地下水-地表水集成模型研究进展

彭书艳, 陆峥, 吴婷婷, 杨晓帆. 地下水-地表水集成模型研究进展[J]. 水文地质工程地质, 2024, 51(6): 60-73. doi: 10.16030/j.cnki.issn.1000-3665.202401001
引用本文: 彭书艳, 陆峥, 吴婷婷, 杨晓帆. 地下水-地表水集成模型研究进展[J]. 水文地质工程地质, 2024, 51(6): 60-73. doi: 10.16030/j.cnki.issn.1000-3665.202401001
PENG Shuyan, LU Zheng, WU Tingting, YANG Xiaofan. Research progress in integrated groundwater-surface water models[J]. Hydrogeology & Engineering Geology, 2024, 51(6): 60-73. doi: 10.16030/j.cnki.issn.1000-3665.202401001
Citation: PENG Shuyan, LU Zheng, WU Tingting, YANG Xiaofan. Research progress in integrated groundwater-surface water models[J]. Hydrogeology & Engineering Geology, 2024, 51(6): 60-73. doi: 10.16030/j.cnki.issn.1000-3665.202401001

地下水-地表水集成模型研究进展

  • 基金项目: 国家自然科学基金项目(42077172)
详细信息
    作者简介: 彭书艳(1996—),女,硕士研究生,主要从事地下水数值模拟研究。E-mail:sypeng@mail.bnu.edu.cn
    通讯作者: 杨晓帆(1981—),女,博士,教授,主要从事地下水科学、环境流体力学、多尺度建模与数值模拟等方面的研究。E-mail:xfyang@bnu.edu.cn
  • 中图分类号: P641.8

Research progress in integrated groundwater-surface water models

More Information
  • 地下水-地表水交互过程涉及物质运移与能量传输,对流域水文生态环境有着直接影响,已成为近年来水文地质等领域的研究热点。研究表明,地下水-地表水集成模型是研究地下水与地表水交互的有效手段。通过回顾近年来地下水-地表水集成模型的相关研究,概述了地下水-地表水集成模型分类、模型误差来源、模型应用、面临挑战与发展趋势等5方面内容。其中,地下水-地表水集成模型根据耦合方案可分为完全耦合模型和松散耦合模型;模型误差来源主要包括地形处理方案、驱动数据、模型参数化方案、人为因素和认知的有限性等5类;目前,集成模型广泛应用于气候变化和人类活动影响下的地下水-地表水规律变化以及水资源管理与优化配置方面的研究。随着水文学研究的深入发展,地下水-地表水集成模型面临着基础数据需求增大、硬件平台要求提高、模拟范围难以准确把握和学科交叉趋势明显等挑战;未来集成模型将向拓宽参数获取渠道、提高模型计算效率和加强不同学科融合等方面发展。

  • 加载中
  • 图 1  地下水-地表水交互示意图

    Figure 1. 

    图 2  ParFlow-CLM模型构架图(修改自Condon等[60]

    Figure 2. 

    表 1  常用地下水-地表水集成模型简介

    Table 1.  Model description

    耦合方案 模型 地下方案 地表方案 耦合策略 特征 参考文献
    完全耦合 ParFlow 有限体积 运动波/扩散波 压力连续 以瞬变偏微分方程描述各种水流运动,
    应用数值分析建立相邻网格之间的时空关系,
    不同界面之间的水量交换作为源汇项处理
    [29]
    CATHY 有限元 扩散波 界面切换 [11]
    HGS 有限差分/有限元 扩散波 一阶转换 [30]
    InHM 有限体积 扩散波 一阶转换 [31]
    松散耦合 MODFLOW 有限差分 运动波 地下水数值模型取代分布式水文模型的地下水模块,
    借助于公共参量的传递和反馈进行耦合
    [32]
    FEFLOW 有限元 一维非稳态流 一阶转换 [33]
    GSFLOW 有限差分 PRMS组件 一阶转换 [34]
    下载: 导出CSV

    表 2  地下水-地表水集成模型模拟结果误差来源

    Table 2.  Potential sources of bias acting on integrated groundwater-surface water model simulation results

    误差类别 潜在误差来源 参考文献
    地形处理方案 原始河道数据及其处理方案
    DEM精度的损失
    [7071]
    驱动数据 驱动数据自身变量
    驱动数据预处理方案
    [56, 7273]
    模型参数化方案 地表参数
    水文地质参数
    初始条件
    模型离散化方案
    [62, 7475]
    人为因素 大坝和水库建设
    地下水开采
    土地利用变化
    [70, 76]
    认知的有限性 物理过程认知不足
    真实物理过程简化的影响
    尺度问题
    真实性检验问题
    [40, 70]
    下载: 导出CSV
  • [1]

