全氟及多氟烷基化合物前体物质在环境中迁移与转化行为研究进展

金宵卉, 阎妮. 全氟及多氟烷基化合物前体物质在环境中迁移与转化行为研究进展[J]. 水文地质工程地质, 2024, 51(2): 35-49. doi: 10.16030/j.cnki.issn.1000-3665.202311005
引用本文: 金宵卉, 阎妮. 全氟及多氟烷基化合物前体物质在环境中迁移与转化行为研究进展[J]. 水文地质工程地质, 2024, 51(2): 35-49. doi: 10.16030/j.cnki.issn.1000-3665.202311005
JIN Xiaohui, YAN Ni. Advances in researches on migration and transformation behavior of per- and polyfluoroalkyl substances precursors in the environment[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 35-49. doi: 10.16030/j.cnki.issn.1000-3665.202311005
Citation: JIN Xiaohui, YAN Ni. Advances in researches on migration and transformation behavior of per- and polyfluoroalkyl substances precursors in the environment[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 35-49. doi: 10.16030/j.cnki.issn.1000-3665.202311005

全氟及多氟烷基化合物前体物质在环境中迁移与转化行为研究进展

  • 基金项目: 国家自然科学基金面上项目(42277052);国家自然科学基金青年科学基金项目(41907161)
详细信息
    作者简介: 金宵卉(1999—),女,硕士研究生,主要从事地下水系统中污染物的迁移转化研究。E-mail:1635499441@qq.com
    通讯作者: 阎妮(1987—),女,博士,副教授,主要从事地下水系统中污染物的迁移转化规律及原位修复技术研究。E-mail:yanni@ouc.edu.cn
  • 中图分类号: P641.69

Advances in researches on migration and transformation behavior of per- and polyfluoroalkyl substances precursors in the environment

More Information
  • 全氟及多氟烷基化合物(per- and polyfluoroalkyl substances,PFAS)前体物质是环境中许多PFAS的间接来源,广泛应用于食品包装、消防灭火泡沫、金属电镀、纺织涂料及农药等领域。由于PFAS前体物质能够在环境中发生转化以及分析测试方法的限制,其存在往往被忽视。PFAS前体物质自身的生物学毒性已被证实,如干扰母体内胎儿的正常发育、诱导免疫毒性和细胞凋亡等。深入探究PFAS前体物质在不同环境介质中的迁移转化规律是对其进行污染控制的关键。结合近年来国内外研究,对PFAS前体物质的主要来源、赋存特征及在大气、土壤和水体等环境介质中的迁移和转化行为研究进行了综述。结果表明,前体物质在全球范围内的水体、土壤、悬浮颗粒物、沉积物和大气中均有检出。在迁移过程中,水体是PFAS前体物质污染主要的载体,土壤、悬浮颗粒物和沉积物主要起滞留作用,而通过大气进行的长距离迁移是极端地区污染的重要来源。除此之外,PFAS前体物质在环境介质中的滞留和迁移往往伴随转化行为,生成更稳定的PFAS持续危害生态环境和生物健康。文章可以为PFAS前体物质及PFAS的污染防控提供参考和依据。

  • 加载中
  • 图 1  PFAS前体物质在环境介质中的迁移示意图

    Figure 1. 

    表 1  本文出现的PFAS及其前体物质的名称及化学式

    Table 1.  Information related to PFASs and their precursors appearing in this study

    中文名 缩写 英文全称 化学式
    全氟丁酸 PFBA perfluorobutanoic acid C3F7COOH
    全氟戊酸 PFPeA perfluoropentanoic acid C4F9COOH
    N-乙基全氟辛烷磺酰胺乙酸 N-EtFOSAA N-ethylperfluorooctane sulfonamidoacetic acid C12H8F17NO4S
    全氟辛烷磺酸 PFOS perfluorooctane sulfonic acid C8F17SO3H
    6∶2、8∶2氟二胺磺胺烷基甜菜碱 6∶2、8∶2 FTAB 6∶2、8∶2 fluorotelomer sulfonamide alkylbetaine C15H20F13N2SO4+、C17H20F17N2SO4+
    全氟辛烷磺酰胺 PFOSA perfluoroctylsulfonamide C8F17SO2NH2
    6∶2、8∶2、10∶2氟调醇 6∶2、8∶2、10∶2 FTOH 6∶2、8∶2、10∶2 fluorotelomer alcohol C8H5F13O、C10H5F17O、C12H5F21O
    4∶2、6∶2、8∶2、10∶2氟调磺酸 4∶2、6∶2、8∶2、10∶2 FTS 4∶2、6∶2、8∶2、10∶2 fluorotelomer sulfonate C4F9CH2CH2SO3、C6F13CH2CH2SO3、C8F17CH2CH2SO3、C10F19CH2CH2SO3
    N-乙基全氟辛烷磺酰胺 N-EtFOSA N-ethyl perfluorooctane sulfonamide C8F17SO2N(C2H5)H
    EtFOSA衍生磷酸二酯 di-SAmPAP EtFOSE-based phosphate diester
    全氟辛烷磺酰氨基乙酸 FOSAA perfluorooctane sulfonamido acetic acid C8F17SO2NCH2COOH
    N-乙基全氟辛烷磺酰胺基乙醇 N-EtFOSE N-ethyl perfluorooctane sulfonamide ethanol C12H10F17NO3S
    全氟己酸 PFHxA perfluorohexanoic acid C5F11COOH
    8∶2氟调醛 8∶2 FTAL 8∶2 fluorotelomer aldehyde C10H5F17O2
    8∶2氟调羧酸 8∶2 FTCA 8∶2 fluorotelomer carboxylic acid C10H3F17O2
    8∶2氟调不饱和羧酸 8∶2 FTUCA 8∶2 fluorotelomer unsaturated carboxylic acid C10H2F17O2
    全氟壬酸 PFNA per-fluorononanoic acid C9F17COOH
    全氟烷基磺酰胺衍生物 6∶2、8∶2 diPAP 6∶2、8∶2 polyfluoroalkyl phosphoric acid diester C16F26H9PO4、C18F30H9PO4
    N-甲基全氟辛烷磺酰胺乙酸 N-MeFOSAA N-ethylperfluorooctane sulfonamidoacetic acid C12H8F17NO4S
    全氟辛酸 PFOA perfluorooctanoic acid C8F15COOH
    全氟癸酸 PFUnDA perfluoroundecanoic acid C11F21COOH
    全氟庚酸 PFHpA perfluoroheptanoic acid C6F13COOH
    全氟-1-丁磺酰胺 FBSA perfluoro-1-butanesulfonamide C4H2F9NO2S
    下载: 导出CSV

