Application of audio frequency magnetotelluric 3D prospecting in a hot area exploration
-
摘要:
地热资源勘查的方法众多,电磁法因其对温度响应敏感,在地热勘查中得到广泛应用,音频大地电磁法因其探测精度高、深度较大,是浅层地热资源探测中最常用的电磁方法。某地热区内温泉出露范围较大,地热地质特征明显,但区内未进行过详细地热调查和地球物理勘查,为确定某地热区地热系统热储、盖层以及导热通道的空间分布特征,研究利用音频大地电磁法在研究区内布设5条音频大地电磁测线,对音频大地电磁数据进行维性分析与三维反演,结合地热区地热地质资料研究地热系统的分布特征。研究结果表明:(1)研究区地质情况复杂,地下介质具有三维电性结构特征,可以对音频大地电磁数据进行三维反演;(2)三维电性结构特征显示区内存在10个高阻异常体和2个低阻异常体,深部低阻异常体所处范围较大,中心电阻率值约为5 Ω·m;(3)确定了研究区热储、盖层以及导热通道的分布范围,热储埋深在300~
1500 m,盖层主要为第四纪覆盖层,查明地热水的循环通道与断层F1、F2有关。上述研究结果表明音频大地电磁法三维勘探可直观展示地热区地热分布情况,可为地热区开发提供重要的技术支持。Abstract:Various methods are used for geothermal resource exploration, with the electromagnetic method being widely applied due to its sensitivity to temperature changes. Among these, the audio magnetotelluric (AMT) method is the most commonly used electromagnetic method in shallow geothermal resource exploration because of its high detection accuracy and substantial depth of investigation. To determine the spatial distribution characteristics of heat storage, cover layer, and heat conduction channel of a geothermal system located in a hot spring area with clear geothermal geological characteristics. Five AMT survey lines were established in the study area, followed by spatial analysis and three-dimensional inversion of the AMT data. The distribution characteristics of geothermal system were analyzed in combination with geothermal geological data in geothermal areas. The results show that: (1) The geological condition of the study area is complex, and the underground medium has the characteristics of three-dimensional electrical structure, which is suitable for three-dimensional inversion of the AMT data. (2) The three-dimensional electrlical structure characteristics of the study area show that there are 10 high-resistance anomalic bodies and 2 low-resistance anomalic bodies in the study area. The deep low-resistance anomalic bodies have a large range with the central resistivity value of approximately 5 Ω·m. (3) The distribution ranges of heat storage, cover layer, and heat conduction channel in the study area were determined. The buried depth of heat storage is 300−
1500 m, with the primary cover layer of Quaternary deposits. It is found that the circulation channel of geothermal hot water is related to fault F1 and F2. These findings demonstrate that the surface AMT method for 3D prospecting can effectively reveal the distribution of geothermal energy, providing important technical support for the development and utilization of thermal areas. -
-
[1] 王贵玲,刘彦广,朱喜,等. 中国地热资源现状及发展趋势[J]. 地学前缘,2020,27(1):1 − 9. [WANG Guiling,LIU Yanguang,ZHU Xi,et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers,2020,27(1):1 − 9. (in Chinese with English abstract)]
WANG Guiling, LIU Yanguang, ZHU Xi, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1 − 9. (in Chinese with English abstract)
[2] 陈昌昕,严加永,周文月,等. 地热地球物理勘探现状与展望[J]. 地球物理学进展,2020,35(4):1223 − 1231. [CHEN Changxin,YAN Jiayong,ZHOU Wenyue,et al. Status and prospects of geophysical method used in geothermal exploration[J]. Progress in Geophysics,2020,35(4):1223 − 1231. (in Chinese with English abstract)] doi: 10.6038/pg2020DD0229
CHEN Changxin, YAN Jiayong, ZHOU Wenyue, et al. Status and prospects of geophysical method used in geothermal exploration[J]. Progress in Geophysics, 2020, 35(4): 1223 − 1231. (in Chinese with English abstract) doi: 10.6038/pg2020DD0229
[3] CARL L L. Regional Audiomagnetotelluric study of the Questa Caldera, New Mexico[J]. Journal of Geophysical Research,1985,90(B13):11270 − 11274.
[4] KARASTATHIS V K,PAPOULIA J,DI FIORE B,et al. Deep structure investigations of the geothermal field of the North Euboean Gulf,Greece,using 3-D local earthquake tomography and Curie Point Depth analysis[J]. Journal of Volcanology and Geothermal Research,2011,206(3/4):106 − 120.