    XIE Yueqing,COOK P G,SIMMONS C T. Solute transport processes in flow-event-driven stream–aquifer interaction[J]. Journal of Hydrology,2016,538:363 − 373. doi: 10.1016/j.jhydrol.2016.04.031

    [2]

    STONEDAHL S H,HARVEY J W,WÖRMAN A,et al. A multiscale model for integrating hyporheic exchange from ripples to meanders[J]. Water Resources Research,2010,46(12):W12539.

    [3]

    WOESSNER W W. Stream and fluvial plain ground water interactions:Rescaling hydrogeologic thought[J]. Groundwater,2000,38(3):423 − 429. doi: 10.1111/j.1745-6584.2000.tb00228.x

    [4]

    BOANO F,HARVEY J W,MARION A,et al. Hyporheic flow and transport processes:Mechanisms,models,and biogeochemical implications[J]. Reviews of Geophysics,2014,52(4):603 − 679. doi: 10.1002/2012RG000417

    [5]

    DE GRAAF I E M,GLEESON T,RENS VAN BEEK L P H,et al. Environmental flow limits to global groundwater pumping[J]. Nature,2019,574(7776):90 − 94. doi: 10.1038/s41586-019-1594-4

    [6]

    BARTHEL R,BANZHAF S. Groundwater and surface water interaction at the regional-scale–A review with focus on regional integrated models[J]. Water Resources Management,2016,30(1):1 − 32. doi: 10.1007/s11269-015-1163-z

    [7]

    BROECKER T,SOBHI GOLLO V,FOX A,et al. High-resolution integrated transport model for studying surface water-groundwater interaction[J]. Ground Water,2021,59(4):488 − 502. doi: 10.1111/gwat.13071

    [8]

    STEWART R J,WOLLHEIM W M,GOOSEFF M N,et al. Separation of river network–scale nitrogen removal among the main channel and two transient storage compartments[J]. Water Resources Research,2011,47(10):W00J10.

    [9]

    COLUCCIO K,MORGAN L K. A review of methods for measuring groundwater–surface water exchange in braided rivers[J]. Hydrology and Earth System Sciences,2019,23(10):4397 − 4417. doi: 10.5194/hess-23-4397-2019

    [10]

    周妍,白国营,赵洪岩,等. 分布式地表水-地下水耦合数值模型研究进展[J]. 南水北调与水利科技(中英文),2023,21(3):435 − 446. [ZHOU Yan,BAI Guoying,ZHAO Hongyan,et al. Research advances in distributed coupled surface-subsurface numerical model[J]. South-to-North Water Transfers and Water Science & Technology,2023,21(3):435 − 446. (in Chinese with English abstract)]

    ZHOU Yan, BAI Guoying, ZHAO Hongyan, et al. Research advances in distributed coupled surface-subsurface numerical model[J]. South-to-North Water Transfers and Water Science & Technology, 2023, 21(3): 435 − 446. (in Chinese with English abstract)

    [11]

    CAMPORESE M,PANICONI C,PUTTI M,et al. Surface-subsurface flow modeling with path-based runoff routing,boundary condition-based coupling,and assimilation of multisource observation data[J]. Water Resources Research,2010,46(2):W02512.

    [12]

    NTONA M M,BUSICO G,MASTROCICCO M,et al. Modeling groundwater and surface water interaction:An overview of current status and future challenges[J]. Science of the Total Environment,2022,846:157355. doi: 10.1016/j.scitotenv.2022.157355

    [13]

    ROSENBERRY D O,LABAUGH J W. Field techniques for estimating water fluxes between surface water and ground water[R]. Denver:U S Geological Survey,2008.

    [14]

    ROSENBERRY D O,GLASER P H,SIEGEL D I,et al. Use of hydraulic head to estimate volumetric gas content and ebullition flux in northern peatlands[J]. Water Resources Research,2003,39(3):1066.

    [15]

    GLOSE A,LAUTZ L K,BAKER E A. Stream heat budget modeling with HFLUX:Model development,evaluation,and applications across contrasting sites and seasons[J]. Environmental Modelling & Software,2017,92:213 − 228.

    [16]

    BATCHELOR C,GU Chuanhui. Hyporheic exchange and nutrient uptake in a forested and urban stream in the southern appalachians[J]. Environment and Natural Resources Research,2014,4(3):56.