    表 2  国内外文献报道中PFAS前体物质的检出情况

    Table 2.  Detection of PFAS precursors reported in the previous studies

    环境介质 采样位置 采样时间 样品个数 分析方法 数据意义 单位 检出前体物质种类和浓度 参考文献



    ①渤海海湾(LZB)
    ②河流入海口
    2012年4、8和12月 ①LZB: 29
    ②河流入海口: 7
    总可氧化前体物质(TOP)、液相色谱质谱联用仪(LC-MS/MS) 浓度范围 ng/L ∆ΣPFCA:
    ①LZB:3.89~18.1
    ②河流入海口:10.7~36.7
    文献[13]
    中国天津大港油田地表水 51 TOP、高效液相色谱质谱联用仪(HPLC-MS/MS) 浓度范围 ng/L 未知∆ΣPFCA:0.25~3.47 文献[14]
    中国沿海旅游胜地地表水 2021年4、8和12月 20 TOP、HPLC-MS/MS 浓度范围 ng/L ①PFOSA:0.140~1.15
    ②∆ΣPFCAC4~C12:1.51~40.4
    文献[15]
    中国太湖 2015年6月 28 超高效液相色谱质谱联用仪(UPLC-MS/MS) 平均浓度 ng/L ①PFOSA:0.19
    ②6∶2 diPAP:0.034
    ③N-EtFOSAA:0.026
    文献[16]
    中国东部城市地表水(浙江、上海和江苏) 2011年 ①河流: 29
    ②湖泊: 6
    ③水库: 4
    HPLC-MS/MS 浓度范围 ng/L ①浙江:<LOD~0.20
    ②上海:0.13~2.5
    ③江苏:0.18~0.25
    文献[17]
    波罗的海水样 2013—2014年 4 UPLC-MS/MS 平均浓度 ng/L ①PFOSA:0.06
    ②MeFOSAA:0.0017
    ③EtFOSAA:0.0044
    文献[18]
    孟加拉国达卡地表水 2021年 8 LC-MS/MS 浓度范围 ng/L 4∶2、6∶2和8∶2 FTS总浓度:1~5 文献[19]
    美国马萨诸塞州科德角沿海海域 2017年8月—2019年7月 ①受AFFF污染:41②未污染:13 TOP、LC-MS/MS 平均浓度 ng/L 受污染/未受污染:
    ①4∶2 FTS:5.77/3.50
    ②6∶2 FTS:15.6/1.02
    ③8∶2 FTS:8.7/0.75
    ④ΣPFAS前体物质:157/14.5
    文献[21]


