浅层地热能高效开发研究

戎慧敏, 周训, 王立志, 郑佳, 李启民. 浅层地热能高效开发研究——水泥土能源桩传热特性试验与模拟[J]. 水文地质工程地质, 2025, 52(2): 229-237. doi: 10.16030/j.cnki.issn.1000-3665.202401024
引用本文: 戎慧敏, 周训, 王立志, 郑佳, 李启民. 浅层地热能高效开发研究——水泥土能源桩传热特性试验与模拟[J]. 水文地质工程地质, 2025, 52(2): 229-237. doi: 10.16030/j.cnki.issn.1000-3665.202401024
RONG Huimin, ZHOU Xun, WANG Lizhi, ZHENG Jia, LI Qimin. Research on the efficient development of shallow geothermal energy: Experimental and numerical investigations on the heat transfer characteristics of the soil-cement energy pile[J]. Hydrogeology & Engineering Geology, 2025, 52(2): 229-237. doi: 10.16030/j.cnki.issn.1000-3665.202401024
Citation: RONG Huimin, ZHOU Xun, WANG Lizhi, ZHENG Jia, LI Qimin. Research on the efficient development of shallow geothermal energy: Experimental and numerical investigations on the heat transfer characteristics of the soil-cement energy pile[J]. Hydrogeology & Engineering Geology, 2025, 52(2): 229-237. doi: 10.16030/j.cnki.issn.1000-3665.202401024

浅层地热能高效开发研究

  • 基金项目: 自然资源部浅层地热能重点实验室合作项目(KLSGE202302-01)
详细信息
    作者简介: 戎慧敏(1995—),女,硕士,主要从事地热工程、地质工程等方面研究。E-mail:1642138922@qq.com
    通讯作者: 李启民(1963—),男,博士,教授,主要从事地热工程、地质工程等方面研究。E-mail:qiminli@163.com
  • 中图分类号: TK529

Research on the efficient development of shallow geothermal energy: Experimental and numerical investigations on the heat transfer characteristics of the soil-cement energy pile

More Information
  • 土壤源热泵供热制冷系统是当前浅层地热能最主要的开发利用方式。为了解决土壤源热泵系统中传统地埋管热效率低、占地面积大等瓶颈问题,本研究提出了一种新方案:将地埋管与水泥土桩复合地基相耦合,即一边钻进一边将水泥与原土在桩孔内现场搅拌成桩,利用地基处理材料良好的热力特性提高地埋管热效率。通过COMSOL Multiphysic5.0软件的数值模拟以及相似比为1∶2的相似模型试验,对比研究了地埋管分别在水泥土桩和土壤的热传递机理,探讨了温度场分布的时空变化规律,初步建立了水泥土能源桩的计算方法。研究表明:水泥土能源桩有效减小了能源桩传热系统中的最大热阻部分,极大提高了能源桩的热效率;在制冷或制热工况下,水泥土能源桩单位孔深换热量比常规地埋管分别提升了22.88%~34.20%和21.20%~55.60%;但是,仅靠提高埋管内的流速并不能进一步提高水泥土能源桩的换热能力,需要选择合适的流速与管径。水泥土能源桩系统这种建筑物绿色供热与制冷新模式,充分发挥了土壤源热泵系统适用性广和水泥土桩环保降本等各自的主要优势,为浅层地热能的高效开发提供了新的途径。

  • 加载中
  • 图 1  能源桩试验示意图(单位:mm)

    Figure 1. 

    图 2  夏季制冷和冬季供热时U形管进出口水温曲线

    Figure 2. 

    图 3  温度分布图

    Figure 3. 

    图 4  夏季和冬季水泥土能源桩水平等值面温度分布图

    Figure 4. 

    图 5  冬季不同流速下的水泥土能源桩与土中地埋管进出口水温差

    Figure 5. 

    图 6  夏季不同管径的水泥土能源桩进出口水温差

    Figure 6. 