    [17]

    VOGEL R M,LALL U,CAI Ximing,et al. Hydrology:The interdisciplinary science of water[J]. Water Resources Research,2015,51(6):4409 − 4430. doi: 10.1002/2015WR017049

    [18]

    SOLOMON D K,HUMPHREY E,GILMORE T E,et al. An automated seepage meter for streams and lakes[J]. Water Resources Research,2020,56(4):e2019WR02698.

    [19]

    MAO Meng,ZHENG Xiaoli,CHEN Chong,et al. Coupled effect of flow velocity and structural heterogeneity on transport and release of kaolinite colloids in saturated porous media[J]. Environmental Science and Pollution Research International,2020,27(28):35065 − 35077. doi: 10.1007/s11356-020-09806-w

    [20]

    梁杏,张人权,牛宏,等. 地下水流系统理论与研究方法的发展[J]. 地质科技情报,2012,31(5):143 − 151. [LIANG Xing,ZHANG Renquan,NIU Hong,et al. Development of the theory and research method of groundwater flow system[J]. Geological Science and Technology Information,2012,31(5):143 − 151. (in Chinese with English abstract)]

    LIANG Xing, ZHANG Renquan, NIU Hong, et al. Development of the theory and research method of groundwater flow system[J]. Geological Science and Technology Information, 2012, 31(5): 143 − 151. (in Chinese with English abstract)

    [21]

    BRUNNER P,THERRIEN R,RENARD P,et al. Advances in understanding river-groundwater interactions[J]. Reviews of Geophysics,2017,55(3):818 − 854. doi: 10.1002/2017RG000556

    [22]

    TRIPATHI M,YADAV P K,CHAHAR B R,et al. A review on groundwater–surface water interaction highlighting the significance of streambed and aquifer properties on the exchanging flux[J]. Environmental Earth Sciences,2021,80(17):604. doi: 10.1007/s12665-021-09897-9

    [23]

    POETER E,FAN Ying,CHERRY J,et al. Groundwater in our water cycle:Getting to know earth’s most important fresh water source[M]. Guelph:The Groundwater Project,2020.

    [24]

    LIU Minghuan,JIANG Yao,XU Xu,et al. Long-term groundwater dynamics affected by intense agricultural activities in oasis areas of arid inland river basins,Northwest China[J]. Agricultural Water Management,2018,203:37 − 52. doi: 10.1016/j.agwat.2018.02.028

    [25]

    胡立堂. 黑河干流中游地区地表水和地下水集成模拟与应用[J]. 北京师范大学学报(自然科学版),2014,50(5):563 − 569. [HU Litang. Integrated surface water-groundwater model and application in the middle branches of the Heihe River Basin[J]. Journal of Beijing Normal University (Natural Science),2014,50(5):563 − 569. (in Chinese with English abstract)]

    HU Litang. Integrated surface water-groundwater model and application in the middle branches of the Heihe River Basin[J]. Journal of Beijing Normal University (Natural Science), 2014, 50(5): 563 − 569. (in Chinese with English abstract)

    [26]

    LI Xin,CHENG Guodong,GE Yingchun,et al. Hydrological cycle in the Heihe River Basin and its implication for water resource management in endorheic basins[J]. Journal of Geophysical Research (Atmospheres),2018,123(2):890 − 914. doi: 10.1002/2017JD027889

    [27]

    薛禹群. 中国地下水数值模拟的现状与展望[J]. 高校地质学报,2010,16(1):1 − 6. [XUE Yuqun. Present situation and prospect of groundwater numerical simulation in China[J]. Geological Journal of China Universities,2010,16(1):1 − 6. (in Chinese with English abstract)] doi: 10.3969/j.issn.1006-7493.2010.01.001

    XUE Yuqun. Present situation and prospect of groundwater numerical simulation in China[J]. Geological Journal of China Universities, 2010, 16(1): 1 − 6. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-7493.2010.01.001

    [28]

    HAQUE A,SALAMA A,LO Kei,et al. Surface and groundwater interactions:A review of coupling strategies in detailed domain models[J]. Hydrology,2021,8(1):35. doi: 10.3390/hydrology8010035

    [29]

    KOLLET S J,MAXWELL R M. Integrated surface–groundwater flow modeling:A free-surface overland flow boundary condition in a parallel groundwater flow model[J]. Advances in Water Resources,2006,29(7):945 − 958. doi: 10.1016/j.advwatres.2005.08.006

    [30]

    THERRIEN R,SUDICKY E A. Three-dimensional analysis of variablysaturated flow and solute transport in discretely-fractured porous media[J]. Journal of Contaminant Hydrology,1996,23(1/2):1 − 44. doi: 10.1016/0169-7722(95)00088-7

    [31]

    VANDERKWAAK J E. Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems[D]. Waterloo:University of Waterloo,1999.

