包气带中手性抗生素的环境行为研究进展

秦晓鹏, 刘菲, 王广才, 翁莉萍. 包气带中手性抗生素的环境行为研究进展[J]. 水文地质工程地质, 2024, 51(2): 23-34. doi: 10.16030/j.cnki.issn.1000-3665.202311009
引用本文: 秦晓鹏, 刘菲, 王广才, 翁莉萍. 包气带中手性抗生素的环境行为研究进展[J]. 水文地质工程地质, 2024, 51(2): 23-34. doi: 10.16030/j.cnki.issn.1000-3665.202311009
QIN Xiaopeng, LIU Fei, WANG Guangcai, WENG Liping. Review of environmental fate of chiral antibiotics in the vadose zone[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 23-34. doi: 10.16030/j.cnki.issn.1000-3665.202311009
Citation: QIN Xiaopeng, LIU Fei, WANG Guangcai, WENG Liping. Review of environmental fate of chiral antibiotics in the vadose zone[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 23-34. doi: 10.16030/j.cnki.issn.1000-3665.202311009

包气带中手性抗生素的环境行为研究进展

  • 基金项目: 广西重点研发计划项目(桂科AB22080070)
详细信息
    作者简介: 秦晓鹏(1986—),男,博士,副研究员,从事生态环境监管、土壤与地下水污染防治研究。E-mail:qinxp@craes.org.cn
  • 中图分类号: P641.69

Review of environmental fate of chiral antibiotics in the vadose zone

  • 目前,手性抗生素在包气带中的检测、分布、迁移转化等方面缺乏系统总结和全面综述。文章指出手性抗生素不同异构体的物理化学性质存在差异,例如左旋吉米沙星的溶解度、辛醇-水分配系数分别是右旋吉米沙星的301倍、9.8倍,会影响其在环境中的迁移转化。高效液相色谱-手性色谱柱法和手性配体交换色谱法是目前最常用的分析手性抗生素的方法。梳理了国内外土壤、水体和农产品中手性抗生素的检出情况,其中最常见的是氟甲喹、洛美沙星、氧氟沙星等。手性抗生素在矿物和微塑料上的吸附速率和分配系数均存在差异,天然有机物的存在导致差异更大,但是不同种类手性抗生素之间并没有规律。手性抗生素会与地下水中的常见阳离子发生络合作用,络合物的稳定常数不同,例如镁离子-左氧氟沙星络合物的稳定常数是镁离子-氧氟沙星络合物的22.9倍。在生物降解过程中,不同手性抗生素的可降解性、降解速率不同,另外,抗生素异构体之间还会发生相互转化。文章系统阐述了手性抗生素在包气带中的分布情况和迁移转化行为,可供地下水系统中手性抗生素方面的研究参考。研究认为对于包气带中手性抗生素的环境行为,亟需开展以下研究:(1)手性抗生素的拆分、检测、毒理学和标准建设;(2)多种手性抗生素的调查、迁移转化;(3)手性抗生素的多界面环境过程。

  • 加载中
  • 图 1  手性抗生素在包气带的迁移转化过程

    Figure 1. 

    图 2  手性抗生素在针铁矿-石英砂上的解吸过程[52]

    Figure 2. 

