隧道工程建设对华蓥山中部岩溶地下水环境的影响

成胜, 许模, 夏强. 隧道工程建设对华蓥山中部岩溶地下水环境的影响[J]. 水文地质工程地质, 2025, 52(1): 214-224. doi: 10.16030/j.cnki.issn.1000-3665.202311024
引用本文: 成胜, 许模, 夏强. 隧道工程建设对华蓥山中部岩溶地下水环境的影响[J]. 水文地质工程地质, 2025, 52(1): 214-224. doi: 10.16030/j.cnki.issn.1000-3665.202311024
CHENG Sheng, XU Mo, XIA Qiang. Influence of tunnel construction on karst groundwater environment in central Huaying Mountain[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 214-224. doi: 10.16030/j.cnki.issn.1000-3665.202311024
Citation: CHENG Sheng, XU Mo, XIA Qiang. Influence of tunnel construction on karst groundwater environment in central Huaying Mountain[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 214-224. doi: 10.16030/j.cnki.issn.1000-3665.202311024

隧道工程建设对华蓥山中部岩溶地下水环境的影响

  • 基金项目: 国家自然科学基金项目(42072283)
详细信息
    作者简介: 成胜(1993—),男,硕士,工程师,主要从事地下水资源开发与保护工作。E-mail:1320859143@qq.com
    通讯作者: 许模(1963—),男,博士,教授,主要从事水文地质、工程地质、环境地质科研与教学工作。E-mail:xm@cdut.edu.cn
  • 中图分类号: P641.69

Influence of tunnel construction on karst groundwater environment in central Huaying Mountain

More Information
  • 华蓥山中部地质构造复杂,碳酸盐岩广泛出露,已建的地下工程均遭遇了不同程度的涌突水灾害并对地下水环境造成了一定程度的影响,华蓥山现有岩溶研究精度、广度无法满足工程建设的需要,亟需系统全面地分析岩溶涌突水原因及其对地下水环境的影响。文章通过野外调查与收集整理大量地下工程涌突水资料,运用地下水系统理论方法,分析了华蓥山背斜地下水径流特征、已建的G42华蓥山隧道及绿水洞煤矿工程活动对地下水环境的影响,研究了新建广邻快速公路华蓥山隧道对岩溶地下水环境造成的潜在影响。结果显示:已建地下工程活动使得华蓥山中部天池向斜岩溶槽谷及绿水洞背斜内的诸多泉点、暗河减流或断流,对地下水的影响范围面积约为29.6 km2,仅G42华蓥山隧道泄水洞每年排水量约为94.60×104~730.00×104 m3;计算得出新建广邻快速公路华蓥山隧道正常涌水量约12.05×104 m3/d,新建广邻快速公路隧道施工对岩溶地下水位的影响范围在东北—西南方向上为1.0~2.1 km,对绿水洞背斜两翼栖霞组、茅口组内地下水位的影响范围在东北—西南方向上为1.5~2.0 km,对隧道北侧岩溶地下水有一定程度影响,而对隧道南侧饮用水源地水量及天池湖水影响微弱。该研究成果可为华蓥山及川东平行岭谷区线路选线、岩溶隧道涌突水预测、生态环境保护提供一定的科学参考与理论支撑。

  • 加载中
  • 图 1  研究区位置及水文地质简图

    Figure 1. 

    图 2  煤矿平硐及G42华蓥山隧道对研究区地下水的影响范围

    Figure 2. 

    图 3  G42华蓥山隧道水文地质剖面

    Figure 3. 

    图 4  新建广邻快速公路华蓥山隧道对地下水的影响范围

    Figure 4. 

    图 5  新建广邻快速公路华蓥山隧道水文地质剖面

    Figure 5. 

    图 6  天池向斜地下水径流特征[26]

    Figure 6. 

