文章访问数:  291
  • PDF下载数:  45
  • 施引文献:  0
出版历程
收稿日期:  2023-09-28
修回日期:  2023-12-29
刊出日期:  2024-11-15

目录