    美国5个军事基地地下LNAPL 17 ①LC-MS
    ②气相色谱-质谱联用仪(GC-MS)
    浓度范围 ng/L ①PFOSA:<LOD~2500
    ②6∶2 FTS:<LOD~6040
    ③8∶2 FTS:<LOD~712
    ④10∶2 FTS:<LOD~141
    ⑤6∶2 FTOH:<LOD~15000
    文献[20]
    美国马萨诸塞州科德角地下水 2018年9月 13 LC-MS/MS 平均浓度 ng/L ①6∶2 FTS:346.61
    ②8∶2 FTS:268.67
    ③PFOSA:32.11
    文献[22]
    中国黄土高原地下水 2019年8月 泉水:22
    井水:1
    TOP、LC-MS/MS 平均浓度 ng/L ①4∶2 FTS:0.38
    ②6∶2 FTS:2.0
    ③8∶2 FTS:1.1
    文献[23]
    悬浮颗粒物 德国和荷兰 2021年 ①SPM:116
    ②沉积物:60
    TOP、超高效液相色谱-高分辨率质谱仪(UHPLC-HRMS) 最高浓度 ng/g ①6∶2 diPAP:25.377
    ②8∶2 diPAP:19.944
    ③FOSAA:2.259
    ④6∶2 FTS:5.983
    ⑤8∶2 FTS:0.865
    ⑥PFOSA:2.259
    ⑦MeFOSAA:0.995
    ⑧EtFOSAA:8.896
    文献[28]
    土壤 德国环境样本库 2002—2018年 11 TOP、LC-MS/MS 中位数、
    最高浓度
    ng/g TOP后∆ΣPFAS中位数最多升高72%、最高浓度:0.51 文献[29]
    沉积物
    黄海、东海 2019年8月 68 UPLC-MS/MS 浓度范围 ng/g ①4∶2 FTS:0.004~0.103
    ②FBSA:0.001~0.010
    ③PFOSA:0.002~0.012
    文献[25]
    托多斯桑托斯湾 ①SPM:3
    ②沉积物:4
    UPLC-MS/MS 最高浓度 ng/g ①EtFOSAA:0.59
    ②PFOSA:0.46
    文献[26]
    温哥华福溪 2011年8月3日 11 HPLC-MS/MS 平均浓度 pg/g ①PFOSA:59
    ②FOSAA:39
    ③MeFOSAA:240
    ④EtFOSAA:590
    ⑤SAmPAP diester:200
    文献[27]
    法国 2018年9—11月 43 TOP、LC-MS/MS 最高浓度 ng/g ∆ΣPFAS:98.5 文献[30]
    大气 室内
    空气
    中国香港废物管理设施内或周边 2020年11月—2021年1月 4 气相色谱-质谱/质谱联用技术(GC-MS/MS) 最高浓度 pg/m3 空气/颗粒物:
    ①6∶2 diPAP:3.39/2.71
    ②8∶2 diPAP:2.72/—
    ③6∶2 FTOH:1240/59.5
    ④8∶2 FTOH:309/21.9
    ⑤10∶2 FTOH:173/335
    ⑥N-MeFOSA:18.1/—
    ⑦N-EtFOSA:40.2/3.0
    ⑧N-MeFHxSA:4.08/—
    ⑨N-EtFHxSA:4.16/15.2
    ⑩N-MeFOSE:3.08/—
    ⑪N-EtFOSE:5.56/—
    ⑫N-MeFBSA:352/44.6
    文献[33]
    加州北部幼儿园教室、住宅、户外服装店等 2018—2020年 36 GC-MS 最高浓度 ng/m3 空气:
    ①6∶2 FTOH:1910
    ②8∶2 FTOH:270
    ③10∶2 FTOH:33
    ④MeFOSA:12
    ⑤MeFOSE:32
    ⑥EtFOSE:14.7
    ⑦ΣPFAS前体物质:2220
    文献[34]
    马萨诸塞州消防站 2018年 39 LC-MS/MS 平均浓度 ng/g 颗粒物:
    ①4∶2 FTS:1.06
    ②6∶2 FTS:11.9
    ③8∶2 FTS:7.55
    ④PFOSA:0.569
    ⑤N-MeFOSAA:0.777
    文献[37]
    室外
    大气
    新奥勒松 2011年9月—2012年9月 45 GC-MS 最高浓度 pg/m3 空气:
    ①6∶2 FTOH:5.1
    ②8∶2 FTOH:25
    ③10∶2 FTOH:9.3
    ④12:2 FTOH:3.3
    ⑤MeFOSA:0.5
    ⑥EtFOSA:0.5
    ⑦MeFBSA:1.8
    ⑧MeFOSE:0.8
    ⑨EtFOSE:0.4
    ⑩MeFOSE:0.2
    文献[35]
    北京西城区 2014年10月 7 HPLC-MS/MS 最高浓度 pg/m3 颗粒物:
    ①PFOSA:0.2
    ②N-EtFOSA:0.6
    文献[36]
      注:LOD表示Limit of detection,检出限;—表示未检出。
    下载: 导出CSV
  • [1]

    王佩,黄欣怡,曹致纬,等. 新污染物共排放对生态环境监测和管理的挑战[J]. 环境科学,2022,43(11):4801 − 4809. [WANG Pei,HUANG Xinyi,CAO Zhiwei,et al. Challenges regarding the co-emission of emerging pollutants to eco-environmental monitoring and management[J]. Environmental Science,2022,43(11):4801 − 4809. (in Chinese with English abstract)]

    WANG Pei, HUANG Xinyi, CAO Zhiwei, et al. Challenges regarding the co-emission of emerging pollutants to eco-environmental monitoring and management[J]. Environmental Science, 2022, 4311): 48014809. (in Chinese with English abstract)

    [2]

    陈典,张照荷,赵微,等. 北京市再生水灌区地下水中典型全氟化合物的分布现状及生态风险[J]. 岩矿测试,2022,41(3):499 − 510. [CHEN Dian,ZHANG Zhaohe,ZHAO Wei,et al. The occurrence,distribution and risk assessment of typical perfluorinated compounds in groundwater from a reclaimed wastewater irrigation area in Beijing[J]. Rock and Mineral Analysis,2022,41(3):499 − 510. (in Chinese with English abstract)]

    CHEN Dian, ZHANG Zhaohe, ZHAO Wei, et al. The occurrence, distribution and risk assessment of typical perfluorinated compounds in groundwater from a reclaimed wastewater irrigation area in Beijing[J]. Rock and Mineral Analysis, 2022, 413): 499510. (in Chinese with English abstract)

    [3]

    王世亮,曹雪稚. 山东省滨海旅游度假区水体环境典型全氟化合物污染特征及潜在生态风险[J]. 环境科学,2020,41(12):5428 − 5437. [WANG Shiliang,CAO Xuezhi. Contamination characteristics and potential ecological risks of typical perfluoroalkyl substances in the water and sediment of coastal tourism resorts in Shandong Province[J]. Environmental Science,2020,41(12):5428 − 5437. (in Chinese with English abstract)]

    WANG Shiliang, CAO Xuezhi. Contamination characteristics and potential ecological risks of typical perfluoroalkyl substances in the water and sediment of coastal tourism resorts in Shandong Province[J]. Environmental Science, 2020, 4112): 54285437. (in Chinese with English abstract)

    [4]