    表 1  新建广邻快速公路隧道建设对地下水的影响半径

    Table 1.  Influence radius of the new tunnel construction of the Guang’an-Linshui Expressway on groundwater

    隧道
    名称
    构造
    部位
    编号 隧道里程(起、止) 地层或构造 长度/m 渗透系数
    /(m·d−1
    含水层
    厚度/m
    重力给
    水度
    入渗补给
    系数
    补给强度
    /(m·d−1
    时间/d 影响半径/m









    1 K9+152 K9+193 T1f 1 41.0 0.005 93 0.150 0.10 0.0003 1825 122.51
    2 K9+193 K9+245 T1f 2 52.0 0.040 144 0.008 0.35 0.0011 1825 680.50
    3 K9+245 K9+310 T1f 3 65.0 0.002 150 0.050 0.12 0.0004 1825 158.57
    4 K9+310 K9+626 T1f 4 316.0 0.150 240 0.008 0.45 0.0014 1825 1731.82
    5 K9+626 K9+672 T1f 5 46.0 0.001 260 0.150 0.10 0.0003 1825 95.27
    6 K9+672 K9+976 T1j 304.0 0.150 310 0.008 0.50 0.0016 1825 2121.52
    7 K9+976 K10+076 F/T1j/T1f 4 100.0 0.200 285 0.100 0.55 0.0018 1825 1506.03
    8 K10+076 K10+590 T1f 4 514.0 0.150 285 0.150 0.50 0.0016 1825 1131.45
    绿



    9 K10+590 K10+655 T1f 3 65.0 0.002 300 0.150 0.12 0.0004 1825 144.60
    10 K10+655 K10+806 T1f 2 151.0 0.040 312 0.008 0.35 0.0011 1825 1313.59
    11 K10+806 K10+836 T1f 1 30.0 0.005 330 0.050 0.10 0.0003 1825 403.46
    12 K10+836 K11+135 P2c 299.0 0.100 380 0.008 0.50 0.0016 1825 2120.93
    13 K11+135 K11+235 F/P2lt/P1q−m 100.0 0.200 400 0.150 0.55 0.0018 1825 1580.34
    14 K11+235 K11+606 P1q−m 371.0 0.200 530 0.120 0.50 0.0016 1825 2056.04
    15 K11+606 K11+644 C2h 38.0 0.010 520 0.050 0.12 0.0004 1825 725.08
    16 K11+644 K12+790 S 1146.0 0.001 500 0.008 0.10 0.0003 1825 477.44
    17 K12+790 K12+861 C2h 71.0 0.010 450 0.050 0.12 0.0004 1825 670.41
    18 K12+861 K13+167 P1q−m 306.0 0.200 369 0.120 0.50 0.0016 1825 1667.58
    19 K13+167 K13+513 F/P1q−m/P2l 346.0 0.200 300 0.150 0.55 0.0018 1825 1334.69
    20 K13+513 K13+687 P2c 174.0 0.100 270 0.100 0.50 0.0016 1825 1042.84
    21 K13+687 K13+714 T1f 1 27.0 0.005 260 0.008 0.10 0.0003 1825 655.86
    22 K13+714 K13+821 T1f 2 107.0 0.040 220 0.050 0.25 0.0011 1825 762.13
    23 K13+821 K13+872 T1f 3 51.0 0.002 200 0.008 0.12 0.0004 1825 310.88
    24 K13+872 K14+281 T1f 4 409.0 0.150 180 0.150 0.50 0.0016 1825 851.48
    25 K14+281 K14+319 T1f 5 38.0 0.001 130 0.008 0.10 0.0003 1825 159.68
      注:表中水文地质参数值由新建隧道及G42华蓥山隧道水文地质试验成果结合大量煤矿水文地质勘察成果综合分析确定。
    下载: 导出CSV
  • [1]

    杨艳娜. 西南山区岩溶隧道涌突水灾害危险性评价系统研究[D]. 成都:成都理工大学,2009. [YANG Yanna. Research of karst tunnel water bursting hazard riskassessment system in the southwest mountainous area [D]. Chengdu:Chengdu University of Technology,2009. (in Chinese with English abstract)]

    YANG Yanna. Research of karst tunnel water bursting hazard riskassessment system in the southwest mountainous area [D]. Chengdu: Chengdu University of Technology, 2009. (in Chinese with English abstract)

    [2]

    李术才,周宗青,李利平,等. 岩溶隧道突水风险评价理论与方法及工程应用[J]. 岩石力学与工程学报,2013,32(9):1858 − 1867. [LI Shucai,ZHOU Zongqing,LI Liping,et al. Risk evaluation theory and method of water inrush in Karst tunnels and its applications[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(9):1858 − 1867. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-6915.2013.09.018

    LI Shucai, ZHOU Zongqing, LI Liping, et al. Risk evaluation theory and method of water inrush in Karst tunnels and its applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1858 − 1867. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6915.2013.09.018