    表 1  常见手性抗生素的物理化学性质

    Table 1.  Physicochemical properties of typical chiral antibiotics

    序号 抗生素名称 CAS 溶解度
    / (mol·L−1
    生物降解
    半衰期/d
    生物富集系数
    / (L·kg−1
    土壤吸附系数
    /(L·kg−1
    辛醇-水分配
    系数
    1 左旋巴洛沙星(S-balofloxacin)* 127294-70-6 0.0117 3.39 3.09 1860 1.42
    右旋巴洛沙星(R-balofloxacin)* 165881-73-2
    2 左旋贝西沙星(S-besifloxacin)* 141388-76-3 1.44 14.5 8.71 1020 1.85
    右旋贝西沙星(R-besifloxacin)*
    3 左旋氯霉素(S-chloramphenicol)* 56-75-7 0.0078 4.37 1.33 115 1.14
    右旋氯霉素(R- chloramphenicol)*
    4 左旋克林沙星(S-clinafloxacin)* 105956-97-6 0.0241 14.1 15.9 513 1.15
    右旋克林沙星(R- clinafloxacin)* 133121-46-7
    5 左旋达氟沙星(S-danofloxacin)* 112398-08-0 0.209 4.79 2.51 479 0.748
    右旋达氟沙星(R-danofloxacin)* 165881-73-2
    6 左旋红霉素(S-erythromycin)* 114-07-8 0.0004 15.5 3.39 44700 3.06
    右旋红霉素(R- erythromycin)*
    7 左旋氟甲喹(S-flumequine)* 42835-25-6 0.0083 7.59 3.39 977 1.60
    右旋氟甲喹(R-flumequine)* 215178-95-3
    8 左旋加雷沙星(S-garenoxacin)* 194804-75-6 1.45 7.41 4.57 6310 2.81
    右旋加雷沙星(R-garenoxacin)*
    9 左旋加替沙星(S-gatifloxacin)* 112811-59-3 0.0232 3.39 3.80 1020 0.702
    右旋加替沙星(R-gatifloxacin)*
    10 左旋吉米沙星(S-gemifloxacin) 765900-93-4 0.0603 3.39 3.72 372 1.31
    右旋吉米沙星(R-gemifloxacin) 175463-14-6 0.0002 3.39 3.72 372 0.319
    11 左旋格帕沙星(S-grepafloxacin)* 119914-60-2 0.0122 4.79 2.24 776 0.962
    右旋格帕沙星(R-grepafloxacin)* 146761-68-4
    12 左旋依巴沙星(S-ibafloxacin)* 91618-36-9 0.0004 15.1 2.95 813 2.64
    右旋依巴沙星(R-ibafloxacin)*
    13 左旋洛美沙星(S-lomefloxacin)* 98079-51-7 0.0029 3.39 2.75 1780 −0.300
    右旋洛美沙星(R-lomefloxacin)*
    14 左旋莫西沙星(S-moxifloxacin)* 151096-09-2 0.0093 7.41 3.09 2000 1.48
    右旋莫西沙星(R-moxifloxacin)*
    15 左旋那氟沙星(S-nadifloxacin)* 124858-35-1 0.0008 87.1 3.80 1020 1.74
    右旋那氟沙星(R-nadifloxacin)* 160961-35-3
    16 左旋奈诺沙星(S-nemonoxacin)* 378746-64-6 0.0553 15.1 3.16 776 1.43
    右旋奈诺沙星(R-nemonoxacin)*
    17 左氧氟沙星(S-ofloxacin) 100986-85-4 0.0397 3.39 4.37 479 0.105
    氧氟沙星(R-ofloxacin) 82419-36-1 0.0776 3.39 4.37 479 −0.390
    18 左旋奥比沙星(S-orbifloxacin)* 113617-63-3 0.0033 7.41 2.45 2570 1.48
    右旋奥比沙星(R-orbifloxacin)*
    19 左旋帕珠沙星(S-pazufloxacin)* 127045-41-4 0.0297 37.2 4.27 479 0.520
    右旋帕珠沙星(R-pazufloxacin)* 166665-94-7
    20 左旋普多沙星(S-pradofloxacin)* 195532-12-8 1.35 37.2 5.25 363 0.460
    右旋普多沙星(R-pradofloxacin)*
    21 左旋普卢利沙星(S-prulifloxacin)* 123447-62-1 0.0017 3.39 11.2 166 2.00
    右旋普卢利沙星(R-prulifloxacin)*
    22 左旋西他沙星(S-sitafloxacin)* 127254-12-0 0.0347 14.5 4.57 2570 2.53
    右旋西他沙星(R-sitafloxacin)*
    23 左旋司帕沙星(S-sparfloxacin)* 110871-86-8 0.0013 36.3 3.89 380 −0.020
    右旋司帕沙星(R-sparfloxacin)*
    24 左旋替马沙星(S-temafloxacin)* 108319-06-8 0.0058 7.41 3.39 1660 −0.200
    右旋替马沙星(R-temafloxacin)* 130982-86-4
    25 左旋托氟沙星(S-tosufloxacin)* 100490-36-6 0.0008 7.41 4.17 389 −0.460
    右旋托氟沙星(R-tosufloxacin)*
    26 左旋曲伐沙星(S-trovafloxacin)* 147059-72-1 0.00003 37.2 3.98 1950 0.310
    右旋曲伐沙星(R-trovafloxacin)*
    27 左旋万古霉素(S-vancomycin)* 1404-90-6 0.0002 257 3.89 4790 −0.745
    右旋万古霉素(R- vancomycin)*
      注:表中“CAS”指物质数字识别号码;溶解度、生物降解半衰期、生物富集系数、土壤吸附系数、辛醇-水分配系数均来自美国环保署官网(https://www.epa.gov/)和美国医学实验室官网(https://pubchem.ncbi.nlm.nih.gov/),部分数据为预测值;标注*的抗生素,目前暂时没有左旋、右旋或其他类型异构体的参数,表格中为其混合物的参数;“—”表示缺少该参数。
    下载: 导出CSV

    表 2  环境中检测到的手性抗生素的种类和浓度范围

    Table 2.  Types and concentrations of chiral antibiotics detected in the environment from different areas