    LYU Xueyan,XIAO Feng,SHEN Chongyang,et al. Per- and polyfluoroalkyl substances (PFAS) in subsurface environments:Occurrence,fate,transport,and research prospect[J]. Reviews of Geophysics,2022,60(3):e2021RG000765. doi: 10.1029/2021RG000765

    [5]

    KAISER A M,ARO R,KÄRRMAN A,et al. Comparison of extraction methods for per- and polyfluoroalkyl substances (PFAS) in human serum and placenta samples-insights into extractable organic fluorine (EOF)[J]. Analytical and Bioanalytical Chemistry,2021,413(3):865 − 876. doi: 10.1007/s00216-020-03041-5

    [6]

    HU Xin,LI Shuzhao,CIRILLO P M,et al. Metabolome wide association study of serum poly and perfluoroalkyl substances (PFASs) in pregnancy and early postpartum[J]. Reproductive Toxicology,2019,87:70 − 78.

    [7]

    SHI Guohui,XIE Yu,GUO Yong,et al. 6∶2 fluorotelomer sulfonamide alkylbetaine (6∶2 FTAB),a novel perfluorooctane sulfonate alternative,induced developmental toxicity in zebrafish embryos[J]. Aquatic Toxicology,2018,195:24 − 32. doi: 10.1016/j.aquatox.2017.12.002

    [8]

    杨琳,李敬光. 全氟化合物前体物质生物转化与毒性研究进展[J]. 环境化学,2015,34(4):649 − 655. [YANG Lin,LI Jingguang. Perfluorinated compound precursors:Biotransformation and toxicity[J]. Environmental Chemistry,2015,34(4):649 − 655. (in Chinese with English abstract)]

    YANG Lin, LI Jingguang. Perfluorinated compound precursors: Biotransformation and toxicity[J]. Environmental Chemistry, 2015, 344): 649655. (in Chinese with English abstract)

    [9]

    FU Zhiqiang, WANG Yong, WANG Zhongyu,et al. Transformation pathways of isomeric perfluorooctanesulfonate precursors catalyzed by the active species of P450 enzymes:In silico investigation[J]. Chemical Research in Toxicology,2015,28(3):482 − 489. doi: 10.1021/tx500470f

    [10]

    ZHAO Shuyan, MA Xinxin, FANG Shuhong,et al. Behaviors of N-ethyl perfluorooctane sulfonamide ethanol (N-EtFOSE) in a soil-earthworm system:Transformation and bioaccumulation[J]. Science of the Total Environment,2016,554/555:186 − 191. doi: 10.1016/j.scitotenv.2016.02.180

    [11]

    MA Donghui, ZHONG Huifang, LV Jitao,et al. Levels,distributions,and sources of legacy and novel per- and perfluoroalkyl substances (PFAS) in the topsoil of Tianjin,China[J]. Journal of Environmental Sciences (China),2022,112:71 − 81. doi: 10.1016/j.jes.2021.04.029

    [12]

    GLASER D,LAMOUREUX E,OPDYKE D,et al. The impact of precursors on aquatic exposure assessment for PFAS:Insights from bioaccumulation modeling[J]. Integrated Environmental Assessment and Management,2021,17(4):705 − 715. doi: 10.1002/ieam.4414

    [13]

    LI Wanting, LIU Xiaoyu, MAO Hui,et al. Concentration,distribution,and bioconcentration of short- and long-chain perfluoroalkyl substances in the water,suspended particulate matter,and surface sediment of a typical semi-enclosed bay[J]. Science of the Total Environment,2023,890:164416. doi: 10.1016/j.scitotenv.2023.164416

    [14]

    MENG Yue, YAO Yiming, CHEN Hao,et al. Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in Dagang Oilfield:Multimedia distribution and contributions of unknown precursors[J]. Journal of Hazardous Materials,2021,412:125177. doi: 10.1016/j.jhazmat.2021.125177

    [15]

    CAO Xuezhi, XIN Shuhan, LIU Xinxin,et al. Occurrence and behavior of per- and polyfluoroalkyl substances and conversion of oxidizable precursors in the waters of coastal tourist resorts in China[J]. Environmental Pollution,2023,316:120460. doi: 10.1016/j.envpol.2022.120460

    [16]

    CHEN Meng, WANG Qiang, SHAN Guoqiang,et al. Occurrence,partitioning and bioaccumulation of emerging and legacy per- and polyfluoroalkyl substances in Taihu Lake,China[J]. Science of the Total Environment,2018,634:251 − 259. doi: 10.1016/j.scitotenv.2018.03.301

    [17]

    LU Zhibo, SONG Luning, ZHAO Zhen,et al. Occurrence and trends in concentrations of perfluoroalkyl substances (PFASs) in surface waters of eastern China[J]. Chemosphere,2015,119:820 − 827. doi: 10.1016/j.chemosphere.2014.08.045

    [18]

    GEBBINK W A,BIGNERT A,BERGER U. Perfluoroalkyl acids (PFAAs) and selected precursors in the Baltic Sea environment:Do precursors play a role in food web accumulation of PFAAs?[J]. Environmental Science & Technology,2016,50(12):6354 − 6362.

    [19]

    MORALES-MCDEVITT M E,DUNN M,HABIB A,et al. Poly- and perfluorinated alkyl substances in air and water from Dhaka,Bangladesh[J]. Environmental Toxicology and Chemistry,2022,41(2):334 − 342. doi: 10.1002/etc.5255

    [20]

    CHRISTIE E C,SCHWICHTENBERG T,SCHMOKEL C,et al. Per- and polyfluoroalkyl substances in field-collected light non-aqueous phase liquids[J]. American Chemical Society Environmental Science & Technology Water,2023,3(3):885 − 891.