    [3]

    秦仁佩,肖均,蒋锋. 明月山特长隧道涌水突泥综合处理措施[J]. 现代隧道技术,2007,44(6):66 − 69. [QIN Renpei,XIAO Jun,JIANG Feng. Comprehensive treatment of the water gushing and mud outburst in Mingyueshan super long tunnel[J]. Modern Tunnelling Technology,2007,44(6):66 − 69. (in Chinese with English abstract)] doi: 10.3969/j.issn.1009-6582.2007.06.013

    QIN Renpei, XIAO Jun, JIANG Feng. Comprehensive treatment of the water gushing and mud outburst in Mingyueshan super long tunnel[J]. Modern Tunnelling Technology, 2007, 44(6): 66 − 69. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-6582.2007.06.013

    [4]

    陈绍林,李茂竹,陈忠恕,等. 四川广(安)—渝(重庆)高速公路华蓥山隧道岩溶突水的研究与整治[J]. 岩石力学与工程学报,2002,21(9):1344 − 1349. [CHEN Shaolin,LI Maozhu,CHEN Zhongshu,et al. Study and treatment on Karst water outburst in Huayingshan tunnel for anyu expressway from Guangan of Sichuan to Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(9):1344 − 1349. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-6915.2002.09.013

    CHEN Shaolin, LI Maozhu, CHEN Zhongshu, et al. Study and treatment on Karst water outburst in Huayingshan tunnel for anyu expressway from Guangan of Sichuan to Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(9): 1344 − 1349. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2002.09.013

    [5]

    付开隆. 渝遂高速公路中梁山隧道岩溶塌陷及涌水量分析[J]. 水文地质工程地质,2005,32(2):107 − 110. [FU Kailong. An analysis of the Karst ground collapse and water yieldof the Zhongliangshan Tunnel in the Yusui Expressway[J]. Hydrogeology & Engineering Geology,2005,32(2):107 − 110. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-3665.2005.02.024

    FU Kailong. An analysis of the Karst ground collapse and water yieldof the Zhongliangshan Tunnel in the Yusui Expressway[J]. Hydrogeology & Engineering Geology, 2005, 32(2): 107 − 110. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2005.02.024

    [6]

    刘丹,杨立中,于苏俊. 华蓥山隧道排水的生态环境问题及效应[J]. 西南交通大学学报,2001,36(3):308 − 313. [LIU Dan,YANG Lizhong,YU Sujun. On ecological environment problems and effects caused by discharge from Huayingshan tunnel[J]. Journal of Southwest Jiaotong University,2001,36(3):308 − 313. (in Chinese with English abstract)] doi: 10.3969/j.issn.0258-2724.2001.03.021

    LIU Dan, YANG Lizhong, YU Sujun. On ecological environment problems and effects caused by discharge from Huayingshan tunnel[J]. Journal of Southwest Jiaotong University, 2001, 36(3): 308 − 313. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-2724.2001.03.021

    [7]

    吴远斌,殷仁朝,雷明堂,等. 重庆中梁山地区隧道工程影响下岩溶塌陷形成演化模式及防治对策[J]. 中国岩溶,2021,40(2):246 − 252. [WU Yuanbin,YIN Renchao,LEI Mingtang,et al. Triggering factors and prevention-control countermeasures of Karst collapses caused by tunnel construction in the Zhongliangshan area,Chongqing[J]. Carsologica Sinica,2021,40(2):246 − 252. (in Chinese with English abstract)] doi: 10.11932/karst20210204

    WU Yuanbin, YIN Renchao, LEI Mingtang, et al. Triggering factors and prevention-control countermeasures of Karst collapses caused by tunnel construction in the Zhongliangshan area, Chongqing[J]. Carsologica Sinica, 2021, 40(2): 246 − 252. (in Chinese with English abstract) doi: 10.11932/karst20210204

    [8]

    南江水文地质工程地质队. 重庆四山交通通道地质环境调查研究报告[R]. 重庆:南江水文地质工程地质队,2015. [Nanjiang Hydrogeological Engineering Geology Team. Geological environment investigation report of Chongqing Sishan traffic channel[R]. Chongqing:Nanjiang Hydrogeological Engineering Geology Team,2015.(in Chinese)]