    样品来源(样品数量) 抗生素名称 抗生素浓度
    河北石家庄的土壤(18)[29]氟甲喹9.1~18.7 μg/kg
    中国台湾南部的地下水(34)[30]氟甲喹1~317 ng/L
    中国北方和西南地区的地下水(74)[31]氟甲喹ND~22.6 ng/L
    西班牙某污水处理厂出水和河流(12)[32]左旋氟甲喹1.0~3.4 ng/L
    右旋氟甲喹1.6~5.3 ng/L
    加拿大污水处理厂出水(8)[33]红霉素0.6~20.0 ng/L
    中国北方和西南地区的地下水(74)[31]红霉素ND~346 ng/L
    德国中部地区的地下水(163)[34]红霉素6~392 ng/L
    广东广州某绿色蔬菜、有机蔬菜生产基地土壤(13)[35]洛美沙星ND~3.9 μg/kg
    江汉平原的表层土壤(17)[36]洛美沙星ND~15.5 μg/kg
    重庆开州区菜地土壤(18)[37]洛美沙星ND~14.1 μg/kg
    北京潮白河(21)[38]洛美沙星4.0~20.0 ng/L
    河北邯郸的河流(15)[39]洛美沙星ND~68.8 ng/L
    湖北洪湖市、监利县之间的洪湖(36)[40]洛美沙星ND~102 ng/L
    德国市场上的蜂蜜(40)[41]氯霉素(总量)0.3~1.8 μg/kg
    R,R-氯霉素ND~1.8 μg/kg
    S,S-氯霉素ND~1.6 μg/kg
    中国某污水处理厂出水(4)[24]左氧氟沙星393~910 ng/L
    氧氟沙星85~101 ng/L
    英国某污水处理厂出水和河流(21)[19]左氧氟沙星ND~159 ng/L
    氧氟沙星ND ~74 ng/L
    西班牙某污水处理厂出水和河流(12)[32]左氧氟沙星1.2~13.4 ng/L
    氧氟沙星ND
    辽宁沈阳某污水处理厂出水、河流和自来水(4)[42]左氧氟沙星3000~100400 ng/L
    山东12个村庄的河流和饮用水(72)[43]左氧氟沙星0.3~6.0 ng/L
    山东某地区设施蔬菜基地土壤(20)[44]氧氟沙星ND~643 μg/kg
    河北石家庄的土壤(18)[29]氧氟沙星0.1~10.9 μg/kg
    重庆开州区菜地土壤(18)[37]氧氟沙星0.6~7.9 μg/kg
    中国北方和西南地区的地下水(74)[31]氧氟沙星ND~1200 ng/L
    湖北洪湖和周边河流(11)[45]氧氟沙星ND~203 ng/L
    南四湖流域的地表水(90)[46]氧氟沙星ND~50 ng/L
    北京潮白河(21)[38]氧氟沙星9.2~41.8 ng/L
    湖北洪湖市、监利县之间的洪湖(36)[40]氧氟沙星6.0~98.5 ng/L
    四川成都的5条河流(20)[47]氧氟沙星ND~425 ng/L
    葡萄牙的两条河流(Douro River, Leça River)(6)[48]氧氟沙星ND~120 ng/L
    英国某污水处理厂出水和河流(21)[19]脱甲基-左氧氟沙星*ND~16 ng/L
    脱甲基-氧氟沙星*ND
      注:ND表示未检出;标注*的物质为抗生素的降解产物。
    下载: 导出CSV
  • [1]

    章伟光,张仕林,郭栋,等. 关注手性药物:从“反应停事件” 说起[J]. 大学化学,2019,34(9):1 − 12. [ZHANG Weiguang,ZHANG Shilin,GUO Dong,et al. Great concern for chiral pharmaceuticals from the thalidomide tragedy[J]. University Chemistry,2019,34(9):1 − 12. (in Chinese with English abstract)] doi: 10.3866/PKU.DXHX201904021

    ZHANG Weiguang, ZHANG Shilin, GUO Dong, et al. Great concern for chiral pharmaceuticals from the thalidomide tragedy[J]. University Chemistry, 2019, 349): 112. (in Chinese with English abstract) doi: 10.3866/PKU.DXHX201904021

    [2]

    RIBEIRO A R,CASTRO P M L,TIRITAN M E. Chiral pharmaceuticals in the environment[J]. Environmental Chemistry Letters,2012,10(3):239 − 253. doi: 10.1007/s10311-011-0352-0

    [3]

    刘瑞霞,李佳熹,刘晓玲. 环境介质中手性药物对映体分离分析及环境行为研究进展[J]. 环境工程学报,2017,11(6):3341 − 3351. [LIU Ruixia,LI Jiaxi,LIU Xiaoling. Research progress on separation,analysis and environmental behavior of chiral pharmaceutical enantiomers in environmental matrix[J]. Chinese Journal of Environmental Engineering,2017,11(6):3341 − 3351. (in Chinese with English abstract)] doi: 10.12030/j.cjee.201704158

    LIU Ruixia, LI Jiaxi, LIU Xiaoling. Research progress on separation, analysis and environmental behavior of chiral pharmaceutical enantiomers in environmental matrix[J]. Chinese Journal of Environmental Engineering, 2017, 116): 33413351. (in Chinese with English abstract) doi: 10.12030/j.cjee.201704158

    [4]

    SANGANYADO E,LU Zhijiang,FU Qiuguo,et al. Chiral pharmaceuticals:A review on their environmental occurrence and fate processes[J]. Water Research,2017,124:527 − 542. doi: 10.1016/j.watres.2017.08.003

