Anisotropic frost heaving coefficient of saturated permafrost considering moisture migration process based on standards
-
摘要:
正冻土冻胀是寒区工程产生冻害的关键因素,其冻胀过程是水热力相互耦合的动态作用结果,在开放系统中,温度、温度梯度、含水率、水分补给强度等都是影响正冻土冻胀变形的重要因素。冻土冻胀是水分迁移产生的竖直方向分凝冻胀和原位冻胀的共同作用,其冻胀力学特性属于各向异性。参考规范内土体含冰量随冻结的变化过程,考虑泊松比、地下水位深度、降温速率等因素,得到正冻土的在冻结过程中水平与竖直方向的冻胀系数的计算方法,通过对比粉土和粉质黏土的冻胀系数,计算结果与试验结果吻合较好。案例中粉土在−0.2~−3.0 °C、0.2~1.0 m范围内竖向冻胀系数为−1.37×10−3~−7.67×10−3,水平向冻胀系数为−0.81×10−3~−4.85×10−3,差值百分比为10.4%~77.7%,说明考虑分凝冻胀产生的各向异性是必要的。研究提出的水平与竖直方向的冻胀系数计算方法,可以为科研和设计工作提供参考依据。
Abstract:Frost heave in positive permafrost is a critical factor leading to frost damage of engineering in the cold region. The frost heave process results from the dynamic interaction of hydro-thermal forces. In an open system, factors such as temperature, temperature gradient, water content, and water supply intensity significantly influence the deformation of positive permafrost frost heave. Frost heave in permafrost is the combined effect of vertical segregated frost heave due to moisture migration and in-situ frost heave, and its mechanical characteristics of frost heave are anisotropic. This study, referencing the standard process of ice content variation in soils during freezing, takes into account factors such as Poisson’s ratio, groundwater table depth, and cooling rate. the calculation methods for the frost heave coefficients in the horizontal and vertical directions during the freezing process of positive permafrost were derived. By comparing the frost heave coefficients of silt and silty clay, the results show good agreement with experimental data. In the case study, the vertical frost heave coefficient of silt ranges from −1.37×10−3 to −7.67×10−3, and the horizontal frost heave coefficient ranges from −0.81×10−3 to −4.85×10−3 within the temperature range of −0.2 °C to −3.0 °C and a depth range of 0.2 m to 1.0 m. The percentage difference ranges from 10.4% to 77.7%, indicating the necessity of considering the anisotropy resulting from segregated frost heave. The calculation methods for horizontal and vertical frost heave coefficients in this study can provide valuable information for frost damage of engineering in the cold region.
-
Key words:
- permafrost /
- moisture migration /
- temperature /
- depth of water table /
- frost heaving coefficient
-
-
表 1 不同土质不同温度下的温度修正系数
Table 1. Temperature correction coefficient under different soil types and temperatures
土质 塑性指标 温度修订系数 −0.2 °C −0.5 °C −1.0 °C −2.0 °C −3.0 °C −5.0 °C −10.00 °C 砂土 — 0.35 0.22 0.15 0.08 0.07 0.05 0.02 粉土 Ip≤10 0.70 0.50 0.30 0.20 0.15 0.15 0.10 粉质黏土 10<Ip≤13 0.90 0.65 0.50 0.40 0.35 0.30 0.25 13<Ip≤17 1.00 0.80 0.70 0.60 0.50 0.45 0.40 黏土 17<Ip 1.10 0.90 0.80 0.70 0.60 0.55 0.50 注:Ip为塑性指数;—表示不适用。 表 2 季节冻土冻胀性分类
Table 2. Frost heaving classification of seasonal frozen soil
土质 $ {w_{\text{0}}}/\% $ hw/m $ \eta /\% $ 冻胀等级 冻胀类别 黏性土 w0≤wp+2 >2.0 $ \eta $ ≤1.0Ⅰ 不冻胀 ≤2.0 1.0< $ \eta $ ≤3.5Ⅱ 弱冻胀 wp+2<w0≤wp+5 >2.0 ≤2.0 3.5< $ \eta $ ≤6.0Ⅲ 冻胀 wp+5<w0≤wp+9 >2.0 ≤2.0 6.0< $ \eta $ ≤12.0Ⅳ 强冻胀 wp+9< w0≤wp+15 >2.0 ≤2.0 $ \eta $ >12.0Ⅴ 特强冻胀 粉土 w0≤19 >1.5 $ \eta $ ≤1.0Ⅰ 不冻胀 ≤1.5 1.0< $ \eta $ ≤3.5Ⅱ 弱冻胀 19< w0≤22 >1.5 1.0< $ \eta $ ≤3.5Ⅱ 弱冻胀 ≤1.5 3.5< $ \eta $ ≤6.0Ⅲ 冻胀 22< w0≤26 >1.5 ≤1.5 6.0< $ \eta $ ≤12.0Ⅳ 强冻胀 26< w0≤30 >1.5 ≤1.5 $ \eta $ >12.0Ⅴ 特强冻胀 注:w0为冻前天然含水率。 表 3 土体参数及边界条件
Table 3. Soil parameters and boundary conditions
参数 试验1 试验2 土质 粉土 粉质黏土 降温速率/(°C∙h−1) −2.00 −0.07 初始含水率/% 22.00 23.45 泊松比 0.25 0.33 孔隙率 0.30 0.20 塑限含水率/% 21.70 18.50 表 4 不同hw、不同温度下的
$ {{\boldsymbol{\alpha}} _{\boldsymbol{z}}} $ Table 4.