    [21]

    RUYLE B J,PICKARD H M,LEBLANC D R,et al. Isolating the AFFF signature in coastal watersheds using oxidizable PFAS precursors and unexplained organofluorine[J]. Environmental Science & Technology,2021,55(6):3686 − 3695.

    [22]

    BARBER L B,PICKARD H M,ALVAREZ D A,et al. Uptake of per- and polyfluoroalkyl substances by fish,mussel,and passive samplers in mobile-laboratory exposures using groundwater from a contamination plume at a historical fire training area,cape cod,Massachusetts[J]. Environmental Science & Technology,2023,57(14):5544 − 5557.

    [23]

    ZHOU Jian, LI Shujian, LIANG Xiaoxue,et al. First report on the sources,vertical distribution and human health risks of legacy and novel per- and polyfluoroalkyl substances in groundwater from the Loess Plateau,China[J]. Journal of Hazardous Materials,2021,404:124134. doi: 10.1016/j.jhazmat.2020.124134

    [24]

    CHEN Shu, JIAO Xingchun, GAI Nan,et al. Perfluorinated compounds in soil,surface water,and groundwater from rural areas in eastern China[J]. Environmental Pollution,2016,211:124 − 131. doi: 10.1016/j.envpol.2015.12.024

    [25]

    ZHONG Hiufang, ZHENG Minggang, LIANG Yong,et al. Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in sediments from the East China Sea and the Yellow Sea:Occurrence,source apportionment and environmental risk assessment[J]. Chemosphere,2021,282:131042. doi: 10.1016/j.chemosphere.2021.131042

    [26]

    MIRANDA D A,BENSKIN J P,AWAD R,et al. Bioaccumulation of per- and polyfluoroalkyl substances (PFASs) in a tropical estuarine food web[J]. Science of the Total Environment,2021,754:142146. doi: 10.1016/j.scitotenv.2020.142146

    [27]

    BENSKIN J P,IKONOMOU M G,GOBAS F A P C,et al. Observation of a novel PFOS-precursor,the perfluorooctane sulfonamido ethanol-based phosphate (SAmPAP) diester,in marine sediments[J]. Environmental Science & Technology,2012,46(12):6505 − 6514.

    [28]

    GÖCKENER B,FLIEDNER A,WEINFURTNER K,et al. Tracking down unknown PFAS pollution-The direct TOP assay in spatial monitoring of surface waters in Germany[J]. Science of the Total Environment,2023,898:165425. doi: 10.1016/j.scitotenv.2023.165425

    [29]

    WELLMITZ J,BANDOW N,KOSCHORRECK J. Long-term trend data for PFAS in soils from German ecosystems,including TOP assay[J]. Science of the Total Environment,2023,893:164586. doi: 10.1016/j.scitotenv.2023.164586

    [30]

    MACORPS N,LABADIE P,LESTREMAU F,et al. Per- and polyfluoroalkyl substances (PFAS) in surface sediments:Occurrence,patterns,spatial distribution and contribution of unattributed precursors in French aquatic environments[J]. Science of the Total Environment,2023,874:162493. doi: 10.1016/j.scitotenv.2023.162493

    [31]

    CHEN Hao,MUNOZ G,DUY S V,et al. Occurrence and distribution of per- and polyfluoroalkyl substances in Tianjin,China:The contribution of emerging and unknown analogues[J]. Environmental Science & Technology,2020,54(22):14254 − 14264.

    [32]

    MUNOZ G, DESROSIERS M, DUY S V, et al. Environmental occurrence of perfluoroalkyl acids and novel fluorotelomer surfactants in the freshwater fish Catostomus commersonii and sediments following firefighting foam deployment at the Lac-Mégantic railway accident[J]. Environmental Science & Technology,2017,51:1231 − 1240.

    [33]

    LIN Huiju, LAO Jiayong, WANG Qi,et al. Per- and polyfluoroalkyl substances in the atmosphere of waste management infrastructures:Uncovering secondary fluorotelomer alcohols,particle size distribution,and human inhalation exposure[J]. Environment International,2022,167:107434. doi: 10.1016/j.envint.2022.107434

    [34]

    MORALES-MCDEVITT M E,BECANOVA J,BLUM A,et al. The air that we breathe:Neutral and volatile PFAS in indoor air[J]. Environmental Science & Technology Letters,2021,8(10):897 − 902.

    [35]

    XIE Zhiyong, WANG Zhen, MI Wenying,et al. Neutral poly- perfluoroalkyl substances in air and snow from the Arctic[J]. Scientific Reports,2015,5:8912. doi: 10.1038/srep08912

    [36]

    杨朔,陈辉伦,盖楠,等. 北京市大气颗粒物中全氟烷基化合物的粒径分布特征[J]. 岩矿测试,2018,37(5):549 − 557. [YANG Shuo,CHEN Huilun,GAI Nan,et al. Particle size distribution of perfluoroalkyl substances in atmospheric particulate matter in Beijing[J]. Rock and Mineral Analysis,2018,37(5):549 − 557. (in Chinese with English abstract)]

    YANG Shuo, CHEN Huilun, GAI Nan, et al. Particle size distribution of perfluoroalkyl substances in atmospheric particulate matter in Beijing[J]. Rock and Mineral Analysis, 2018, 375): 549557. (in Chinese with English abstract)

    [37]

    YOUNG A S,SPARER-FINE E H,PICKARD H M,et al. Per- and polyfluoroalkyl substances (PFAS) and total fluorine in fire station dust[J]. Journal of Exposure Science & Environmental Epidemiology,2021,31(5):930 − 942.