    表 1  相似模型试验的换热量

    Table 1.  Heat exchange of the similarity model experiment

    工况 流速
    /(m·s−1
    土中单U管
    单位孔深换热量
    /(W·m−1
    水泥土能源桩
    单位孔深换
    热量/(W·m−1
    单位孔深换
    热量增量/%
    夏季制冷 0.19 25.67 34.45 34.20
    冬季制热 0.15 4.19 5.90 40.81
    0.19 5.44 6.80 25.00
    0.40 5.27 8.20 55.60
    0.50 3.97 5.91 48.87
    下载: 导出CSV

    表 2  主要材料热物性参数

    Table 2.  Main material thermophysical parameters

    材料 密度/(kg·m−3 比热容/(J·kg−1·K−1 导热系数/(W·m−1·K−1
    998.2 4182 0.60
    PE管 950.0 2 000 0.44
    粉土 1921.0 1230 1.41
    水泥土 2026.0 1403 1.55
    下载: 导出CSV

    表 3  管道参数

    Table 3.  Pipe parameters

    PE管规格 PE管外径/mm PE管壁厚/mm PE管内径/mm
    DN15 20 2.3 15.4
    DN20 25 2.3 20.4
    DN25 32 2.7 26.6
    DN32 40 3.0 34.0
    DN40 50 3.7 42.6
    下载: 导出CSV

    表 4  公式法计算能源桩单位孔深换热量

    Table 4.  Heat exchange per linear meter of the energy piles calculated with the equation method

    工况 流速
    /(m·s−1
    土中单U管单位孔深
    换热量/(W·m−1
    水泥土能源桩单位孔深
    换热量/(W·m−1
    单位孔深换
    热量增量/%
    夏季制冷 0.19 21.90 26.91 22.88
    冬季制热 0.15 4.09 4.96 21.30
    0.19 4.58 5.55 21.20
    下载: 导出CSV
  • [1]

    徐伟,倪江波,孙德宇,等. 我国建筑碳达峰与碳中和目标分解与路径辨析[J]. 建筑科学,2021,37(10):1 − 8. [XU Wei,NI Jiangbo,SUN Deyu,et al. Research on the target decomposition and path of building carbon peak and carbon neutrality in China[J]. Building Science,2021,37(10):1 − 8. (in Chinese with English abstract)]

    XU Wei, NI Jiangbo, SUN Deyu, et al. Research on the target decomposition and path of building carbon peak and carbon neutrality in China[J]. Building Science, 2021, 37(10): 1 − 8. (in Chinese with English abstract)

    [2]

    中国建筑节能协会能耗统计专业委员会. 中国建筑能耗研究报告 (2020) [R]. 北京:中国建筑工业出版社,2020:19 − 36. [Committee of Building Energy Data, China Association of Building Energy Efficiency. Research report on building energy consumption in China (2020)[R]. Beijing: China Architecture & Building Press, 2020: 19 − 36. (in Chinese)]

    Committee of Building Energy Data, China Association of Building Energy Efficiency. Research report on building energy consumption in China (2020)[R]. Beijing: China Architecture & Building Press, 2020: 19 − 36. (in Chinese)

    [3]

    冯国会,陈菲,常莎莎. 近零能耗建筑围护结构多目标优化研究[J]. 沈阳建筑大学学报(自然科学版),2023,39(4):699 − 706. [FENG Guohui,CHEN Fei,CHANG Shasha. Multi-objective optimization of envelope structure for near zero energy building[J]. Journal of Shenyang Jianzhu University (Natural Science),2023,39(4):699 − 706. (in Chinese with English abstract)]

    FENG Guohui, CHEN Fei, CHANG Shasha. Multi-objective optimization of envelope structure for near zero energy building[J]. Journal of Shenyang Jianzhu University (Natural Science), 2023, 39(4): 699 − 706. (in Chinese with English abstract)

    [4]

    郑江,高翔,张鑫. 基于专利数据挖掘的情报分析研究——以能源桩领域为例[J]. 中国发明与专利,2021,18(3):50 − 56. [ZHENG Jiang,GAO Xiang,ZHANG Xin. Analysis of patent information based on data mining[J]. China Invention & Patent,2021,18(3):50 − 56. (in Chinese with English abstract)]

    ZHENG Jiang, GAO Xiang, ZHANG Xin. Analysis of patent information based on data mining[J]. China Invention & Patent, 2021, 18(3): 50 − 56. (in Chinese with English abstract)

    [5]

    邹鹏飞,王彩会,杜建国,等. 地热水系统采灌方案模拟优化研究——以苏北农村清洁能源供暖示范区为例[J]. 水文地质工程地质,2023,50(4):59 − 72. [ZOU Pengfei,WANG Caihui,DU Jianguo,et al. A study of simulation and optimization of the production-reinjection scheme of a geothermal water system:A case study of the geothermal space heating demonstration area in northern Jiangsu countryside[J]. Hydrogeology & Engineering Geology,2023,50(4):59 − 72. (in Chinese with English abstract)]