$ {{\boldsymbol{\alpha}} _{\boldsymbol{z}}} $ at different water table depths and temperatures温度
/°C$ {\alpha _{\textit{z}}}/{10^{ - 3}} $ hw=0.2 m hw=0.4 m hw=0.5 m hw=0.6 m hw=0.8 m hw=1 m 0 0 0 0 0 0 0 −0.2 −7.67 −6.26 −5.98 −5.79 −5.55 −5.41 −0.5 −6.05 −4.64 −4.36 −4.17 −3.93 −3.79 −1.0 −6.05 −4.64 −4.36 −4.17 −3.93 −3.79 −2.0 −4.44 −3.03 −2.75 −2.56 −2.32 −2.18 −3.0 −3.63 −2.22 −1.94 −1.75 −1.51 −1.37 −5.0 — — — — — — −10.0 −3.63 −2.22 −1.94 −1.75 −1.51 −1.37 表 5 不同温度下的
${\boldsymbol{ \eta}} $ 及${{\boldsymbol{\alpha}} _{\boldsymbol{z}}} $ 试验值Table 5. Experimental values of
${\boldsymbol{ \eta}} $ ,${{\boldsymbol{\alpha}} _{\boldsymbol{z}}} $ at different temperatures温度/°C η/% αz/10−3 0 0 0 −0.5 0.2 −4.00 −1.8 1.6 −8.89 −3.5 2.2 −6.29 −5.0 2.9 −5.80 −7.5 3.4 −4.53 −9.4 3.6 −3.83 −11.5 3.8 −3.30 表 6 不同温度不同地下水位深度各向异性冻胀系数比较
Table 6. Comparison of anisotropic frost heave coefficients at different temperatures and different groundwater depths
hw/m 冻胀系数 计算值 −0.2 ℃ −0.5 ℃ −2.0 ℃ −3.0 ℃ 0.2 αz/10−3 −7.67 −6.05 −4.44 −3.63 αx,y/10−3 −4.85 −3.23 −1.62 −0.81 差值百分比 36.8% 46.6% 63.5% 77.7% 0.4 αz/10−3 −6.26 −4.64 −3.03 −2.22 αx,y/10−3 −4.85 −3.23 −1.62 −0.81 差值百分比 22.5% 30.4% 46.5% 63.5% 0.5 αz/10−3 −5.98 −4.36 −2.75 −1.94 αx,y/10−3 −4.85 −3.23 −1.62 −0.81 差值百分比 18.9% 25.9% 41.1% 58.2% 0.6 αz/10−3 −5.79 −4.17 −2.56 −1.75 αx,y/10−3 −4.85 −3.23 −1.62 −0.81 差值百分比 16.2% 22.5% 36.7% 53.7% 0.8 αz/10−3 −5.55 −3.93 −2.32 −1.51 αx,y/10−3 −4.85 −3.23 −1.62 −0.81 差值百分比 12.6% 17.8% 30.2% 46.4% 1.0 αz/10−3 −5.41 −3.79 −2.18 −1.37 αx,y/10−3 −4.85 −3.23 −1.62 −0.81 差值百分比 10.4% 14.8% 25.7% 40.9% 表 7 不同温度下地下水位深度对冻胀系数影响
Table 7. Influence of groundwater depth on frost heave coefficient at different temperatures
温度/°C $ {\alpha _{\textit{z}}}({h_{{\mathrm{w}}}} = 0\;{{\mathrm{m}}})/{10^{ - 3}} $ $ {\alpha _{\textit{z}}}({h_{{\mathrm{w}}}} = 1\;{{\mathrm{m}}})/{10^{ - 3}} $ 冻胀系数减小百分率/% 0 0 0 0 −1 −5.88 −3.79 35.5 −2 −8.58 −2.18 74.6 −3 −7.05 −1.37 80.6 −5 −5.80 — — −10 −3.68 −1.37 62.8 -
[1] 马巍,王大雁. 冻土力学[M]. 北京:科学出版社,2014. [MA Wei,WANG Dayan. Mechanics of frozen soil[M]. Beijing:Science Press,2014. (in Chinese)]
MA Wei, WANG Dayan. Mechanics of frozen soil[M]. Beijing: Science Press, 2014. (in Chinese)
[2] 陈佩佩,尚智,王熳祺,等. 寒区高速铁路冻土路基的水热耦合响应特性分析[J]. 水文地质工程地质,2025,52(3):153 − 162. [CHEN Peipei,SHANG Zhi,WANG Manqi,et al. Analysis of hydrothermal coupling response characteristics of frozen soil subgrade of high-speed railway in cold region[J]. Hydrogeology & Engineering Geology,2025,52(3):153 − 162. (in Chinese with English abstract)]