    [5]

    ZHOU Yaoyu,WU Shikang,ZHOU Hao,et al. Chiral pharmaceuticals:Environment sources,potential human health impacts,remediation technologies and future perspective[J]. Environment International,2018,121:523 − 537. doi: 10.1016/j.envint.2018.09.041

    [6]

    PETRIE B,CAMACHO-MUÑOZ D. Analysis,fate and toxicity of chiral non-steroidal anti-inflammatory drugs in wastewaters and the environment:A review[J]. Environmental Chemistry Letters,2021,19(1):43 − 75. doi: 10.1007/s10311-020-01065-y

    [7]

    MEJÍAS C,ARENAS M,MARTÍN J,et al. A systematic review on distribution and ecological risk assessment for chiral pharmaceuticals in environmental compartments[J]. Reviews of Environmental Contamination and Toxicology,2022,260(1):3. doi: 10.1007/s44169-021-00003-5

    [8]

    FU K P,LAFREDO S C,FOLENO B,et al. In vitro and in vivo antibacterial activities of levofloxacin (l-ofloxacin),an optically active ofloxacin[J]. Antimicrobial Agents and Chemotherapy,1992,36(4):860-866.

    [9]

    COULET M,COX P,LOHUIS J. Pharmacodynamics of ibafloxacin in micro-organisms isolated from cats[J]. Journal of Veterinary Pharmacology and Therapeutics,2005,28(1):29 − 36. doi: 10.1111/j.1365-2885.2004.00622.x

    [10]

    秦晓鹏,刘菲,王广才,等. 抗生素在土壤/沉积物中吸附行为的研究进展[J]. 水文地质工程地质,2015,42(3):142 − 148. [QIN Xiaopeng,LIU Fei,WANG Guangcai,et al. Adsorption of antibiotics in soils/sediments:A review[J]. Hydrogeology & Engineering Geology,2015,42(3):142 − 148. (in Chinese with English abstract)]

    QIN Xiaopeng, LIU Fei, WANG Guangcai, et al. Adsorption of antibiotics in soils/sediments: A review[J]. Hydrogeology & Engineering Geology, 2015, 423): 142148. (in Chinese with English abstract)

    [11]

    韦寿莲,严子军,戚利华. 毛细管电泳手性拆分喹诺酮类药物对映体[J]. 理化检验(化学分册),2009,45(6):714 − 716. [WEI Shoulian,YAN Zijun,QI Lihua. Chiral separation of enantiomers of quinolone drugs by capillary electrophoresis[J]. Physical Testing and Chemical Analysis Part B:Chemical Analysis,2009,45(6):714 − 716. (in Chinese with English abstract)]

    WEI Shoulian, YAN Zijun, QI Lihua. Chiral separation of enantiomers of quinolone drugs by capillary electrophoresis[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2009, 456): 714716. (in Chinese with English abstract)

    [12]

    刘丹,魏瑞霞,谢天尧. 毛细管电泳/非接触式电导法分离检测氧氟沙星对映体[J]. 分析化学,2009,37(11):1687 − 1690. [LIU Dan,WEI Ruixia,XIE Tianyao. Simple and efficient enantioseparation of ofloxacin by capillary electrophoresis with contactless conductivity detedction using binary chiral selectors[J]. Chinese Journal of Analytical Chemistry,2009,37(11):1687 − 1690. (in Chinese with English abstract)] doi: 10.3321/j.issn:0253-3820.2009.11.025

    LIU Dan, WEI Ruixia, XIE Tianyao. Simple and efficient enantioseparation of ofloxacin by capillary electrophoresis with contactless conductivity detedction using binary chiral selectors[J]. Chinese Journal of Analytical Chemistry, 2009, 3711): 16871690. (in Chinese with English abstract) doi: 10.3321/j.issn:0253-3820.2009.11.025

    [13]

    庄晓庆,毛白杨,狄斌,等. 毛细管电泳手性拆分西他沙星异构体[J]. 药物分析杂志,2012,32(8):1389 − 1393. [ZHUANG Xiaoqing,MAO Baiyang,DI Bin,et al. Capillary electrophoresis and chiral separation of sitafloxacin isomers[J]. Chinese Journal of Pharmaceutical Analysis,2012,32(8):1389 − 1393. (in Chinese with English abstract)]

    ZHUANG Xiaoqing, MAO Baiyang, DI Bin, et al. Capillary electrophoresis and chiral separation of sitafloxacin isomers[J]. Chinese Journal of Pharmaceutical Analysis, 2012, 328): 13891393. (in Chinese with English abstract)

    [14]

    MENG Ranran,KANG Jingwu. Determination of the stereoisomeric impurities of sitafloxacin by capillary electrophoresis with dual chiral additives[J]. Journal of Chromatography A,2017,1506:120 − 127. doi: 10.1016/j.chroma.2017.05.010

    [15]

    CHEN Bin,DU Yingxiang,WANG Hao. Study on enantiomeric separation of basic drugs by NACE in methanol-based medium using erythromycin lactobionate as a chiral selector[J]. Electrophoresis,2010,31(2):371 − 377. doi: 10.1002/elps.200900343

    [16]

    ARAI T,NIMURA N,KINOSHITA T. Investigation of enantioselective separation of quinolonecarboxylic acids by capillary zone electrophoresis using vancomycin as a chiral selector[J]. Journal of Chromatography A,1996,736(1/2):303 − 311.