    [32]

    MCDONALD M G,HARBAUGH A W. The history of MODFLOW[J]. Ground Water,2003,41(2):280 − 283. doi: 10.1111/j.1745-6584.2003.tb02591.x

    [33]

    HALDER S,ROY M B,ROY P K. Understanding the exchange process between ground and surface water using mini drive point piezometer and mathematical models to identify suitable managed aquifer recharge sites[J]. Environmental Science and Pollution Research International,2023,30(40):92736 − 92767. doi: 10.1007/s11356-023-28885-z

    [34]

    MARKSTROM S L,NISWONGER R G,REGAN R S,et al. GSFLOW-coupled ground-water and surface-water FLOW model based on the integration of the precipitation-runoff modeling system (PRMS) and the modular ground-water flow model (MODFLOW-2005)[M]. Reston:U S Geological Survey Techniques and Methods 6-D1,2008.

    [35]

    DAVISON J H,HWANG H T,SUDICKY E A,et al. Coupled atmospheric,land surface,and subsurface modeling:Exploring water and energy feedbacks in three-dimensions[J]. Advances in Water Resources,2015,86:73 − 85. doi: 10.1016/j.advwatres.2015.09.002

    [36]

    HEPPNER C S,RAN Qihua,VANDERKWAAK J E,et al. Adding sediment transport to the integrated hydrology model (InHM):Development and testing[J]. Advances in Water Resources,2006,29(6):930 − 943. doi: 10.1016/j.advwatres.2005.08.003

    [37]

    SHOKRI A. Developing a new numerical surface/subsurface model for irrigation and drainage system design[C]. Melbourne:IAHS-AISH Publication,2011,345.

    [38]

    齐永孟. 基于Saint-Venant方程组的大规模流体模拟研究与实现[D]. 青岛:青岛大学,2022. [QI Yongmeng. Research and implementation of large-scale fluid simulation based on Saint-Venant equations[D]. Qingdao:Qingdao University,2022. (in Chinese with English abstract)]

    QI Yongmeng. Research and implementation of large-scale fluid simulation based on Saint-Venant equations[D]. Qingdao: Qingdao University, 2022. (in Chinese with English abstract)

    [39]

    BANERJEE D,GANGULY S. A review on the research advances in groundwater–surface water interaction with an overview of the phenomenon[J]. Water,2023,15(8):1552. doi: 10.3390/w15081552

    [40]

    GUEVARA-OCHOA C,MEDINA-SIERRA A,VIVES L. Spatio-temporal effect of climate change on water balance and interactions between groundwater and surface water in Plains[J]. Science of the Total Environment,2020,722:137886. doi: 10.1016/j.scitotenv.2020.137886

    [41]

    薛禹群. 地下水动力学[M]. 2版. 北京:地质出版社,1997. [XUE Yuqun. Groundwater hydraulics[M]. 2nd ed. Beijing:Geological Publishing House,1997. (in Chinese with English abstract)]

    XUE Yuqun. Groundwater hydraulics[M]. 2nd ed. Beijing: Geological Publishing House, 1997. (in Chinese with English abstract)

    [42]

    QI Peng,ZHANG Guangxin,XU Yijun,et al. Response of water resources to future climate change in a high-latitude river basin[J]. Sustainability,2019,11(20):5619. doi: 10.3390/su11205619

    [43]

    EBEL B A,MIRUS B B,HEPPNER C S,et al. First-order exchange coefficient coupling for simulating surface water–groundwater interactions:Parameter sensitivity and consistency with a physics-based approach[J]. Hydrological Processes,2009,23(13):1949 − 1959. doi: 10.1002/hyp.7279

    [44]

    LIGGETT J E,WERNER A D,SIMMONS C T. Influence of the first-order exchange coefficient on simulation of coupled surface–subsurface flow[J]. Journal of Hydrology,2012,414:503 − 515.