CHEN Peipei, SHANG Zhi, WANG Manqi, et al. Analysis of hydrothermal coupling response characteristics of frozen soil subgrade of high-speed railway in cold region[J]. Hydrogeology & Engineering Geology, 2025, 52(3): 153 − 162. (in Chinese with English abstract)
[3] 温智,邓友生,冯文杰,等. 冻土水分迁移机理研究:评述与展望[J]. 冰川冻土,2023,45(2):588 − 598. [WEN Zhi,DENG Yousheng,FENG Wenjie,et al. Study on the mechanism of moisture migration in freezing soils:Review and prospect[J]. Journal of Glaciology and Geocryology,2023,45(2):588 − 598. (in Chinese with English abstract)]
WEN Zhi, DENG Yousheng, FENG Wenjie, et al. Study on the mechanism of moisture migration in freezing soils: Review and prospect[J]. Journal of Glaciology and Geocryology, 2023, 45(2): 588 − 598. (in Chinese with English abstract)
[4] 胡建华,汪稔,胡明鉴,等. 多年冻土路堤水平排水板的作用机理与试验研究[J]. 中南大学学报(自然科学版),2009,40(5):1451 − 1456. [HU Jianhua,WANG Ren,HU Mingjian,et al. Test and mechanism of horizontal plastic drain in permafrost regions embankment[J]. Journal of Central South University (Science and Technology),2009,40(5):1451 − 1456. (in Chinese with English abstract)]
HU Jianhua, WANG Ren, HU Mingjian, et al. Test and mechanism of horizontal plastic drain in permafrost regions embankment[J]. Journal of Central South University (Science and Technology), 2009, 40(5): 1451 − 1456. (in Chinese with English abstract)
[5] 沈凌铠,周保,魏刚,等. 气温变化对多年冻土斜坡稳定性的影响——以青海省浅层冻土滑坡为例[J]. 中国地质灾害与防治学报,2023,34(1):8 − 16. [SHEN Lingkai,ZHOU Bao,WEI Gang,et al. Influence of air temperature change on stability of permafrost slope: A case study of shallow permafrost landslide in Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):8 − 16. (in Chinese with English abstract)]
SHEN Lingkai, ZHOU Bao, WEI Gang, et al. Influence of air temperature change on stability of permafrost slope: A case study of shallow permafrost landslide in Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 8 − 16. (in Chinese with English abstract)
[6] 徐学祖,王家澄,张立新. 冻土物理学[M]. 北京:科学出版社,2001. [XU Xuezu,WANG Jiacheng,ZHANG Lixin. Permafrost physics [M]. Beijing:Science Press,2001. (in Chinese)]
XU Xuezu, WANG Jiacheng, ZHANG Lixin. Permafrost physics [M]. Beijing: Science Press, 2001. (in Chinese)
[7] TABER S. The mechanics of frost heaving[J]. the Journal of Geology,1930,38(4):303 − 317. doi: 10.1086/623720
[8] EVERETT D H. The thermodynamics of frost damage to porous solids[J]. Transactions of the Faraday Society,1961,57:1541 − 1551. doi: 10.1039/tf9615701541
[9] TAKAGI S. Segregation freezing as the cause of suction force for ice lens formation[J]. Engineering Geology,1979,13(1/2/3/4):93 − 100.