[5] KARLSDÓTTIR R,VILHJÁLMSSON A M,GUÐNASON E Á. Three dimensional inversion of magnetotelluric (MT) resistivity data from Reykjanes high temperature field in SW Iceland[J]. Journal of Volcanology and Geothermal Research,2020,391:106498. doi: 10.1016/j.jvolgeores.2018.11.019
[6] GALLARDO L A,MEJU M A. Joint two-dimensional cross-gradient imaging of magnetotelluric and seismic traveltime data for structural and lithological classification[J]. Geophysical Journal International,2007,169(3):1261 − 1272. doi: 10.1111/j.1365-246X.2007.03366.x
[7] 薛建球,甘斌,李百祥,等. 青海共和—贵德盆地增强型地热系统(干热岩)地质—地球物理特征[J]. 物探与化探,2013,37(1):35 − 41. [XUE Jianqiu,GAN Bin,LI Baixiang,et al. Geological-geophysical characteristics of enhanced geothermal systems (Hot dry rocks) in Gonghe-Guide Basin[J]. Geophysical & Geochemical Exploration,2013,37(1):35 − 41. (in Chinese with English abstract)]
XUE Jianqiu, GAN Bin, LI Baixiang, et al. Geological-geophysical characteristics of enhanced geothermal systems (Hot dry rocks) in Gonghe-Guide Basin[J]. Geophysical & Geochemical Exploration, 2013, 37(1): 35 − 41. (in Chinese with English abstract)
[8] 赵雪宇,曾昭发,吴真玮,等. 利用地球物理方法圈定松辽盆地干热岩靶区[J]. 地球物理学进展,2015,30(6):2863 − 2869. [ZHAO Xueyu,ZENG Zhaofa,WU Zhenwei,et al. Delineating the area of HDR in Songliao basin using geophysical methods[J]. Progress in Geophysics,2015,30(6):2863 − 2869. (in Chinese with English abstract)] doi: 10.6038/pg20150654
ZHAO Xueyu, ZENG Zhaofa, WU Zhenwei, et al. Delineating the area of HDR in Songliao basin using geophysical methods[J]. Progress in Geophysics, 2015, 30(6): 2863 − 2869. (in Chinese with English abstract) doi: 10.6038/pg20150654
[9] WU Chaofeng,HU Xiangyun,WANG Guiling,et al. Magnetotelluric imaging of the Zhangzhou basin geothermal Zone,southeastern China[J]. Energies,2018,11(8):2170. doi: 10.3390/en11082170
[10] 张森琦,李旭峰,宋健,等. 共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析[J]. 地球科学,2021,46(4):1416 − 1436. [ZHANG Senqi,LI Xufeng,SONG Jian,et al. Analysis on geophysical evidence for existence of partial melting layer in crust and regional heat source mechanism for hot dry rock resources of Gonghe basin[J]. Earth Science,2021,46(4):1416 − 1436. (in Chinese with English abstract)]
ZHANG Senqi, LI Xufeng, SONG Jian, et al. Analysis on geophysical evidence for existence of partial melting layer in crust and regional heat source mechanism for hot dry rock resources of Gonghe basin[J]. Earth Science, 2021, 46(4): 1416 − 1436. (in Chinese with English abstract)
[11] 何亚东,贾小丰,张自宾,等. 阳高—天镇地区高温地热系统形成机制及资源开发前景研究[J]. 水文地质工程地质,2023,50(4):39 − 49. [HE Yadong,JIA Xiaofeng,ZHANG Zibin,et al. A study of the formation mechanism and resource development prospect of the high-temperature geothermal system in the Yanggao-Tianzhen area[J]. Hydrogeology & Engineering Geology,2023,50(4):39 − 49. (in Chinese with English abstract)]
HE Yadong, JIA Xiaofeng, ZHANG Zibin, et al. A study of the formation mechanism and resource development prospect of the high-temperature geothermal system in the Yanggao-Tianzhen area[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 39 − 49. (in Chinese with English abstract)
[12] 龙慧,李胜涛,穆建强,等. 沉积盆地深埋型岩溶热储地震探测数据采集参数优选——以雄安新区牛驼镇地热田为例[J]. 水文地质工程地质,2023,50(4):14 − 25. [LONG Hui,LI Shengtao,MU Jianqiang,et al. Parameters optimization of seismic data acquisition for deep buried karst geothermal reservoir in sedimentary basin:A case study of the Niutuo geothermal field in Xiongan New Area[J]. Hydrogeology & Engineering Geology,2023,50(4):14 − 25. (in Chinese with English abstract)]