    [38]

    DAUCHY X,BOITEUX V,COLIN A,et al. Poly- and perfluoroalkyl substances in runoff water and wastewater sampled at a firefighter training area[J]. Archives of Environmental Contamination and Toxicology,2019,76(2):206 − 215. doi: 10.1007/s00244-018-0585-z

    [39]

    DAUCHY X,BOITEUX V,COLIN A,et al. Deep seepage of per- and polyfluoroalkyl substances through the soil of a firefighter training site and subsequent groundwater contamination[J]. Chemosphere,2019,214:729 − 737. doi: 10.1016/j.chemosphere.2018.10.003

    [40]

    XIAO Feng,SIMCIK M F,GULLIVER J S. Perfluoroalkyl acids in urban stormwater runoff:Influence of land use[J]. Water Research,2012,46(20):6601 − 6608. doi: 10.1016/j.watres.2011.11.029

    [41]

    陈舒,焦杏春,盖楠,等. 中国东部农村地区土壤及水环境中全氟化合物的组成特征和来源初探[J]. 岩矿测试,2015,34(5):579 − 585. [CHEN Shu,JIAO Xingchun,GAI Nan,et al. Composition and source of perfluorinated compounds in soil and waters from the rural areas in eastern China[J]. Rock and Mineral Analysis,2015,34(5):579 − 585. (in Chinese with English abstract)]

    CHEN Shu, JIAO Xingchun, GAI Nan, et al. Composition and source of perfluorinated compounds in soil and waters from the rural areas in eastern China[J]. Rock and Mineral Analysis, 2015, 345): 579585. (in Chinese with English abstract)

    [42]

    路国慧,沈亚婷,何俊,等. 高效液相色谱-串联质谱法测定黄河河口段水中全氟化合物的初步研究[J]. 岩矿测试,2012,31(1):147 − 153. [LU Guohui,SHEN Yating,HE Jun,et al. Preliminary study on perfluorinated compounds in waters from the Yellow River estuary area by utilizing liquid chromatography-mass spectrometry/mass spectrometry[J]. Rock and Mineral Analysis,2012,31(1):147 − 153. (in Chinese with English abstract)]

    LU Guohui, SHEN Yating, HE Jun, et al. Preliminary study on perfluorinated compounds in waters from the Yellow River estuary area by utilizing liquid chromatography-mass spectrometry/mass spectrometry[J]. Rock and Mineral Analysis, 2012, 311): 147153. (in Chinese with English abstract)

    [43]

    ZABALETA I,BIZKARGUENAGA E,NUNOO D B O,et al. Biodegradation and uptake of the pesticide sulfluramid in a soil-carrot mesocosm[J]. Environmental Science & Technology,2018,52(5):2603 − 2611.

    [44]

    ADAMSON D T,NICKERSON A,KULKARNI P R,et al. Mass-based,field-scale demonstration of PFAS retention within AFFF-associated source areas[J]. Environmental Science & Technology,2020,54(24):15768 − 15777.

    [45]

    NICKERSON A,RODOWA A E,ADAMSON D T,et al. Spatial trends of anionic,zwitterionic,and cationic PFASs at an AFFF-impacted site[J]. Environmental Science & Technology,2021,55(1):313 − 323.

    [46]

    MAIZEL A C,SHEA S,NICKERSON A,et al. Release of per- and polyfluoroalkyl substances from aqueous film-forming foam impacted soils[J]. Environmental Science & Technology,2021,55(21):14617-14627. [PubMed]

    [47]

    GEFELL M J,HUANG H,OPDYKE D,et al. Modeling PFAS fate and transport in groundwater,with and without precursor transformation[J]. Ground Water,2022,60(1):6 − 14. doi: 10.1111/gwat.13152

    [48]

    TOKRANOV A K,LEBLANC D R,PICKARD H M,et al. Surface-water/groundwater boundaries affect seasonal PFAS concentrations and PFAA precursor transformations[J]. Environmental Science Processes & Impacts,2021,23(12):1893 − 1905.

    [49]

    HARTZ W F,BJÖRNSDOTTER M K,YEUNG L W Y,et al. Levels and distribution profiles of Per- and Polyfluoroalkyl Substances (PFAS) in a high Arctic Svalbard ice core[J]. Science of the Total Environment,2023,871:161830. doi: 10.1016/j.scitotenv.2023.161830

    [50]

    WONG F,HUNG H,DRYFHOUT-CLARK H,et al. Time trends of persistent organic pollutants (POPs) and chemicals of emerging arctic concern (CEAC) in Arctic air from 25 years of monitoring[J]. Science of the Total Environment,2021,775:145109. doi: 10.1016/j.scitotenv.2021.145109

    [51]

    GAWOR A,SHUNTHIRASINGHAM C,HAYWARD S J,et al. Neutral polyfluoroalkyl substances in the global atmosphere[J]. Environmental Science Processes & Impacts,2014,16(3):404 − 413.