    [45]

    KOLLET S J,SULIS M,MAXWELL R M,et al. The integrated hydrologic model intercomparison project,IH-MIP2:A second set of benchmark results to diagnose integrated hydrology and feedbacks[J]. Water Resources Research,2017,53(1):867 − 890. doi: 10.1002/2016WR019191

    [46]

    MAXWELL R M. Infiltration in arid environments:Spatial patterns between subsurface heterogeneity and water-energy balances[J]. Vadose Zone Journal,2010,9(4):970 − 983. doi: 10.2136/vzj2010.0014

    [47]

    MAXWELL R M,PUTTI M,MEYERHOFF S,et al. Surface-subsurface model intercomparison:A first set of benchmark results to diagnose integrated hydrology and feedbacks[J]. Water Resources Research,2014,50(2):1531 − 1549. doi: 10.1002/2013WR013725

    [48]

    ASHBY S F,FALGOUT R D. A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations[J]. Nuclear Science and Engineering,1996,124(1):145 − 159. doi: 10.13182/NSE96-A24230

    [49]

    JONES J E,WOODWARD C S. Newton–Krylov-multigrid solvers for large-scale,highly heterogeneous,variably saturated flow problems[J]. Advances in Water Resources,2001,24(7):763 − 774. doi: 10.1016/S0309-1708(00)00075-0

    [50]

    MAXWELL R M,CONDON L E,KOLLET S J. A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow V3[J]. Geoscientific Model Development,2015,8(3):923 − 937. doi: 10.5194/gmd-8-923-2015

    [51]

    陆峥,胡锦华,张圆,等. 基于水文集成模型ParFlow的黑河流域下游地下水-地表水相互作用模拟研究[J]. 安全与环境工程,2021,28(3):7 − 15. [LU Zheng,HU Jinhua,ZHANG Yuan,et al. Simulating groundwater-surface water interaction using an integrated hydrologic model ParFlow in the downstream of the Heihe River Basin[J]. Safety and Environmental Engineering,2021,28(3):7 − 15. (in Chinese with English abstract)]

    LU Zheng, HU Jinhua, ZHANG Yuan, et al. Simulating groundwater-surface water interaction using an integrated hydrologic model ParFlow in the downstream of the Heihe River Basin[J]. Safety and Environmental Engineering, 2021, 28(3): 7 − 15. (in Chinese with English abstract)

    [52]

    KUFFOUR B N O,ENGDAHL N B,WOODWARD C S,et al. Simulating coupled surface–subsurface flows with ParFlow V3.5. 0:Capabilities,applications,and ongoing development of an open-source,massively parallel,integrated hydrologic model[J]. Geoscientific Model Development,2020,13(3):1373 − 1397. doi: 10.5194/gmd-13-1373-2020

    [53]

    TRAN H,LEONARDUZZI E,DE LA FUENTE L,et al. Development of a deep learning emulator for a distributed groundwater–surface water model:ParFlow-ML[J]. Water,2021,13(23):3393. doi: 10.3390/w13233393

    [54]

    MAXWELL R M,KOLLET S J. Interdependence of groundwater dynamics and land-energy feedbacks under climate change[J]. Nature Geoscience,2008,1:665 − 669. doi: 10.1038/ngeo315

    [55]

    CONDON L E,ATCHLEY A L,MAXWELL R M. Evapotranspiration depletes groundwater under warming over the contiguous United States[J]. Nature Communications,2020,11(1):873. doi: 10.1038/s41467-020-14688-0

    [56]

    MAINA F Z,SIIRILA-WOODBURN E R,VAHMANI P. Sensitivity of meteorological-forcing resolution on hydrologic variables[J]. Hydrology and Earth System Sciences,2020,24(7):3451 − 3474. doi: 10.5194/hess-24-3451-2020

    [57]

    SCHREINER-MCGRAW A P,AJAMI H. Impact of uncertainty in precipitation forcing data sets on the hydrologic budget of an integrated hydrologic model in mountainous terrain[J]. Water Resources Research,2020,56(12):e2020WR027639. doi: 10.1029/2020WR027639

    [58]

    陆峥,孙景博,何源,等. 黑河流域中游灌区含水层系统异质性对地表热通量和温度的影响模拟[J]. 地理与地理信息科学,2021,37(6):7 − 15. [LU Zheng,SUN Jingbo,HE Yuan,et al. Impacts of subsurface aquifer heterogeneity on surface heat fluxes and temperature:A case study in the irrigation area in the middle reaches of the Heihe River Basin[J]. Geography and Geo-Information Science,2021,37(6):7 − 15. (in Chinese with English abstract)]

    LU Zheng, SUN Jingbo, HE Yuan, et al. Impacts of subsurface aquifer heterogeneity on surface heat fluxes and temperature: A case study in the irrigation area in the middle reaches of the Heihe River Basin[J]. Geography and Geo-Information Science, 2021, 37(6): 7 − 15. (in Chinese with English abstract)