    Nanjiang Hydrogeological Engineering Geology Team. Geological environment investigation report of Chongqing Sishan traffic channel[R]. Chongqing: Nanjiang Hydrogeological Engineering Geology Team, 2015.(in Chinese)

    [9]

    徐文汉. 华蓥山褶皱带岩溶水的水动力条件及锶矿找矿标志的研究[J]. 中国岩溶,1988,(增刊2):123−130. [XU Wenhan. Study on hydrodynamic conditions of Karst water in Huayingshan fold zone and prospecting criteria of strontium ore[J]. Carsologica Sinica,1988,(Sup 2):123−130. (in Chinese)]

    XU Wenhan. Study on hydrodynamic conditions of Karst water in Huayingshan fold zone and prospecting criteria of strontium ore[J]. Carsologica Sinica, 1988, (Sup 2): 123−130. (in Chinese)

    [10]

    陈盟. 华蓥山区域岩溶水系统及其与龙潭煤系组合关系研究[D]. 成都:成都理工大学,2017. [CHEN Meng. Research on regional karst water system and its combinationrelationship with longtan coal measures in Huaying Mountain [D]. Chengdu:Chengdu University of Technology,2017. (in Chinese with English abstract)]

    CHEN Meng. Research on regional karst water system and its combinationrelationship with longtan coal measures in Huaying Mountain [D]. Chengdu: Chengdu University of Technology, 2017. (in Chinese with English abstract)

    [11]

    余磊,杨艳娜,许模,等. 川东明月峡背斜区岩溶形态分异与构造裂隙表征参数的关系[J]. 成都理工大学学报(自然科学版),2023,50(1):92 − 100. [YU Lei,YANG Yanna,XU Mo,et al. Relationship between Karst morphology differentiation and structural fracture characterization parameters in Mingyuexia anticline area,eastern Sichuan Basin,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2023,50(1):92 − 100. (in Chinese with English abstract)]

    YU Lei, YANG Yanna, XU Mo, et al. Relationship between Karst morphology differentiation and structural fracture characterization parameters in Mingyuexia anticline area, eastern Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2023, 50(1): 92 − 100. (in Chinese with English abstract)

    [12]

    沈芳兴. 华蓥山北部地下水系统及其对隧道涌水的影响研究[D]. 成都:西南石油大学,2017. [SHEN Fangxing. Study on groundwater system and its influence on tunnel water inwelling in the north of Huaying Mountain [D]. Chengdu:Southwest Petroleum University,2017. (in Chinese with English abstract)]

    SHEN Fangxing. Study on groundwater system and its influence on tunnel water inwelling in the north of Huaying Mountain [D]. Chengdu: Southwest Petroleum University, 2017. (in Chinese with English abstract)

    [13]

    熊道锟,傅荣华. 华蓥山隧道岩溶发育强度垂直分带[J]. 岩土工程技术,2005,19(4):186 − 190. [XIONG Daokun,FU Ronghua. Vertical zonation of Karst development intensity in Huayingshan tunnel[J]. Geotechnical Engineering Technique,2005,19(4):186 − 190. (in Chinese with English abstract)] doi: 10.3969/j.issn.1007-2993.2005.04.008

    XIONG Daokun, FU Ronghua. Vertical zonation of Karst development intensity in Huayingshan tunnel[J]. Geotechnical Engineering Technique, 2005, 19(4): 186 − 190. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-2993.2005.04.008

    [14]

    段贵安,张勇. 华蓥山隧道涌突水、涌泥、涌砂原因分析及综合整治措施[J]. 铁道建筑技术,2001(1):36 − 39. [DUAN Guian,ZHANG Yong. Analysis and treatment of the inflow of water,mud and sand in Huayingshan Tunnel[J]. Railnay Corstruction Technology,2001(1):36 − 39. (in Chinese with English abstract)] doi: 10.3969/j.issn.1009-4539.2001.01.013

    DUAN Guian, ZHANG Yong. Analysis and treatment of the inflow of water, mud and sand in Huayingshan Tunnel[J]. Railnay Corstruction Technology, 2001(1): 36 − 39. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-4539.2001.01.013

    [15]