LONG Hui, LI Shengtao, MU Jianqiang, et al. Parameters optimization of seismic data acquisition for deep buried karst geothermal reservoir in sedimentary basin: A case study of the Niutuo geothermal field in Xiongan New Area[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 14 − 25. (in Chinese with English abstract)
[13] 孙东,李金玺,曹楠,等. 四川盆地地热地质条件及勘探潜力评价[J]. 水文地质工程地质,2023,50(3):193 − 206. [SUN Dong,LI Jinxi,CAO Nan,et al. A preliminary study of the geothermal geological characteristics and exploration potential of the Sichuan Basin[J]. Hydrogeology & Engineering Geology,2023,50(3):193 − 206. (in Chinese with English abstract)]
SUN Dong, LI Jinxi, CAO Nan, et al. A preliminary study of the geothermal geological characteristics and exploration potential of the Sichuan Basin[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 193 − 206. (in Chinese with English abstract)
[14] 张健,何雨蓓,范艳霞. 福建沿海地区地热异常热源成因的地球物理分析[J]. 地学前缘,2024,31(3):392 − 401. [ZHANG Jian,HE Yubei,FAN Yanxia. Geophysical analysis of heat source composition in the Fujian coastal geothermal anomaly area[J]. Earth Science Frontiers,2024,31(3):392 − 401. (in Chinese with English abstract)]
ZHANG Jian, HE Yubei, FAN Yanxia. Geophysical analysis of heat source composition in the Fujian coastal geothermal anomaly area[J]. Earth Science Frontiers, 2024, 31(3): 392 − 401. (in Chinese with English abstract)
[15] JOLIE E,SCOTT S,FAULDS J,et al. Geological controls on geothermal resources for power generation[J]. Nature Reviews Earth & Environment,2021,2(5):324 − 339.
[16] CUMMING W. Resource conceptual models of volcano-hosted geothermal reservoirs for exploration well targeting and resource capacity assessment:Construction,pitfalls and challenges[J]. Geothermal Resources Council Transactions,2016,40:623 − 637.
[17] MUÑOZ G. Exploring for geothermal resources with electromagnetic methods[J]. Surveys in Geophysics,2014,35(1):101 − 122. doi: 10.1007/s10712-013-9236-0
[18] 武超峰,叶益信,邓呈祥,等. 电磁法在地热资源探测中的应用研究[J]. 东华理工大学学报(自然科学版),2022,45(1):42 − 52. [WU Chaofeng,YE Yixin,DENG Chengxiang,et al. Application progress of electromagnetic method in geothermal resource exploration[J]. Journal of East China University of Technology(Natural Science),2022,45(1):42 − 52. (in Chinese with English abstract)] doi: 10.3969/j.issn.1674-3504.2022.01.006
WU Chaofeng, YE Yixin, DENG Chengxiang, et al. Application progress of electromagnetic method in geothermal resource exploration[J]. Journal of East China University of Technology(Natural Science), 2022, 45(1): 42 − 52. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-3504.2022.01.006
[19] 陈怀玉,闫晋龙,孙健,等. 综合物探方法在中深层地热勘查中的应用[J]. 矿产勘查,2020,11(8):1708 − 1714. [CHEN Huaiyu,YAN Jinlong,SUN Jian,et al. Application of comprehensive geophysical prospecting method in geothermal exploration of middle and deep layers[J]. Mineral Exploration,2020,11(8):1708 − 1714. (in Chinese with English abstract)] doi: 10.3969/j.issn.1674-7801.2020.08.021
CHEN Huaiyu, YAN Jinlong, SUN Jian, et al. Application of comprehensive geophysical prospecting method in geothermal exploration of middle and deep layers[J]. Mineral Exploration, 2020, 11(8): 1708 − 1714. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-7801.2020.08.021
[20] 曾昭发,陈雄,李静,等. 地热地球物理勘探新进展[J]. 地球物理学进展,2012,27(1):168 − 178. [ZENG Zhaofa,CHEN Xiong,LI Jing,et al. Advancement of geothermal geophysics exploration[J]. Progress in Geophysics,2012,27(1):168 − 178. (in Chinese with English abstract)] doi: 10.6038/j.issn.1004-2903.2012.01.019