    [59]

    HERZOG A,HECTOR B,COHARD J M,et al. A parametric sensitivity analysis for prioritizing regolith knowledge needs for modeling water transfers in the West African critical zone[J]. Vadose Zone Journal,2021,20(6):e20163. doi: 10.1002/vzj2.20163

    [60]

    CONDON L E,ENGDAHL N,MAXWELL R M. ParFlow Advanced Short Course[Z/OL]. Arizona:University of Arizona,2019. (2019-10-04) [2024-01-01]. Https://github.com/hydroframe/ParFlow_Advanced_ShortCourse/blob/master/Additional_Materials/

    [61]

    HWANG H T,PARK Y J,SUDICKY E A,et al. A parallel computational framework to solve flow and transport in integrated surface–subsurface hydrologic systems[J]. Environmental Modelling & Software,2014,61:39 − 58.

    [62]

    RAN Qihua,HONG Yanyan,CHEN Xiuxiu,et al. Impact of soil properties on water and sediment transport:A case study at a small catchment in the Loess Plateau[J]. Journal of Hydrology,2019,574:211 − 225. doi: 10.1016/j.jhydrol.2019.04.040

    [63]

    RAN Qihua,TANG Honglei,WANG Feng,et al. Numerical modelling shows an old check-dam still attenuates flooding and sediment transport[J]. Earth Surface Processes and Landforms,2021,46(8):1549 − 1567. doi: 10.1002/esp.5123

    [64]

    PHAM H T,RÜHAAK W,SCHUSTER V,et al. Fully hydro-mechanical coupled Plug-in (SUB+) in FEFLOW for analysis of land subsidence due to groundwater extraction[J]. SoftwareX,2019,9:15 − 19. doi: 10.1016/j.softx.2018.11.004

    [65]

    TANVIR HASSAN S M,LUBCZYNSKI M W,NISWONGER R G,et al. Surface–groundwater interactions in hard rocks in Sardon Catchment of western Spain:An integrated modeling approach[J]. Journal of Hydrology,2014,517:390 − 410. doi: 10.1016/j.jhydrol.2014.05.026

    [66]

    SOLEIMANI S,BOZORG-HADDAD O,BOROOMANDNIA A,et al. A review of conjunctive GW-SW management by simulation–optimization tools[J]. Journal of Water Supply:Research and Technology-Aqua,2021,70(3):239 − 256. doi: 10.2166/aqua.2021.106

    [67]

    NISWONGER R G,MORWAY E D,TRIANA E,et al. Managed aquifer recharge through off-season irrigation in agricultural regions[J]. Water Resources Research,2017,53(8):6970 − 6992. doi: 10.1002/2017WR020458

    [68]

    ANDERSON M P,WOESSNER W W,HUNT R J. Applied groundwater modeling:simulation of flow and advective transport[M]. 2nd ed. London: Academic Press, Elsevier, 2015:444-445.

    [69]

    DOHERTY J. Modeling:Picture perfect or abstract art?[J]. Ground Water,2011,49(4):455. doi: 10.1111/j.1745-6584.2011.00812.x

    [70]

    O’NEILL M M F,TIJERINA D T,CONDON L E,et al. Assessment of the ParFlow–CLM CONUS 1.0 integrated hydrologic model:Evaluation of hyper-resolution water balance components across the contiguous United States[J]. Geoscientific Model Development,2021,14(12):7223 − 7254. doi: 10.5194/gmd-14-7223-2021

    [71]

    CONDON L E,MAXWELL R M. Modified priority flood and global slope enforcement algorithm for topographic processing in physically based hydrologic modeling applications[J]. Computers & Geosciences,2019,126:73 − 83.

    [72]

    SCHREINER-MCGRAW A P,AJAMI H. Combined impacts of uncertainty in precipitation and air temperature on simulated mountain system recharge from an integrated hydrologic model[J]. Hydrology and Earth System Sciences,2022,26(4):1145 − 1164. doi: 10.5194/hess-26-1145-2022

    [73]

    SHUAI Pin,CHEN Xingyuan,MITAL U,et al. The effects of spatial and temporal resolution of gridded meteorological forcing on watershed hydrological responses[J]. Hydrology and Earth System Sciences,2022,26(8):2245 − 2276. doi: 10.5194/hess-26-2245-2022

    [74]

    SULIS M,KEUNE J,SHRESTHA P,et al. Quantifying the impact of subsurface-land surface physical processes on the predictive skill of subseasonal mesoscale atmospheric simulations[J]. Journal of Geophysical Research:Atmospheres,2018,123(17):9131 − 9151.

