细粒含量对土工格栅-砾性土界面剪切特性的影响分析

王家全, 林鸿, 唐毅, 唐滢. 细粒含量对土工格栅-砾性土界面剪切特性的影响分析[J]. 水文地质工程地质, 2025, 52(4): 264-272. doi: 10.16030/j.cnki.issn.1000-3665.202402009
引用本文: 王家全, 林鸿, 唐毅, 唐滢. 细粒含量对土工格栅-砾性土界面剪切特性的影响分析[J]. 水文地质工程地质, 2025, 52(4): 264-272. doi: 10.16030/j.cnki.issn.1000-3665.202402009
WANG Jiaquan, LIN Hong, TANG Yi, TANG Ying. Effect of fine particle content on shear characteristics of geogrid-reinforced gravelly soil[J]. Hydrogeology & Engineering Geology, 2025, 52(4): 264-272. doi: 10.16030/j.cnki.issn.1000-3665.202402009
Citation: WANG Jiaquan, LIN Hong, TANG Yi, TANG Ying. Effect of fine particle content on shear characteristics of geogrid-reinforced gravelly soil[J]. Hydrogeology & Engineering Geology, 2025, 52(4): 264-272. doi: 10.16030/j.cnki.issn.1000-3665.202402009

细粒含量对土工格栅-砾性土界面剪切特性的影响分析

  • 基金项目: 广西自然科学基金重点项目(2022GXNSFDA035081);国家自然科学基金项目(52468047);广西高等学校高水平创新团队及卓越学者计划项目((桂教人才[2020]6号);广西科技大学研究生教育创新计划项目(GKYC202569)
详细信息
    作者简介: 王家全(1981—),男,博士,教授,主要从事加筋土结构、地基基础工程、土木工程灾害防治等方面的研究。E-mail:wjquan1999@163.com
    通讯作者: 唐毅(1982—),女,硕士,助理研究员,主要从事岩土工程研究工作。E-mail:tyi-moon@163.com
  • 中图分类号: U416.1;P642

Effect of fine particle content on shear characteristics of geogrid-reinforced gravelly soil

More Information
  • 加筋砾性土路基长期服役后受细粒侵入影响,筋土界面受力性能易发生劣化,目前细粒污染筋土界面的相关研究较少。为了研究细粒含量对砾性土填料剪切性能的影响,利用室内大型直剪仪开展系列不同细粒含量的加筋砾性土直剪试验,分析四种细粒含量(0%、10%、20%、30%)、三种法向应力(40,60,80 kPa)对土工格栅-砾性土界面剪切特性的影响,并建立了界面剪切膨胀系数的经验公式。结果表明:(1)加筋砾性土直剪试验的剪应力-剪切位移曲线均为应力软化型,随着细粒含量的增加,峰值剪切强度与剪切强度指标呈现出先增加后减小的趋势;(2)级配良好砾性土颗粒间的咬合力较强,宏观上表现为似黏聚力较大;(3)剪胀性曲线表现为相对剪缩—相对剪胀—相对剪缩阶段,相对剪胀量最大值的出现存在滞后现象,最大剪胀角与峰值剪切强度存在对应关系;(4)利用剪胀系数模型发现细粒含量、法向应力越小,界面剪胀性越强。研究成果可为公路工程的强度设计与劣化防护提供理论指导。

  • 加载中
  • 图 1  直剪试验设备

    Figure 1. 

    图 2  颗粒级配曲线

    Figure 2. 

    图 3  不同细粒含量加筋砾性土剪应力-剪切位移曲线

    Figure 3. 

    图 4  不同细粒含量峰值剪切强度、残余剪切强度与法向应力的拟合包络线

    Figure 4. 

    图 5  相对剪缩与相对剪胀示意图

    Figure 5. 

    图 6  不同细粒含量加筋砾性土界面竖向位移-剪切位移曲线

    Figure 6. 

    图 7  细粒含量对最大剪胀角的影响

    Figure 7. 