    何兴江. 地下采矿与地质环境互馈机理及矿山地质环境治理研究——以四川华蓥山矿区为例[D]. 成都:成都理工大学,2008. [HE Xingjiang. Study on mutual feedback mechanism between underground mining and geological environment and mine geological environment control:Taking Huayingshan mining area in Sichuan as an example[D]. Chengdu:Chengdu University of Technology,2008. (in Chinese with English abstract)]

    HE Xingjiang. Study on mutual feedback mechanism between underground mining and geological environment and mine geological environment control: Taking Huayingshan mining area in Sichuan as an example[D]. Chengdu: Chengdu University of Technology, 2008. (in Chinese with English abstract)

    [16]

    康小兵,罗声,许模,等. 华蓥山中段地区地下水资源量评价[J]. 中国岩溶,2018,37(4):527 − 534. [KANG Xiaobing,LUO Sheng,XU Mo,et al. Evaluation of groundwater resource loss in middle regions of Huaying mountain[J]. Carsologica Sinica,2018,37(4):527 − 534. (in Chinese with English abstract)] doi: 10.11932/karst20180406

    KANG Xiaobing, LUO Sheng, XU Mo, et al. Evaluation of groundwater resource loss in middle regions of Huaying mountain[J]. Carsologica Sinica, 2018, 37(4): 527 − 534. (in Chinese with English abstract) doi: 10.11932/karst20180406

    [17]

    李忠权,冉隆辉,陈更生,等. 川东高陡构造成因地质模式与含气性分析[J]. 成都理工学院学报,2002,29(6):605 − 609. [LI Zhongquan,RAN Longhui,CHEN Gengsheng,et al. Genetic geologic model and gas-bearing analysis of high and steep structures in east Sichuan[J]. Journal of Chengdu University of Technology,2002,29(6):605 − 609. (in Chinese with English abstract)]

    LI Zhongquan, RAN Longhui, CHEN Gengsheng, et al. Genetic geologic model and gas-bearing analysis of high and steep structures in east Sichuan[J]. Journal of Chengdu University of Technology, 2002, 29(6): 605 − 609. (in Chinese with English abstract)

    [18]

    邹玉涛,段金宝,赵艳军,等. 川东高陡断褶带构造特征及其演化[J]. 地质学报,2015,89(11):2046 − 2052. [ZOU Yutao,DUAN Jinbao,ZHAO Yanjun,et al. Tectonic characteristics and evolution of the high and steep fault folding belt in East Sichuan[J]. Acta Geologica Sinica,2015,89(11):2046 − 2052. (in Chinese with English abstract)]

    ZOU Yutao, DUAN Jinbao, ZHAO Yanjun, et al. Tectonic characteristics and evolution of the high and steep fault folding belt in East Sichuan[J]. Acta Geologica Sinica, 2015, 89(11): 2046 − 2052. (in Chinese with English abstract)

    [19]

    钟玲敏. 川东高陡背斜区岩溶空间分异特征及评价系统构建研究[D]. 成都:成都理工大学,2018. [ZHONG Lingmin. Study on spatial differentiation characteristics and evaluation system construction of Karst in high and steep anticline area of eastern Sichuan[D]. Chengdu:Chengdu University of Technology,2018. (in Chinese with English abstract)]

    ZHONG Lingmin. Study on spatial differentiation characteristics and evaluation system construction of Karst in high and steep anticline area of eastern Sichuan[D]. Chengdu: Chengdu University of Technology, 2018. (in Chinese with English abstract)

    [20]

    成胜,许模,杨艳娜,等. 川东褶皱带明月峡背斜区地下岩溶发育规律[J]. 长江科学院院报,2020,37(11):114 − 120. [CHENG Sheng,XU Mo,YANG Yanna,et al. Development rules of underground Karst in the mingyue gorge anticline area of the eastern Sichuan tectonic belt[J]. Journal of Yangtze River Scientific Research Institute,2020,37(11):114 − 120. (in Chinese with English abstract)] doi: 10.11988/ckyyb.20190832

    CHENG Sheng, XU Mo, YANG Yanna, et al. Development rules of underground Karst in the mingyue gorge anticline area of the eastern Sichuan tectonic belt[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(11): 114 − 120. (in Chinese with English abstract) doi: 10.11988/ckyyb.20190832

    [21]