[10] KONRAD J M,MORGENSTERN N R. The segregation potential of a freezing soil[J]. Canadian Geotechnical Journal,1981,18(4):482 − 491. doi: 10.1139/t81-059
[11] 郭富强,史海滨,程满金,等. 不同地下水位下渠基冻胀规律与保温板适宜厚度确定[J]. 农业工程学报,2018,34(19):95 − 103. [GUO Fuqiang,SHI Haibin,CHENG Manjin,et al. Law of frost heave of canal foundation and appropriate thickness of insulation board under different groundwater levels[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(19):95 − 103. (in Chinese with English abstract)] doi: 10.11975/j.issn.1002-6819.2018.19.013
GUO Fuqiang, SHI Haibin, CHENG Manjin, et al. Law of frost heave of canal foundation and appropriate thickness of insulation board under different groundwater levels[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(19): 95 − 103. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2018.19.013
[12] 杨自友,高鹏,尚阳光,等. 考虑冻融循环效应的非静水压寒区隧道应力场弹性分析[J]. 隧道建设(中英文),2023,43(增刊2):48 − 58. [YANG Ziyou,GAO Peng,SHANG Yangguang,et al. Elastic analysis of tunnel stress field in cold zone under non−hydrostatic pressure considering freeze−thaw cycle effect[J]. Tunnel Construction,2023,43(Sup2):48 − 58. (in Chinese with English abstract)]
YANG Ziyou, GAO Peng, SHANG Yangguang, et al. Elastic analysis of tunnel stress field in cold zone under non−hydrostatic pressure considering freeze−thaw cycle effect[J]. Tunnel Construction, 2023, 43(Sup2): 48 − 58. (in Chinese with English abstract)
[13] 蔡海兵,程桦,姚直书,等. 基于冻土正交各向异性冻胀变形的隧道冻结期地层位移数值分析[J]. 岩石力学与工程学报,2015,34(8):1667 − 1676. [CAI Haibing,CHENG Hua,YAO Zhishu,et al. Numerical analysis of ground displacement due to orthotropic frost heave of frozen soil in freezing period of tunnel[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(8):1667 − 1676. (in Chinese with English abstract)]
CAI Haibing, CHENG Hua, YAO Zhishu, et al. Numerical analysis of ground displacement due to orthotropic frost heave of frozen soil in freezing period of tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(8): 1667 − 1676. (in Chinese with English abstract)
[14] 王贺,郭春香,吴亚平,等. 基于弹性力学考虑冰水相变过程下多年冻土冻胀系数与冻胀率之间的关系[J]. 岩石力学与工程学报,2018,37(12):2839 − 2845. [WANG He,GUO Chunxiang,WU Yaping,et al. Relationship between the frost−heaving coefficient and the frost−heaving rate of permafrost soils considering the ice water phase transformation based on elastic mechanics[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(12):2839 − 2845. (in Chinese with English abstract)]
WANG He, GUO Chunxiang, WU Yaping, et al. Relationship between the frost−heaving coefficient and the frost−heaving rate of permafrost soils considering the ice water phase transformation based on elastic mechanics[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2839 − 2845. (in Chinese with English abstract)
[15] 中华人民共和国住房和城乡建设部. 冻土地区建筑地基基础设计规范:JGJ 118—2011[S]. 北京:中国建筑工业出版社,2012. [Ministry of Housing and Urban−Rural Development of the People’s Republic of China. Code for design of soil foundation of building in frozen soil region:JGJ 118—2011[S]. Beijing:China Architecture & Building Press,2012. (in Chinese)]
Ministry of Housing and Urban−Rural Development of the People’s Republic of China. Code for design of soil foundation of building in frozen soil region: JGJ 118—2011[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
[16] 周家作,韦昌富,李东庆,等. 饱和粉土冻胀过程试验研究及数值模拟[J]. 岩石力学与工程学,2017,36(2):485 − 495. [ZHOU Jiazuo,WEI Changfu,LI Dongqing,et al. Experimental study and numerical simulation to the process of frost heave in saturated silt[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(2):485 − 495. (in Chinese with English abstract)]