    ZOU Pengfei, WANG Caihui, DU Jianguo, et al. A study of simulation and optimization of the production-reinjection scheme of a geothermal water system: A case study of the geothermal space heating demonstration area in northern Jiangsu countryside[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 59 − 72. (in Chinese with English abstract)

    [6]

    文冬光,张二勇,王贵玲,等. 干热岩勘查开发进展及展望[J]. 水文地质工程地质,2023,50(4):1 − 13. [WEN Dongguang,ZHANG Eryong,WANG Guiling,et al. Progress and prospect of hot dry rock exploration and development[J]. Hydrogeology & Engineering Geology,2023,50(4):1 − 13. (in Chinese with English abstract)]

    WEN Dongguang, ZHANG Eryong, WANG Guiling, et al. Progress and prospect of hot dry rock exploration and development[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 1 − 13. (in Chinese with English abstract)

    [7]

    范惠文. 地源热泵垂直埋管换热器换热效率下降因素分析[J]. 节能与环保,2021(1):73 − 75. [FAN Huiwen. The effect factors of decreasing efficiency on vertical geothermal heat exchange[J]. Energy Conservation & Environmental Protection,2021(1):73 − 75. (in Chinese with English abstract)]

    FAN Huiwen. The effect factors of decreasing efficiency on vertical geothermal heat exchange[J]. Energy Conservation & Environmental Protection, 2021(1): 73 − 75. (in Chinese with English abstract)

    [8]

    吴晓澍,茅靳丰. 能源桩技术的研究与工程应用进展综述[J]. 暖通空调,2020,50(12):1 − 7. [WU Xiaoshu,MAO Jinfeng. Review on research and engineering application of energy pile technology[J]. Heating Ventilating & Air Conditioning,2020,50(12):1 − 7. (in Chinese with English abstract)]

    WU Xiaoshu, MAO Jinfeng. Review on research and engineering application of energy pile technology[J]. Heating Ventilating & Air Conditioning, 2020, 50(12): 1 − 7. (in Chinese with English abstract)

    [9]

    BRANDL H. Energy foundations and other thermo-active ground structures[J]. Géotechnique,2006,56(2):81 − 122.

    [10]

    NICHOLSON D P,CHEN Q,DE SILVA M,et al. The design of thermal tunnel energy segments for Crossrail,UK[J]. Proceedings of the Institution of Civil Engineers - Engineering Sustainability,2014,167(3):118 − 134. doi: 10.1680/ensu.13.00014

    [11]

    尚少文,刘金玉,刘兵红,等. 地埋管管群换热器温度场影响因素的模拟研究[J]. 沈阳建筑大学学报(自然科学版),2018,34(3):566 − 576. [SHANG Shaowen,LIU Jinyu,LIU Binghong,et al. Ground-coupled groupHeat exchanger factors affecting temperature simulation[J]. Journal of Shenyang Jianzhu University (Natural Science),2018,34(3):566 − 576. (in Chinese with English abstract)]

    SHANG Shaowen, LIU Jinyu, LIU Binghong, et al. Ground-coupled groupHeat exchanger factors affecting temperature simulation[J]. Journal of Shenyang Jianzhu University (Natural Science), 2018, 34(3): 566 − 576. (in Chinese with English abstract)

    [12]

    王恩琦,黄体士,张方方,等. 回填材料对地源热泵系统换热效率的影响分析[J]. 制冷与空调(四川),2019,33(3):240 − 244. [WANG Enqi,HUANG Tishi,ZHANG Fangfang,et al. Analysis of the influence of backfilling material on the heat transfer efficiency of ground source heat pump system[J]. Refrigeration & Air Conditioning,2019,33(3):240 − 244. (in Chinese with English abstract)]

    WANG Enqi, HUANG Tishi, ZHANG Fangfang, et al. Analysis of the influence of backfilling material on the heat transfer efficiency of ground source heat pump system[J]. Refrigeration & Air Conditioning, 2019, 33(3): 240 − 244. (in Chinese with English abstract)

    [13]