    钟玲敏,许模,吴明亮,等. 多级水流系统耦合下深部岩溶分异研究——以川东隔挡式构造区中梁山背斜南段为例[J]. 水文地质工程地质,2018,45(1):45 − 51. [ZHONG Lingmin,XU Mo,WU Mingliang,et al. Development of deep Karst under the coupling of multistage flow systems:A case of southern part of the Zhongliang Mountain anticline of the parallel barrier structure in eastern Sichuan[J]. Hydrogeology & Engineering Geology,2018,45(1):45 − 51. (in Chinese with English abstract)]

    ZHONG Lingmin, XU Mo, WU Mingliang, et al. Development of deep Karst under the coupling of multistage flow systems: A case of southern part of the Zhongliang Mountain anticline of the parallel barrier structure in eastern Sichuan[J]. Hydrogeology & Engineering Geology, 2018, 45(1): 45 − 51. (in Chinese with English abstract)

    [22]

    李雅依,夏强,许模,等. 隔档式构造区岩溶地下水流系统多级次嵌套结构的水化学识别[J]. 地质科技通报,2022,41(5):405 − 413. [LI Yayi,XIA Qiang,XU Mo,et al. Hydrogeochemical indicators of hierarchically nested structure of Karst groundwater flow systems in the ejective folds area[J]. Bulletin of Geological Science and Technology,2022,41(5):405 − 413. (in Chinese with English abstract)]

    LI Yayi, XIA Qiang, XU Mo, et al. Hydrogeochemical indicators of hierarchically nested structure of Karst groundwater flow systems in the ejective folds area[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 405 − 413. (in Chinese with English abstract)

    [23]

    李彩霞. 华蓥市矿山地质环境评价及防治措施研究[D]. 北京:中国地质大学(北京),2012. [LI Caixia. Study on mine geological environment evaluation and prevention measures in Huaying city[D]. Beijing:China University of Geosciences,2012. (in Chinese with English abstract)]

    LI Caixia. Study on mine geological environment evaluation and prevention measures in Huaying city[D]. Beijing: China University of Geosciences, 2012. (in Chinese with English abstract)

    [24]

    四川省煤田地质工程勘察设计研究院华蓥山隧道突水研究组. 华蓥山隧道西段岩溶突水研究报告[R]. 成都:四川省煤田地质工程勘察设计研究院,1998. [Sichuan Coal field Geological Engineering Survey and design Research Institute Huaying Mountain Tunnel Water Inrush Research Group. Research report of karst water inrush in the west section of Huaying Mountain Tunnel[R]. Chengdu:Sichuan Coal Geological Engineering Design & Research Institute,1998.(in Chinese)]

    Sichuan Coal field Geological Engineering Survey and design Research Institute Huaying Mountain Tunnel Water Inrush Research Group. Research report of karst water inrush in the west section of Huaying Mountain Tunnel[R]. Chengdu: Sichuan Coal Geological Engineering Design & Research Institute, 1998.(in Chinese)

    [25]

    黄绍槟. 南大梁高速公路华蓥山隧道地质特征分析[J]. 路基工程,2020(2):158 − 162. [HUANG Shaobin. Analysis on geological characteristics of Huaying Mountain tunnel on nandaliang expressway[J]. Subgrade Engineering,2020(2):158 − 162. (in Chinese with English abstract)]

    HUANG Shaobin. Analysis on geological characteristics of Huaying Mountain tunnel on nandaliang expressway[J]. Subgrade Engineering, 2020(2): 158 − 162. (in Chinese with English abstract)

    [26]

    唐科行,万川,谭钢,等. 广邻路华蓥山特长隧道岩溶地质问题与对策[J]. 中国岩溶,2019,38(4):480 − 487. [TANG Kehang,WAN Chuan,TAN Gang,et al. Karst geological problems and countermeasures of the Huayingshan super-long tunnel on the Guang’an−Linshui highway[J]. Carsologica Sinica,2019,38(4):480 − 487. (in Chinese with English abstract)] doi: 10.11932/karst20190402

    TANG Kehang, WAN Chuan, TAN Gang, et al. Karst geological problems and countermeasures of the Huayingshan super-long tunnel on the Guang’an−Linshui highway[J]. Carsologica Sinica, 2019, 38(4): 480 − 487. (in Chinese with English abstract) doi: 10.11932/karst20190402

  • 加载中

(6)

(1)

计量
  • 文章访问数:  273
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2023-11-13
修回日期:  2024-01-04
刊出日期:  2025-01-15

目录