    [52]

    RAUERT C,SHOIEB M,SCHUSTER J K,et al. Atmospheric concentrations and trends of poly- and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the global atmospheric passive sampling (GAPS) network[J]. Environmental Pollution,2018,238:94 − 102. doi: 10.1016/j.envpol.2018.03.017

    [53]

    STOCK N L,FURDUI V I,MUIR D C G,et al. Perfluoroalkyl contaminants in the Canadian Arctic:Evidence of atmospheric transport and local contamination[J]. Environmental Science & Technology,2007,41(10):3529 − 3536. doi: 10.1021/es062709x

    [54]

    WONG F,SHOEIB M,KATSOYIANNIS A,et al. Assessing temporal trends and source regions of per- and polyfluoroalkyl substances (PFASs) in air under the arctic monitoring and assessment programme (AMAP)[J]. Atmospheric Environment,2018,172:65 − 73. doi: 10.1016/j.atmosenv.2017.10.028

    [55]

    BOSSI R,VORKAMP K,SKOV H. Concentrations of organochlorine pesticides,polybrominated diphenyl ethers and perfluorinated compounds in the atmosphere of North Greenland[J]. Environmental Pollution,2016,217:4 − 10. doi: 10.1016/j.envpol.2015.12.026

    [56]

    CAI Minghong, XIE Zhiyong, MÖLLER A,et al. Polyfluorinated compounds in the atmosphere along a cruise pathway from the Japan Sea to the Arctic Ocean[J]. Chemosphere,2012,87(9):989 − 997. doi: 10.1016/j.chemosphere.2011.11.010

    [57]

    BRUSSEAU M L,ANDERSON R H,GUO B. PFAS concentrations in soils:Background levels versus contaminated sites[J]. Science of the Total Environment,2020,740:140017. doi: 10.1016/j.scitotenv.2020.140017

    [58]

    BORTHAKUR A,WANG M,HE M,et al. Perfluoroalkyl acids on suspended particles:Significant transport pathways in surface runoff,surface waters,and subsurface soils[J]. Journal of Hazardous Materials,2021,417:126159. doi: 10.1016/j.jhazmat.2021.126159

    [59]

    NXUMALO T,AKHDHAR A,MUELLER V,et al. EOF and target PFAS analysis in surface waters affected by sewage treatment effluents in Berlin,Germany[J]. Analytical and Bioanalytical Chemistry,2023,415(6):1195 − 1204. doi: 10.1007/s00216-022-04500-x

    [60]

    HABIBULLAH-AL-MAMUN M,AHMED M K,RAKNUZZAMAN M,et al. Occurrence and distribution of perfluoroalkyl acids (PFAAs) in surface water and sediment of a tropical coastal area (Bay of Bengal coast,Bangladesh)[J]. Science of the Total Environment,2016,571:1089 − 1104. doi: 10.1016/j.scitotenv.2016.07.104

    [61]

    MARTIN J W,ELLIS D A,MABURY S A,et al. Atmospheric chemistry of perfluoroalkanesulfonamides:Kinetic and product studies of the OH radical and Cl atom initiated oxidation of N-ethyl perfluorobutanesulfonamide[J]. Environmental Science & Technology,2006,40(3):864 − 872.

    [62]

    DAI Yunrong, GUO Xingxing, WANG Siyu,et al. Photochemical transformation of perfluoroalkyl acid precursors in water using engineered nanomaterials[J]. Water Research,2020,181:115964. doi: 10.1016/j.watres.2020.115964

    [63]

    GAUTHIER S A,MABURY S A. Aqueous photolysis of 8:2 fluorotelomer alcohol[J]. Environmental Toxicology and Chemistry,2005,24(8):1837 − 1846. doi: 10.1897/04-591R.1

    [64]

    LI Li, LIU Jianguo, HU Jianxin,et al. Degradation of fluorotelomer-based polymers contributes to the global occurrence of fluorotelomer alcohol and perfluoroalkyl carboxylates:A combined dynamic substance flow and environmental fate modeling analysis[J]. Environmental Science & Technology,2017,51(8):4461 − 4470.

    [65]

    WANG Zhanyun,COUSINS I T,SCHERINGER M,et al. Global emission inventories for C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030,part II:The remaining pieces of the puzzle[J]. Environment International,2014,69:166 − 176. doi: 10.1016/j.envint.2014.04.006

    [66]

    RUYLE B J,THACKRAY C P,BUTT C M,et al. Centurial persistence of forever chemicals at military fire training sites[J]. Environmental Science & Technology,2023,57(21):8096 − 8106.

    [67]

    LIU Jinxia, WANG Ning,SZOSTEK B,et al. 6-2 Fluorotelomer alcohol aerobic biodegradation in soil and mixed bacterial culture[J]. Chemosphere,2010,78(4):437 − 444. doi: 10.1016/j.chemosphere.2009.10.044

    [68]

    ZHAO Lijie,FOLSOM P W,WOLSTENHOLME B W,et al. 6∶2 Fluorotelomer alcohol biotransformation in an aerobic river sediment system[J]. Chemosphere,2013,90(2):203 − 209. doi: 10.1016/j.chemosphere.2012.06.035

    [69]

    YU Xiaolong,NISHIMURA F,HIDAKA T. Effects of microbial activity on perfluorinated carboxylic acids (PFCAs) generation during aerobic biotransformation of fluorotelomer alcohols in activated sludge[J]. Science of the Total Environment,2018,610/611:776 − 785. doi: 10.1016/j.scitotenv.2017.08.075

    [70]

    ZHANG Lilan, LEE L S, NIU Junfeng,et al. Kinetic analysis of aerobic biotransformation pathways of a perfluorooctane sulfonate (PFOS) precursor in distinctly different soils[J]. Environmental Pollution,2017,229:159 − 167. doi: 10.1016/j.envpol.2017.05.074

    [71]

    GUIDA Y,TORRES F B M,BARIZON R R M,et al. Confirming sulfluramid (EtFOSA) application as a precursor of perfluorooctanesulfonic acid (PFOS) in Brazilian agricultural soils[J]. Chemosphere,2023,325:138370. doi: 10.1016/j.chemosphere.2023.138370