ZHOU Jiazuo, WEI Changfu, LI Dongqing, et al. Experimental study and numerical simulation to the process of frost heave in saturated silt[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(2): 485 − 495. (in Chinese with English abstract)
[17] 刘泉声,黄诗冰,康永水,等. 低温饱和岩石未冻水含量与冻胀变形模型研究[J]. 岩石力学与工程学报,2016,35(10):2000 − 2012. [LIU Quansheng,HUANG Shibing,KANG Yongshui,et al. Study of unfrozen water content and frost heave model for saturated rock under low temperature[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(10):2000 − 2012. (in Chinese with English abstract)]
LIU Quansheng, HUANG Shibing, KANG Yongshui, et al. Study of unfrozen water content and frost heave model for saturated rock under low temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2000 − 2012. (in Chinese with English abstract)
[18] 周洁,李泽垚,唐益群,等. 软黏土三维水−热−力耦合冻融模型及应用[J]. 哈尔滨工业大学学报,2022,54(2):117 − 125. [ZHOU Jie,LI Zeyao,TANG Yiqun,et al. Three−dimensional thermal−hydraulic−mechanical coupling frost thaw model of soft clay and its application[J]. Journal of Harbin Institute of Technology,2022,54(2):117 − 125. (in Chinese with English abstract)] doi: 10.11918/202011033
ZHOU Jie, LI Zeyao, TANG Yiqun, et al. Three−dimensional thermal−hydraulic−mechanical coupling frost thaw model of soft clay and its application[J]. Journal of Harbin Institute of Technology, 2022, 54(2): 117 − 125. (in Chinese with English abstract) doi: 10.11918/202011033
[19] 于钱米,邰博文,牛吉强,等. 细粒土空间不均匀分布对水分迁移的影响[J]. 中南大学学报(自然科学版),2020,51(12):3503 − 3514. [YU Qianmi,TAI Bowen,NIU Jiqiang,et al. The effect of unevenly distributed fine−grained soil in space on moisture migration[J]. Journal of Central South University(Science and Technology),2020,51(12):3503 − 3514. (in Chinese with English abstract)] doi: 10.11817/j.issn.1672-7207.2020.12.024
YU Qianmi, TAI Bowen, NIU Jiqiang, et al. The effect of unevenly distributed fine−grained soil in space on moisture migration[J]. Journal of Central South University(Science and Technology), 2020, 51(12): 3503 − 3514. (in Chinese with English abstract) doi: 10.11817/j.issn.1672-7207.2020.12.024
[20] 李奇龙,周佳庆,李长冬,等. 气候变化环境下青藏高原含冰冰碛土斜坡水热力耦合特性与长期稳定性[J]. 地质科技通报,2025,44(1):112 − 125. [LI Qilong,ZHOU Jiaqing,LI Changdong,et al. Coupling characteristics and stability evolution of ice-rich moraine soil slopes on the Tibetan Plateau under climate change[J]. Bulletin of Geological Science and Technology,2025,44(1):112 − 125. (in Chinese with English abstract)]
LI Qilong, ZHOU Jiaqing, LI Changdong, et al. Coupling characteristics and stability evolution of ice-rich moraine soil slopes on the Tibetan Plateau under climate change[J]. Bulletin of Geological Science and Technology, 2025, 44(1): 112 − 125. (in Chinese with English abstract)
[21] 王天亮,王海航,宋宏芳,等. 人工冻结粉质黏土力学性能演化规律研究[J]. 中国铁道科学,2019,40(1):1 − 7. [WANG Tianliang,WANG Haihang,SONG Hongfang,et al. Evolution laws of mechanical properties of artificially frozen silty clay[J]. China Railway Science,2019,40(1):1 − 7. (in Chinese with English abstract)] doi: 10.3969/j.issn.1001-4632.2019.01.01
WANG Tianliang, WANG Haihang, SONG Hongfang, et al. Evolution laws of mechanical properties of artificially frozen silty clay[J]. China Railway Science, 2019, 40(1): 1 − 7. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4632.2019.01.01
[22] 唐益群,洪军,杨坪,等. 人工冻结作用下淤泥质黏土冻胀特性试验研究[J]. 岩土工程学报,2009,31(5):772 − 776. [TANG Yiqun,HONG Jun,YANG Ping,et al. Frost−heaving behaviors of mucky clay by artificial horizontal freezing method[J]. Chinese Journal of Geotechnical Engineering,2009,31(5):772 − 776. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-4548.2009.05.021