    [75]

    FOSTER L M,MAXWELL R M. Sensitivity analysis of hydraulic conductivity and Manning’s n parameters lead to new method to scale effective hydraulic conductivity across model resolutions[J]. Hydrological Processes,2019,33(3):332 − 349. doi: 10.1002/hyp.13327

    [76]

    MAXWELL R M,CONDON L E. Connections between groundwater flow and transpiration partitioning[J]. Science,2016,353(6297):377 − 380. doi: 10.1126/science.aaf7891

    [77]

    BARNES M L,WELTY C,MILLER A J. Global topographic slope enforcement to ensure connectivity and drainage in an urban terrain[J]. Journal of Hydrologic Engineering,2016,21(4):06015017. doi: 10.1061/(ASCE)HE.1943-5584.0001306

    [78]

    YUAN Lifeng,SINSHAW T,FORSHAY K J. Review of watershed-scale water quality and nonpoint source pollution models[J]. Geosciences,2020,10(25):1 − 36.

    [79]

    TAIE SEMIROMI M,KOCH M. How do gaining and losing streams react to the combined effects of climate change and pumping in the gharehsoo river basin,Iran?[J]. Water Resources Research,2020,56(7):e2019WR025388. doi: 10.1029/2019WR025388

    [80]

    VAN ENGELENBURG J,HUETING R,RIJPKEMA S,et al. Impact of changes in groundwater extractions and climate change on groundwater-dependent ecosystems in a complex hydrogeological setting[J]. Water Resources Management,2018,32(1):259 − 272. doi: 10.1007/s11269-017-1808-1

    [81]

    ESSAID H I,CALDWELL R R. Evaluating the impact of irrigation on surface water–groundwater interaction and stream temperature in an agricultural watershed[J]. Science of the Total Environment,2017,599:581 − 596.

    [82]

    祁晓凡,李文鹏,崔虎群,等. 黑河流域中游盆地地表水与地下水转化机制研究[J]. 水文地质工程地质,2022,49(3):29 − 43. [QI Xiaofan,LI Wenpeng,CUI Huqun,et al. Study on the conversion mechanism of surface water and groundwater in the middle reaches of the Heihe River Basin[J]. Hydrogeology & Engineering Geology,2022,49(3):29 − 43. (in Chinese with English abstract)]

    QI Xiaofan, LI Wenpeng, CUI Huqun, et al. Study on the conversion mechanism of surface water and groundwater in the middle reaches of the Heihe River Basin[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 29 − 43. (in Chinese with English abstract)

    [83]

    SAHA G C,LI Jianbing,THRING R W,et al. Temporal dynamics of groundwater-surface water interaction under the effects of climate change:A case study in the Kiskatinaw River Watershed,Canada[J]. Journal of Hydrology,2017,551:440 − 452. doi: 10.1016/j.jhydrol.2017.06.008

    [84]

    VRZEL J,LUDWIG R,GAMPE D,et al. Hydrological system behaviour of an alluvial aquifer under climate change[J]. Science of the Total Environment,2019,649:1179 − 1188. doi: 10.1016/j.scitotenv.2018.08.396

    [85]

    CONDON L E,MAXWELL R M. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system:A spatio-temporal framework for understanding water management impacts[J]. Environmental Research Letters,2014,9(3):034009. doi: 10.1088/1748-9326/9/3/034009

    [86]

    MANI A,TSAI F T C,KAO S C,et al. Conjunctive management of surface and groundwater resources under projected future climate change scenarios[J]. Journal of Hydrology,2016,540:397 − 411. doi: 10.1016/j.jhydrol.2016.06.021

    [87]

    SINGH A. Conjunctive use of water resources for sustainable irrigated agriculture[J]. Journal of Hydrology,2014,519:1688 − 1697. doi: 10.1016/j.jhydrol.2014.09.049

    [88]

    WANG Yiming,ZHOU Yuyu,FRANZ K J,et al. Irrigation plays significantly different roles in influencing hydrological processes in two breadbasket regions[J]. Science of the Total Environment,2022,844:157253. doi: 10.1016/j.scitotenv.2022.157253

    [89]

    DECHMI F,SKHIRI A. Evaluation of best management practices under intensive irrigation using SWAT model[J]. Agricultural Water Management,2013,123:55 − 64. doi: 10.1016/j.agwat.2013.03.016