    [72]

    HAO Jian, WANG Penghong, KANG Yufei,et al. Degradation of perfluorooctane sulfonamide by acinetobacter spM and its extracellular enzymes[J]. Chemistry,an Asian Journal,2019,14(16):2780 − 2784. doi: 10.1002/asia.201900638

    [73]

    LIU Jinxia, ZHONG Guowei, LI Wei,et al. Isomer-specific biotransformation of perfluoroalkyl sulfonamide compounds in aerobic soil[J]. Science of the Total Environment,2019,651:766 − 774. doi: 10.1016/j.scitotenv.2018.09.214

    [74]

    LIU Chen, LIU Jinxia. Aerobic biotransformation of polyfluoroalkyl phosphate esters (PAPs) in soil[J]. Environmental Pollution,2016,212:230 − 237. doi: 10.1016/j.envpol.2016.01.069

    [75]

    BENSKIN J P,IKONOMOU M G,GOBAS F A P C,et al. Biodegradation of N-ethyl perfluorooctane sulfonamido ethanol (EtFOSE) and EtFOSE-based phosphate diester (SAmPAP diester) in marine sediments[J]. Environmental Science & Technology,2013,47(3):1381 − 1389.

    [76]

    ZHANG Shiyi, PENG Hui, MU Di,et al. Simultaneous determination of (N-ethyl perfluorooctanesulfonamido ethanol)-based phosphate diester and triester and their biotransformation to perfluorooctanesulfonate in freshwater sediments[J]. Environmental Pollution,2018,234:821 − 829. doi: 10.1016/j.envpol.2017.12.021

    [77]

    D’AGOSTINO L A,MABURY S A. Aerobic biodegradation of 2 fluorotelomer sulfonamide–based aqueous film-forming foam components produces perfluoroalkyl carboxylates[J]. Environmental Toxicology and Chemistry,2017,36(8):2012 − 2021. doi: 10.1002/etc.3750

    [78]

    BOULANGER B,VARGO J D,SCHNOOR J L,et al. Evaluation of perfluorooctane surfactants in a wastewater treatment system and in a commercial surface protection product[J]. Environmental Science & Technology,2005,39(15):5524 − 5530.

    [79]

    LANGE C C. Anaerobic biotransformation of N-methyl perfluorobutanesulfonamido ethanol and N-ethyl perfluorooctanesulfonamido ethanol[J]. Environmental Toxicology and Chemistry,2018,37(3):768 − 779. doi: 10.1002/etc.4014

    [80]

    XIE Zhiyong,KALLENBORN R. Legacy and emerging per- and poly-fluoroalkyl substances in polar regions[J]. Current Opinion in Green and Sustainable Chemistry,2023,42:100840. doi: 10.1016/j.cogsc.2023.100840

    [81]

    ELLIS D A,MARTIN J W,DE SILVA A O,et al. Degradation of fluorotelomer alcohols:A likely atmospheric source of perfluorinated carboxylic acids[J]. Environmental Science & Technology,2004,38(12):3316 − 3321.

    [82]

    CHYNEL M,MUNSCHY C,BELY N,et al. Legacy and emerging organic contaminants in two sympatric shark species from Reunion Island (Southwest Indian Ocean):Levels,profiles and maternal transfer[J]. Science of the Total Environment,2021,751:141807. doi: 10.1016/j.scitotenv.2020.141807

    [83]

    WANG Bin, YAO Yiming, WANG Yu,et al. Per- and polyfluoroalkyl substances in outdoor and indoor dust from mainland China:Contributions of unknown precursors and implications for human exposure[J]. Environmental Science & Technology,2022,56(10):6036 − 6045.

    [84]

    MCMURDO C J,ELLIS D A,WEBSTER E,et al. Aerosol enrichment of the surfactant PFO and mediation of the water-air transport of gaseous PFOA[J]. Environmental Science & Technology,2008,42(11):3969 − 3974.

    [85]

    ELLIS D A, WEBSTER E. Comment on “Aerosol enrichment of the surfactant PFO and mediation of the water-air transport of gaseous PFOA” response[J]. Environmental Science & Technology,2009,43(4):1234 − 1235.

    [86]

    DE SILVA A O,MUIR D C G,MABURY S A. Distribution of perfluorocarboxylate isomers in select samples from the North American environment[J]. Environmental Toxicology and Chemistry,2009,28(9):1801 − 1814. doi: 10.1897/08-500.1

    [87]

    WALLINGTON T J,HURLEY M D,XIA J,et al. Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8:2 fluorotelomer alcohol[J]. Environmental Science & Technology,2006,40(3):924 − 930.

    [88]

    WANIA F. A global mass balance analysis of the source of perfluorocarboxylic acids in the Arctic Ocean[J]. Environmental Science & Technology,2007,41(13):4529 − 4535.

    [89]

    SCHENKER U,SCHERINGER M,MACLEOD M,et al. Contribution of volatile precursor substances to the flux of perfluorooctanoate to the Arctic[J]. Environmental Science & Technology,2008,42(10):3710 − 3716.

    [90]

    YOUNG C J,DONALDSON D J. Overtone-induced degradation of perfluorinated alcohols in the atmosphere[J]. Journal of Physical Chemistry A,2007,111(51):13466 − 13471. doi: 10.1021/jp075607h

  • 加载中

(1)

(2)

计量
  • 文章访问数:  2215
  • PDF下载数:  92
  • 施引文献:  0
出版历程
收稿日期:  2023-11-04
修回日期:  2023-12-24
刊出日期:  2024-03-15

目录