TANG Yiqun, HONG Jun, YANG Ping, et al. Frost−heaving behaviors of mucky clay by artificial horizontal freezing method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 772 − 776. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2009.05.021
[23] 孙忠臣. 庄河灌区渠基土冻胀试验研究及保温板防冻厚度数值模拟分析[D]. 沈阳:沈阳农业大学,2020. [SUN Zhongchen. Experimental study on frost heave of canal subsoil in Zhuanghe Irrigation Area and numerical simulation analysis of anti−frost thickness of insulation board[D]. Shenyang:Shenyang Agricultural University,2020. (in Chinese with English abstract)]
SUN Zhongchen. Experimental study on frost heave of canal subsoil in Zhuanghe Irrigation Area and numerical simulation analysis of anti−frost thickness of insulation board[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese with English abstract)
[24] 崔托维奇. 冻土力学[M]. 张长庆,朱元林,译. 北京:科学出版社,1985. [TSYTOVICH H A. The mechanics of frozen ground[M]. ZHANG Changqing,ZHU Yuanlin,trans. Beijing:Science Press,1985. (in Chinese)]
TSYTOVICH H A. The mechanics of frozen ground[M]. ZHANG Changqing, ZHU Yuanlin, trans. Beijing: Science Press, 1985. (in Chinese)
[25] 陈肖柏,刘建坤,刘鸿绪,等. 土的冻结作用与地基[M]. 北京:科学出版社,2006. [CHEN Xiaobai,LIU Jiankun,LIU Hongxu,et al. Frost action of soil and foundation engineering[M]. Beijing:Science Press,2006. (in Chinese)]
CHEN Xiaobai, LIU Jiankun, LIU Hongxu, et al. Frost action of soil and foundation engineering[M]. Beijing: Science Press, 2006. (in Chinese)
[26] 肖旻,王正中,刘铨鸿,等. 考虑冻土与结构相互作用的梯形渠道冻胀破坏弹性地基梁模型[J]. 水利学报,2017,48(10):1229 − 1239. [XIAO Min,WANG Zhengzhong,LIU Quanhong,et al. Elastic foundation beam model of frost heave damage of trapezoidal canal considering interaction between frozen soil and lining stucture[J]. Journal of Hydraulic Engineering,2017,48(10):1229 − 1239. (in Chinese with English abstract)]
XIAO Min, WANG Zhengzhong, LIU Quanhong, et al. Elastic foundation beam model of frost heave damage of trapezoidal canal considering interaction between frozen soil and lining stucture[J]. Journal of Hydraulic Engineering, 2017, 48(10): 1229 − 1239. (in Chinese with English abstract)
[27] 何鹏飞,候光亮,董建华,等. 梯形渠道衬砌冻胀破坏弹性地基板模型[J]. 农业工程学报,2022,38(23):91 − 100. [HE Pengfei,HOU Guangliang,DONG Jianhua,et al. Elastic foundation plate model for the frost heave damage of trapezoidal canal lining[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(23):91 − 100. (in Chinese with English abstract)] doi: 10.11975/j.issn.1002-6819.2022.23.010
HE Pengfei, HOU Guangliang, DONG Jianhua, et al. Elastic foundation plate model for the frost heave damage of trapezoidal canal lining[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(23): 91 − 100. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.23.010
[28] 王正中,孙涛,郑艾磊,等. 水−热−力耦合作用下寒区弧底梯形渠道结构优化设计[J]. 中南大学学报(自然科学版),2023,54(5):1916 − 1929. [WANG Zhengzhong,SUN Tao,ZHENG Ailei,et al. Structural optimization design for trapezoidal canal with arc−bottom during thermal−moisture−mechanical coupling in cold regions[J]. Journal of Central South University (Science and Technology),2023,54(5):1916 − 1929. (in Chinese with English abstract)] doi: 10.11817/j.issn.1672-7207.2023.05.025
WANG Zhengzhong, SUN Tao, ZHENG Ailei, et al. Structural optimization design for trapezoidal canal with arc−bottom during thermal−moisture−mechanical coupling in cold regions[J]. Journal of Central South University (Science and Technology), 2023, 54(5): 1916 − 1929. (in Chinese with English abstract) doi: 10.11817/j.issn.1672-7207.2023.05.025
-