    [17]

    MATSUOKA M,BANNO K,SATO T. Analytical chiral separation of a new quinolone compound in biological fluids by high-performance liquid chromatography[J]. Journal of Chromatography B:Biomedical Sciences and Applications,1996,676(1):117 − 124. doi: 10.1016/0378-4347(95)00375-4

    [18]

    KANNAPPAN V,MANNEMALA S S. Multiple response optimization of a HPLC method for the determination of enantiomeric purity of S-ofloxacin[J]. Chromatographia,2014,77(17):1203 − 1211.

    [19]

    CASTRIGNANÒ E,KANNAN A M,FEIL E J,et al. Enantioselective fractionation of fluoroquinolones in the aqueous environment using chiral liquid chromatography coupled with tandem mass spectrometry[J]. Chemosphere,2018,206:376 − 386. doi: 10.1016/j.chemosphere.2018.05.005

    [20]

    REBIZI M N,SEKKOUM K,BELBOUKHARI N,et al. Liquid chromatographic enantioseparation of some fluoroquinoline drugs using several polysaccharide-based chiral stationary phases[J]. Journal of Chromatographic Science,2018,56(9):835 − 845. doi: 10.1093/chromsci/bmy061

    [21]

    ZENG S,ZHONG J,PAN L,et al. High-performance liquid chromatography separation and quantitation of ofloxacin enantiomers in rat microsomes[J]. Journal of Chromatography B,1999,728:151 − 155. doi: 10.1016/S0378-4347(99)00085-7

    [22]

    TIAN M,YAN Hn,ROW K H. Investigation of ofloxacin enantioseparation by ligand exchange chromatography[J]. Journal of Chemical Technology and Biotechnology,2009,84(7):1001 − 1006. doi: 10.1002/jctb.2123

    [23]

    BRODFUEHRER J I,PRIEBE S,GUTTENDORF R. Achiral and chiral high-performance liquid chromatographic methods for clinafloxacin,a fluoroquinolone antibacterial,in human plasma[J]. Journal of Chromatography B,Biomedical Sciences and Applications,1998,709(2):265 − 272. doi: 10.1016/S0378-4347(98)00078-4

    [24]

    SHAO Bing,SUN Xiaojie,ZHANG Jing,et al. Determination of ofloxacin enantiomers in sewage using two-step solid-phase extraction and liquid chromatography with fluorescence detection[J]. Journal of Chromatography A,2008,1182(1):77 − 84. doi: 10.1016/j.chroma.2007.12.073

    [25]

    仲小飞,秦晓鹏,杜平,等. 高效液相色谱法同时测定水体中氧氟沙星及其手性异构体[J]. 色谱,2018,36(11):1167 − 1172. [ZHONG Xiaofei,QIN Xiaopeng,DU Ping,et al. Simultaneous determination of ofloxacin enantiomers in water by high performance liquid chromatography[J]. Chinese Journal of Chromatography,2018,36(11):1167 − 1172. (in Chinese with English abstract)] doi: 10.3724/SP.J.1123.2018.07018

    ZHONG Xiaofei, QIN Xiaopeng, DU Ping, et al. Simultaneous determination of ofloxacin enantiomers in water by high performance liquid chromatography[J]. Chinese Journal of Chromatography, 2018, 3611): 11671172. (in Chinese with English abstract) doi: 10.3724/SP.J.1123.2018.07018

    [26]

    ZAIDI S A,HAN K M,KIM S S,et al. Open tubular layer of S-ofloxacin imprinted polymer fabricated in silica capillary for chiral CEC separation[J]. Journal of Separation Science,2009,32(7):996 − 1001. doi: 10.1002/jssc.200800631

    [27]

    SHI Xiaoxu,XU Liang,DUAN Hongquan,et al. CEC separation of ofloxacin enantiomers using imprinted microparticles prepared in molecular crowding conditions[J]. Electrophoresis,2011,32(11):1348 − 1356. doi: 10.1002/elps.201000515

    [28]

    YANG Xiangqing,HANG Yali. Enantiomeric separation by capillary electro chromatography with a novel β-cyclodextrin-hyperbranched carbosilane–silica polymer coating[J]. Journal of the Chemical Society of Pakistan,2023,45(2):136. doi: 10.52568/0012152/JCSP/45.02.2023

    [29]