    隋智力,赵春雷,李庆文,等. 基于石墨混凝土的能源桩传热特性强化研究[J]. 广西大学学报(自然科学版),2021,46(1):83 − 88. [SUI Zhili,ZHAO Chunlei,LI Qingwen,et al. Study on heat transfer enhancement of energy pile based on graphite concrete[J]. Journal of Guangxi University (Natural Science Edition),2021,46(1):83 − 88. (in Chinese with English abstract)]

    SUI Zhili, ZHAO Chunlei, LI Qingwen, et al. Study on heat transfer enhancement of energy pile based on graphite concrete[J]. Journal of Guangxi University (Natural Science Edition), 2021, 46(1): 83 − 88. (in Chinese with English abstract)

    [14]

    陈红兵,栾丹明,褚赛,等. 基于相变流体的热管式太阳能PV/T热电联供系统实验研究[J]. 可再生能源,2017,35(7):984 − 989. [CHEN Hongbing,LUAN Danming,CHU Sai,et al. Experimental study on the performance of a slurry PCM-based heat pipe solar PV/T cogeneration system[J]. Renewable Energy Resources,2017,35(7):984 − 989. (in Chinese with English abstract)] doi: 10.3969/j.issn.1671-5292.2017.07.006

    CHEN Hongbing, LUAN Danming, CHU Sai, et al. Experimental study on the performance of a slurry PCM-based heat pipe solar PV/T cogeneration system[J]. Renewable Energy Resources, 2017, 35(7): 984 − 989. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-5292.2017.07.006

    [15]

    WANG Kaipeng,LI Qimin,CHENG Ke,et al. Experimental investigation on efficient heat collection of aboveground pipes[J]. Thermal Science,2020,24(2 Part B):1445 − 1460.

    [16]

    GUO Pingye,HE Manchao,ZHENG Liange,et al. A geothermal recycling system for cooling and heating in deep mines[J]. Applied Thermal Engineering,2017,116:833 − 839. doi: 10.1016/j.applthermaleng.2017.01.116

    [17]

    詹永勤. 天津国家会展中心展厅地坪地基设计分析[J]. 建筑科学,2020,36(增刊2):39 − 44. [ZHAN Yongqin. Design and analysis of floor foundation for exhibition hall of Tianjin national convention and exhibition center[J]. Building Science,2020,36(Sup 2):39 − 44. (in Chinese with English abstract)]

    ZHAN Yongqin. Design and analysis of floor foundation for exhibition hall of Tianjin national convention and exhibition center[J]. Building Science, 2020, 36(Sup 2): 39 − 44. (in Chinese with English abstract)

    [18]

    中华人民共和国住房和城乡建设部. 建筑地基基础设计规范:GB 50007—2011[S]. 北京: 中国建筑工业出版社,2011. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of building foundation:GB 50007—2011[S]. Beijing:China Architecture & Building Press,2011. (in Chinese)]

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of building foundation: GB 50007—2011[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)

    [19]

    中华人民共和国建设部. 岩土工程勘察规范:GB 50021—2009 [S]. 北京:中国建筑工业出版社,2009. [Ministry of Construction of the People’s Republic of China. Code for investigation of geotechnical engineering:GB 50021—2009[S]. Beijing:China Architecture & Building Press,2009. (in Chinese)]

    Ministry of Construction of the People’s Republic of China. Code for investigation of geotechnical engineering: GB 50021—2009[S]. Beijing: China Architecture & Building Press, 2009. (in Chinese)

    [20]

    中国建筑科学研究院. 建筑地基处理技术规范:JGJ 79—2012 [S]. 北京:中国建筑工业出版社,2012. [China Academy of Building Research. Technical code for ground treatment of buildings:JGJ 79—2012[S]. Beijing:China Architecture & Building Press,2012. (in Chinese)]

    China Academy of Building Research. Technical code for ground treatment of buildings: JGJ 79—2012[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)

    [21]

    中华人民共和国建设部. 地源热泵系统工程技术规范:GB 50366—2005[S]. 北京:中国建筑工业出版社,2009. [Ministry of Construction of the People’s Republic of China. Technical code for ground-source heat pump system:GB 50366—2005[S]. Beijing:China Architecture & Building Press,2009. (in Chinese)]

    Ministry of Construction of the People’s Republic of China. Technical code for ground-source heat pump system: GB 50366—2005[S]. Beijing: China Architecture & Building Press, 2009. (in Chinese)

  • 加载中

(6)

(4)

计量
  • 文章访问数:  64
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2024-01-11
修回日期:  2024-03-20
刊出日期:  2025-03-15

目录