    [90]

    LIU Luguang,CUI Yuanlai,LUO Yufeng. Integrated modeling of conjunctive water use in a canal-well irrigation district in the lower Yellow River Basin,China[J]. Journal of Irrigation and Drainage Engineering,2013,139(9):775 − 784. doi: 10.1061/(ASCE)IR.1943-4774.0000620

    [91]

    PARSAPOUR-MOGHADDAM P,ABED-ELMDOUST A,KERACHIAN R. A heuristic evolutionary game theoretic methodology for conjunctive use of surface and groundwater resources[J]. Water Resources Management,2015,29(11):3905 − 3918. doi: 10.1007/s11269-015-1035-6

    [92]

    WU Bin,ZHENG Yi,WU Xin,et al. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling:A surrogate-based approach[J]. Water Resources Research,2015,51(4):2153 − 2173. doi: 10.1002/2014WR016653

    [93]

    LI Lei,XU Zongxue,ZHAO Jie,et al. A distributed hydrological model in the Heihe River Basin and its potential for estimating the required irrigation water[J]. Hydrology Research,2017,48(1):191 − 213. doi: 10.2166/nh.2016.024

    [94]

    CONDON L E,KOLLET S,BIERKENS M F P,et al. Global groundwater modeling and monitoring:Opportunities and challenges[J]. Water Resources Research,2021,57(12):2020WR029500. doi: 10.1029/2020WR029500

    [95]

    ELSHALL A S,ARIK A D,EL-KADI A I,et al. Groundwater sustainability:A review of the interactions between science and policy[J]. Environmental Research Letters,2020,15(9):093004. doi: 10.1088/1748-9326/ab8e8c

    [96]

    WU Bin,ZHENG Yi,TIAN Yong,et al. Systematic assessment of the uncertainty in integrated surface water-groundwater modeling based on the probabilistic collocation method[J]. Water Resources Research,2014,50(7):5848 − 5865. doi: 10.1002/2014WR015366

    [97]

    刘欢,杜军凯,贾仰文,等. 面向大尺度区域分布式水文模型的子流域划分方法改进[J]. 工程科学与技术,2019,51(1):36 − 44. [LIU Huan,DU Junkai,JIA Yangwen,et al. Improvement of watershed subdivision method for large scale regional distributed hydrology model[J]. Advanced Engineering Sciences,2019,51(1):36 − 44. (in Chinese with English abstract)]

    LIU Huan, DU Junkai, JIA Yangwen, et al. Improvement of watershed subdivision method for large scale regional distributed hydrology model[J]. Advanced Engineering Sciences, 2019, 51(1): 36 − 44. (in Chinese with English abstract)

    [98]

    雷晓辉,王海潮,田雨,等. 南水北调中线受水区分布式水文模型子流域划分研究[J]. 南水北调与水利科技,2009,7(3):10 − 13. [LEI Xiaohui,WANG Haichao,TIAN Yu,et al. Subbasin delineation for the service areas of south-to-north water diversion project[J]. South-to-North Water Transfers and Water Science & Technology,2009,7(3):10 − 13. (in Chinese with English abstract)] doi: 10.3969/j.issn.1672-1683.2009.03.003

    LEI Xiaohui, WANG Haichao, TIAN Yu, et al. Subbasin delineation for the service areas of south-to-north water diversion project[J]. South-to-North Water Transfers and Water Science & Technology, 2009, 7(3): 10 − 13. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-1683.2009.03.003

    [99]

    韩鹏飞,王旭升,蒋小伟,等. 跨流域地下水循环研究进展[J]. 地质科技通报,2023,42(4):107 − 117. [HAN Pengfei,WANG Xusheng,JIANG Xiaowei,et al. Advances in interbasin groundwater circulation[J]. Bulletin of Geological Science and Technology,2023,42(4):107 − 117. (in Chinese with English abstract)]

    HAN Pengfei, WANG Xusheng, JIANG Xiaowei, et al. Advances in interbasin groundwater circulation[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 107 − 117. (in Chinese with English abstract)

    [100]

    CONDON L E,MARKOVICH K H,KELLEHER C A,et al. Where is the bottom of a watershed?[J]. Water Resources Research,2020,56(3):e2019WR026010. doi: 10.1029/2019WR026010

  • 加载中

(2)

(2)

计量
  • 文章访问数:  517
  • PDF下载数:  58
  • 施引文献:  0
出版历程
收稿日期:  2024-01-01
修回日期:  2024-03-17
刊出日期:  2024-11-15

目录