ZENG Zhaofa, CHEN Xiong, LI Jing, et al. Advancement of geothermal geophysics exploration[J]. Progress in Geophysics, 2012, 27(1): 168 − 178. (in Chinese with English abstract) doi: 10.6038/j.issn.1004-2903.2012.01.019
[21] 王佳龙,邸兵叶,张宝松,等. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探,2021,45(3):576 − 582. [WANG Jialong,DI Bingye,ZHANG Baosong,et al. The application of audio frequency magnetotelluric method to the geothermal exploration:A case study of Huangniqiao area,Ninghua County,Fujian Province[J]. Geophysical & Geochemical Exploration,2021,45(3):576 − 582. (in Chinese with English abstract)]
WANG Jialong, DI Bingye, ZHANG Baosong, et al. The application of audio frequency magnetotelluric method to the geothermal exploration: A case study of Huangniqiao area, Ninghua County, Fujian Province[J]. Geophysical & Geochemical Exploration, 2021, 45(3): 576 − 582. (in Chinese with English abstract)
[22] 覃田赐,邓居智,陈辉,等. 音频大地电磁三维反演在江西丰城地热勘查中的应用[J]. 科学技术与工程,2020,20(14):5489 − 5498. [QIN Tianci,DENG Juzhi,CHEN Hui,et al. Application of audio frequency magnetotelluric method three-dimensional inversion in geothermal exploration in Fengcheng of Jiangxi,China[J]. Science Technology and Engineering,2020,20(14):5489 − 5498. (in Chinese with English abstract)] doi: 10.3969/j.issn.1671-1815.2020.14.006
QIN Tianci, DENG Juzhi, CHEN Hui, et al. Application of audio frequency magnetotelluric method three-dimensional inversion in geothermal exploration in Fengcheng of Jiangxi, China[J]. Science Technology and Engineering, 2020, 20(14): 5489 − 5498. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2020.14.006
[23] 严小丽,康慧敏,王光杰,等. AMT方法在鳌山卫花岗岩地区深部地热构造勘探中的应用[J]. 地球物理学进展,2019,34(5):1945 − 1953. [YAN Xiaoli,KANG Huimin,WANG Guangjie,et al. Application of AMT in deep geothermal structure exploration in Aoshanwei granite area of Qingdao[J]. Progress in Geophysics,2019,34(5):1945 − 1953. (in Chinese with English abstract)] doi: 10.6038/pg2019CC0083
YAN Xiaoli, KANG Huimin, WANG Guangjie, et al. Application of AMT in deep geothermal structure exploration in Aoshanwei granite area of Qingdao[J]. Progress in Geophysics, 2019, 34(5): 1945 − 1953. (in Chinese with English abstract) doi: 10.6038/pg2019CC0083
[24] 胡祥云,李焱,杨文采,等. 大地电磁三维数据空间反演并行算法研究[J]. 地球物理学报,2012,55(12):3969 − 3978. [HU Xiangyun,LI Yan,YANG Wencai,et al. Three-dimensional magnetotelluic parallel inversion algorithm using data space method[J]. Chinese Journal of Geophysics,2012,55(12):3969 − 3978. (in Chinese with English abstract)] doi: 10.6038/j.issn.0001-5733.2012.12.009
HU Xiangyun, LI Yan, YANG Wencai, et al. Three-dimensional magnetotelluic parallel inversion algorithm using data space method[J]. Chinese Journal of Geophysics, 2012, 55(12): 3969 − 3978. (in Chinese with English abstract) doi: 10.6038/j.issn.0001-5733.2012.12.009
[25] 李焱,胡祥云,杨文采,等. 大地电磁三维交错网格有限差分数值模拟的并行计算研究[J]. 地球物理学报,2012,55(12):4036 − 4043. [LI Yan,HU Xiangyun,YANG Wencai,et al. A study on parallel computation for 3D magnetotelluric modeling using the staggered-grid finite difference method[J]. Chinese Journal of Geophysics,2012,55(12):4036 − 4043. (in Chinese with English abstract)] doi: 10.6038/j.issn.0001-5733.2012.12.015
LI Yan, HU Xiangyun, YANG Wencai, et al. A study on parallel computation for 3D magnetotelluric modeling using the staggered-grid finite difference method[J]. Chinese Journal of Geophysics, 2012, 55(12): 4036 − 4043. (in Chinese with English abstract) doi: 10.6038/j.issn.0001-5733.2012.12.015