    赵鑫宇,陈慧,赵波,等. 石家庄市土壤中喹诺酮类抗生素时空分布及其风险评估[J]. 环境科学,2023,44(4):2223 − 2233. [ZHAO Xinyu,CHEN Hui,ZHAO Bo,et al. Spatial-temporal distribution and risk assessment of quinolones antibiotics in soil of Shijiazhuang city[J]. Environmental Science,2023,44(4):2223 − 2233. (in Chinese with English abstract)]

    ZHAO Xinyu, CHEN Hui, ZHAO Bo, et al. Spatial-temporal distribution and risk assessment of quinolones antibiotics in soil of Shijiazhuang city[J]. Environmental Science, 2023, 444): 22232233. (in Chinese with English abstract)

    [30]

    LIN Yenching,LAI Webber Weipo,TUNG Hsinhsin,et al. Occurrence of pharmaceuticals,hormones,and perfluorinated compounds in groundwater in Taiwan[J]. Environmental Monitoring and Assessment,2015,187(5):256. doi: 10.1007/s10661-015-4497-3

    [31]

    CHEN Liang,LANG Hang,LIU Fei,et al. Presence of antibiotics in shallow groundwater in the northern and southwestern regions of China[J]. Groundwater,2018,56(3):451 − 457. doi: 10.1111/gwat.12596

    [32]

    MEJÍAS C,SANTOS J L,MARTÍN J,et al. Automatised on-line SPE-chiral LC-MS/MS method for the enantiomeric determination of main fluoroquinolones and their metabolites in environmental water samples[J]. Microchemical Journal,2023,185:108217. doi: 10.1016/j.microc.2022.108217

    [33]

    MACLEOD S L,WONG C S. Loadings,trends,comparisons,and fate of achiral and chiral pharmaceuticals in wastewaters from urban tertiary and rural aerated lagoon treatments[J]. Water Research,2010,44(2):533 − 544. doi: 10.1016/j.watres.2009.09.056

    [34]

    REH R,LICHA T,GEYER T,et al. Occurrence and spatial distribution of organic micro-pollutants in a complex hydrogeological karst system during low flow and high flow periods,results of a two-year study[J]. Science of the Total Environment,2013,443:438 − 445. doi: 10.1016/j.scitotenv.2012.11.005

    [35]

    邰义萍,莫测辉,吴小莲,等. 绿色和有机蔬菜基地土壤中喹诺酮类抗生素的污染特征[J]. 农业环境科学学报,2012,31(1):125 − 130. [TAI Yiping,MO Cehui,WU Xiaolian,et al. Occurrence of quinolone antibiotics in the soils from a green and an organic vegetable fields[J]. Journal of Agro-Environment Science,2012,31(1):125 − 130. (in Chinese with English abstract)]

    TAI Yiping, MO Cehui, WU Xiaolian, et al. Occurrence of quinolone antibiotics in the soils from a green and an organic vegetable fields[J]. Journal of Agro-Environment Science, 2012, 311): 125130. (in Chinese with English abstract)

    [36]

    TONG Lei,QIN Liting,XIE Cong,et al. Distribution of antibiotics in alluvial sediment near animal breeding areas at the Jianghan Plain,Central China[J]. Chemosphere,2017,186:100 − 107. doi: 10.1016/j.chemosphere.2017.07.141

    [37]

    方林发,叶苹苹,方标,等. 重庆开州区菜地土壤抗生素污染特征及潜在生态环境风险评估[J]. 环境科学,2022,43(11):5244 − 5252. [FANG Linfa,YE Pingping,FANG Biao,et al. Pollution characteristics and ecological risk assessment of antibiotics in vegetable field in Kaizhou,Chongqing[J]. Environmental Science,2022,43(11):5244 − 5252. (in Chinese with English abstract)]

    FANG Linfa, YE Pingping, FANG Biao, et al. Pollution characteristics and ecological risk assessment of antibiotics in vegetable field in Kaizhou, Chongqing[J]. Environmental Science, 2022, 4311): 52445252. (in Chinese with English abstract)

    [38]

    ZHANG Yunxin,CHEN Haiyang,JING Lijun,et al. Ecotoxicological risk assessment and source apportionment of antibiotics in the waters and sediments of a peri-urban river[J]. Science of the Total Environment,2020,731:139128. doi: 10.1016/j.scitotenv.2020.139128

    [39]

    李清雪,董天羽,孙王茹,等. 典型北方城市河流中抗生素污染特征及风险评价[J]. 生态毒理学报,2022,17(4):213 − 229. [LI Qingxue,DONG Tianyu,SUN Wangru,et al. Pollution characteristics and risk assessment of antibiotics in typical northern urban rivers[J]. Asian Journal of Ecotoxicology,2022,17(4):213 − 229. (in Chinese with English abstract)]

    LI Qingxue, DONG Tianyu, SUN Wangru, et al. Pollution characteristics and risk assessment of antibiotics in typical northern urban rivers[J]. Asian Journal of Ecotoxicology, 2022, 174): 213229. (in Chinese with English abstract)

    [40]

    杨聪,童蕾,马乃进,等. 洪湖水体和沉积物中抗生素的分布特征及其影响因素研究[J]. 安全与环境工程,2022,29(5):78 − 90. [YANG Cong,TONG Lei,MA Naijin,et al. Distribution characteristics and influencing factors of antibiotics in water and sediments of Honghu lake[J]. Safety and Environmental Engineering,2022,29(5):78 − 90. (in Chinese with English abstract)]

    YANG Cong, TONG Lei, MA Naijin, et al. Distribution characteristics and influencing factors of antibiotics in water and sediments of Honghu lake[J]. Safety and Environmental Engineering, 2022, 295): 7890. (in Chinese with English abstract)

    [41]

    RIMKUS G G,HOFFMANN D. Enantioselective analysis of chloramphenicol residues in honey samples by chiral LC-MS/MS and results of a honey survey[J]. Food Additives & Contaminants Part A,Chemistry,Analysis,Control,Exposure & Risk Assessment,2017,34(6):950-961.

    [42]

    LIANG Ning,HUANG Peiting,HOU Xiaohong,et al. Solid-phase extraction in combination with dispersive liquid-liquid microextraction and ultra-high performance liquid chromatography-tandem mass spectrometry analysis:The ultra-trace determination of 10 antibiotics in water samples[J]. Analytical and Bioanalytical Chemistry,2016,408(6):1701 − 1713. doi: 10.1007/s00216-015-9284-z

    [43]

    HANNA N D,SUN Pan,SUN Qiang,et al. Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China:Its potential for resistance development and ecological and human risk[J]. Environment International,2018,114:131 − 142. doi: 10.1016/j.envint.2018.02.003

    [44]

    尹春艳,骆永明,滕应,等. 典型设施菜地土壤抗生素污染特征与积累规律研究[J]. 环境科学,2012,33(8):2810 − 2816. [YIN Chunyan,LUO Yongming,TENG Ying,et al. Pollution characteristics and accumulation of antibiotics in typical protected vegetable soils[J]. Environmental Science,2012,33(8):2810 − 2816. (in Chinese with English abstract)]

    YIN Chunyan, LUO Yongming, TENG Ying, et al. Pollution characteristics and accumulation of antibiotics in typical protected vegetable soils[J]. Environmental Science, 2012, 338): 28102816. (in Chinese with English abstract)

    [45]

    WANG Zhi,DU Yun,YANG Chao,et al. Occurrence and ecological hazard assessment of selected antibiotics in the surface waters in and around Lake Honghu,China[J]. Science of the Total Environment,2017,609:1423 − 1432. doi: 10.1016/j.scitotenv.2017.08.009

    [46]

    ZHANG Guodong,LIU Xiaohui,LU Shaoyong,et al. Occurrence of typical antibiotics in Nansi Lake’s inflowing rivers and antibiotic source contribution to Nansi Lake based on principal component analysis-multiple linear regression model[J]. Chemosphere,2020,242:125269. doi: 10.1016/j.chemosphere.2019.125269

    [47]

    文峰,曲洁婷,陈历铌,等. 成都市地表水典型抗生素分布特征及生态风险评估[J]. 当代化工研究,2022,14:1 − 5. [WEN Feng,QU Jieting,CHEN Lini,et al. Distrbution characteristics and ecological risk assessment of typical antibiotics in Chengdu surface water[J]. Modern Chemical Research,2022,14:1 − 5. (in Chinese with English abstract)] doi: 10.3969/j.issn.1672-8114.2022.14.001

    WEN Feng, QU Jieting, CHEN Lini, et al. Distrbution characteristics and ecological risk assessment of typical antibiotics in Chengdu surface water[J]. Modern Chemical Research, 2022, 14: 15. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-8114.2022.14.001

    [48]

    FERNANDES M J,PAÍGA P,SILVA A,et al. Antibiotics and antidepressants occurrence in surface waters and sediments collected in the north of Portugal[J]. Chemosphere,2020,239:124729. doi: 10.1016/j.chemosphere.2019.124729

    [49]

    XUE Moyong,GU Xu,QIN Yuchang,et al. Enantioselective behavior of flumequine enantiomers and metabolites’ identification in sediment[J]. Journal of Analytical Methods in Chemistry,2022,2184024.

    [50]

    TANAKA M,KURATA T,FUJISAWA C,et al. Mechanistic study of inhibition of levofloxacin absorption by aluminum hydroxide[J]. Antimicrobial Agents and Chemotherapy,1993,37(10):2173 − 2178. doi: 10.1128/AAC.37.10.2173

    [51]

    QIN Xiaopeng,ZHONG Xiaofei,DU Ping,et al. Competitive adsorption of ofloxacin enantiomers to goethite:Experiments and modeling[J]. Environmental Chemistry,2021,18:38 − 44 doi: 10.1071/EN20123

    [52]

    QIN Xiaopeng,ZHONG Xiaofei,WANG Bin,et al. Fractionation of levofloxacin and ofloxacin during their transport in NOM-goethite:Batch and column studies[J]. Environmental Pollution,2023,316:120542 doi: 10.1016/j.envpol.2022.120542