[26] 李世文,翁爱华,李建平,等. 三维电性结构揭示的中国东北地区新生代火山深部起源[J]. 中国科学(地球科学),2020,50(4):538 − 552. [LI Shiwen,WENG Aihua,LI Jianping,et al. Deep origin of Cenozoic volcanoes in Northeast China revealed by 3-D electrical structure[J]. Scientia Sinica Terrae,2020,50(4):538 − 552. (in Chinese with English abstract)] doi: 10.1360/N072018-00330
LI Shiwen, WENG Aihua, LI Jianping, et al. Deep origin of Cenozoic volcanoes in Northeast China revealed by 3-D electrical structure[J]. Scientia Sinica Terrae, 2020, 50(4): 538 − 552. (in Chinese with English abstract) doi: 10.1360/N072018-00330
[27] 孙翔宇,詹艳,赵国泽,等. 琼东北马鞍岭-雷虎岭火山区深部岩浆系统大地电磁三维探测[J]. 地震地质,2020,42(3):640 − 653. [SUN Xiangyu,ZHAN Yan,ZHAO Guoze,et al. Magnetotelluric imaging of magma distribution beneath Ma'anling and Leihuling volcanoes of northeastern Hainan,China[J]. Seismology and Geology,2020,42(3):640 − 653. (in Chinese with English abstract)] doi: 10.3969/j.issn.0253-4967.2020.03.007
SUN Xiangyu, ZHAN Yan, ZHAO Guoze, et al. Magnetotelluric imaging of magma distribution beneath Ma'anling and Leihuling volcanoes of northeastern Hainan, China[J]. Seismology and Geology, 2020, 42(3): 640 − 653. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2020.03.007
[28] 林昌洪,谭捍东,佟拓. 利用大地电磁三维反演方法获得二维剖面附近三维电阻率结构的可行性[J]. 地球物理学报,2011,54(1):245 − 256. [LIN Changhong,TAN Handong,TONG Tuo. The possibility of obtaining nearby 3D resistivity structure from magnetotelluric 2D profile data using 3D inversion[J]. Chinese Journal of Geophysics,2011,54(1):245 − 256. (in Chinese with English abstract)] doi: 10.3969/j.issn.0001-5733.2011.01.026
LIN Changhong, TAN Handong, TONG Tuo. The possibility of obtaining nearby 3D resistivity structure from magnetotelluric 2D profile data using 3D inversion[J]. Chinese Journal of Geophysics, 2011, 54(1): 245 − 256. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5733.2011.01.026
[29] CALDWELL T G,BIBBY H M,BROWN C. The magnetotelluric phase tensor[J]. Geophysical Journal International,2004,158(2):457 − 469. doi: 10.1111/j.1365-246X.2004.02281.x
[30] XU Shan,HU Xiangyun,CHEN Chaojian,et al. The western segment of the precambrian suture between the Yangtze and cathaysia blocks:Constraints from magnetotelluric data in southwest China[J]. Geophysical Research Letters,2023,50(4):e2022GL101872. doi: 10.1029/2022GL101872
[31] RODI W,MACKIE R L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion[J]. Geophysics,2001,66(1):174 − 187. doi: 10.1190/1.1444893
[32] KELBERT A,MEQBEL N,EGBERT G D,et al. ModEM:A modular system for inversion of electromagnetic geophysical data[J]. Computers & Geosciences,2014,66:40 − 53.
[33] PLOTKIN V V,MOGILATOV V S,GUREV V A,et al. Detection of 3D-inhomogeneities of the medium at magnetotelluric sounding in the Arctic (numerical experiment)[J]. Geophysical Journal International,2019,220(2):1340 − 1351.
[34] SUN Xiangyu,ZHAN Yan,UNSWORTH M,et al. 3‐D magnetotelluric imaging of the easternmost kunlun fault:Insights into strain partitioning and the seismotectonics of the Jiuzhaigou Ms7.0 earthquake[J]. Journal of Geophysical Research:Solid earth,2020,125(5):e2020JB019731. doi: 10.1029/2020JB019731
[35] HORMOZZADE GHALATI F,CRAVEN J A,MOTAZEDIAN D,et al. Modeling a fractured geothermal reservoir using 3-D AMT data inversion:Insights from Garibaldi Volcanic Belt,British Columbia,Canada[J]. Geothermics,2022,105:102528. doi: 10.1016/j.geothermics.2022.102528
-