    [53]

    王朋. 氧氟沙星在不同性质吸附剂上的吸附动力学研究[D]. 昆明:昆明理工大学,2013. [WANG Peng. Sorption kinetics of ofloxacin in particles with different properties[D]. Kunming:Kunming University of Science and Technology,2013. (in Chinese with English abstract)]

    WANG Peng. Sorption kinetics of ofloxacin in particles with different properties[D]. Kunming: Kunming University of Science and Technology, 2013. (in Chinese with English abstract)

    [54]

    PAUL T,LIU J Y,MACHESKY M L,et al. Adsorption of zwitterionic fluoroquinolone antibacterials to goethite:A charge distribution-multisite complexation model[J]. Journal of Colloid and Interface Science,2014,428:63 − 72. doi: 10.1016/j.jcis.2014.04.034

    [55]

    QIN Xiaopeng,LIU Fei,WANG Guangcai,et al. Modeling of levofloxacin adsorption to goethite and the competition with phosphate[J]. Chemosphere,2014,111:283 − 290. doi: 10.1016/j.chemosphere.2014.04.032

    [56]

    CHEN Yanan,QIAN Yunkun,SHI Yijun,et al. Accumulation of chiral pharmaceuticals (ofloxacin or levofloxacin) onto polyethylene microplastics from aqueous solutions[J]. Science of the Total Environment,2022,823:153765. doi: 10.1016/j.scitotenv.2022.153765

    [57]

    KAWAI Y,MATSUBAYASHI K,HAKUSUI H,et al. Interaction of quinolones with metal cations in aqueous solution[J]. Chemical & Pharmaceutical Bulletin,1996,44(8):1425 − 1430.

    [58]

    DJURDJEVIĆ P,JOKSOVIĆ L,JELIĆ R,et al. Solution equilibria between aluminum(III) ion and some fluoroquinolone family members. spectroscopic and potentiometric study[J]. Chemical and Pharmaceutical Bulletin,2007,55(12):1689 − 1699. doi: 10.1248/cpb.55.1689

    [59]

    SULTANA N,NAZ A,ARAYNE M S,et al. Synthesis,characterization,antibacterial,antifungal and immunomodulating activities of gatifloxacin-metal complexes[J]. Journal of Molecular Structure,2010,969(1):17 − 24.

    [60]

    URBANIAK B,KOKOT Z J. Analysis of the factors that significantly influence the stability of fluoroquinolone-metal complexes[J]. Analytica Chimica Acta,2009,647(1):54 − 59. doi: 10.1016/j.aca.2009.05.039

    [61]

    MAIA A S,CASTRO P M L,TIRITAN M E. Integrated liquid chromatography method in enantioselective studies:Biodegradation of ofloxacin by an activated sludge consortium[J]. Journal of Chromatography B,Analytical Technologies in the Biomedical and Life Sciences,2016,1029/1030:174 − 183. doi: 10.1016/j.jchromb.2016.06.026

    [62]

    MAIA A S,TIRITAN M E,CASTRO P M L. Enantioselective degradation of ofloxacin and levofloxacin by the bacterial strains Labrys portucalensis F11 and Rhodococcus sp. FP1[J]. Ecotoxicology and Environmental Safety,2018,155:144 − 151. doi: 10.1016/j.ecoenv.2018.02.067

    [63]

    MAIA A S,RIBEIRO A R,AMORIM C L,et al. Degradation of fluoroquinolone antibiotics and identification of metabolites/transformation products by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A,2014,1333:87 − 98. doi: 10.1016/j.chroma.2014.01.069

    [64]

    ELDER F C T,FEIL E J,PASCOE B,et al. Stereoselective bacterial metabolism of antibiotics in environmental bacteria:A novel biochemical workflow[J]. Frontiers in Microbiology,2021,12:562157.

    [65]

    WANG Yanfei,GAO Xiaofeng,JIN Huoxi,et al. Validation of a chiral liquid chromatographic method for the degradation behavior of flumequine enantiomers in mariculture pond water[J]. Chirality,2016,28(9):649 − 655. doi: 10.1002/chir.22625

    [66]

    高小峰. 养殖海水中氧氟沙星及氟甲喹对映体降解行为研究[D]. 舟山:浙江海洋学院,2015. [GAO Xiaofeng. Degradation behavior of ofloxacin and flumequine enantiomers in mariculture pond water[D]. Zhoushan:Zhejiang Ocean University,2015. (in Chinese with English abstract)]

    GAO Xiaofeng. Degradation behavior of ofloxacin and flumequine enantiomers in mariculture pond water[D]. Zhoushan: Zhejiang Ocean University, 2015. (in Chinese with English abstract)

  • 加载中

(2)

(2)

计量
  • 文章访问数:  750
  • PDF下载数:  48
  • 施引文献:  0
出版历程
收稿日期:  2023-11-02
修回日期:  2023-12-26
刊出日期:  2024-03-15

目录