    图 8  不同细粒含量筋土界面的剪胀系数曲线

    Figure 8. 

    图 9  界面剪胀系数拟合曲面

    Figure 9. 

    表 1  土工格栅物理力学指标

    Table 1.  Physical and mechanical indices of geogrids

    指标 极限抗拉
    强度
    /(kN·m−1
    极限荷载下
    延伸率/%
    2%延伸率
    抗拉强度
    /(kN·m−1
    5%延伸率
    抗拉强度
    /(kN·m−1
    网孔尺寸
    /mm×mm
    35.78/33.51 10.0/8.7 10.26/11.55 21.30/25.30 30×30
      注:/前的数值为纵向强度或延伸率,/后的数值为横向强度或延伸率。
    下载: 导出CSV
  • [1]

    刘荟达,袁晓铭,王鸾,等. 宽级配砾性土橡皮膜嵌入量计算新方法[J]. 岩石力学与工程学报,2020,39(4):804 − 816. [LIU Huida,YUAN Xiaoming,WANG Luan,et al. A new calculation method for membrane penetration in wide-graded gravelly soils[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(4):804 − 816. (in Chinese with English abstract)]

    LIU Huida, YUAN Xiaoming, WANG Luan, et al. A new calculation method for membrane penetration in wide-graded gravelly soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 804 − 816. (in Chinese with English abstract)

    [2]

    王鸾,孙锐,刘荟达,等. 砾性土动三轴液化试验橡皮膜顺变性补偿新方法[J]. 岩土工程学报,2020,42(12):2281 − 2290. [WANG Luan,SUN Rui,LIU Huida,et al. New method to compensate for membrane compliance in dynamic triaxial liquefaction tests on gravelly soils[J]. Chinese Journal of Geotechnical Engineering,2020,42(12):2281 − 2290. (in Chinese with English abstract)] doi: 10.11779/CJGE202012015

    WANG Luan, SUN Rui, LIU Huida, et al. New method to compensate for membrane compliance in dynamic triaxial liquefaction tests on gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2281 − 2290. (in Chinese with English abstract) doi: 10.11779/CJGE202012015

    [3]

    刘大鹏,杨晓华,王婧,等. 新疆三莎高速公路砾类土的临界动应力试验研究[J]. 新疆大学学报(自然科学版),2016,33(4):481 − 485. [LIU Dapeng,YANG Xiaohua,WANG Jing,et al. Experimental study on critical dynamic stress of gravel soil in Xinjiang Sanchakou-Shache expressway[J]. Journal of Xinjiang University(Natural Science Edition),2016,33(4):481 − 485. (in Chinese with English abstract)]

    LIU Dapeng, YANG Xiaohua, WANG Jing, et al. Experimental study on critical dynamic stress of gravel soil in Xinjiang Sanchakou-Shache expressway[J]. Journal of Xinjiang University(Natural Science Edition), 2016, 33(4): 481 − 485. (in Chinese with English abstract)

    [4]

    吴曙光. 土力学[M]. 重庆:重庆大学出版社,2016. [WU Shuguang. Soil mechanics[M]. Chongqing:Chongqing University Press,2016. (in Chinese)]

    WU Shuguang. Soil mechanics[M]. Chongqing: Chongqing University Press, 2016. (in Chinese)

    [5]

    王家全,祝梦柯,林志南,等. 细粒含量对饱和砾性土静动力学特性的影响[J]. 土木工程学报,2023,56(5):112 − 121. [WANG Jiaquan,ZHU Mengke,LIN Zhinan,et al. Influence of fines content on static and dynamic characteristics of saturated gravelly soil[J]. China Civil Engineering Journal,2023,56(5):112 − 121. (in Chinese with English abstract)]

    WANG Jiaquan, ZHU Mengke, LIN Zhinan, et al. Influence of fines content on static and dynamic characteristics of saturated gravelly soil[J]. China Civil Engineering Journal, 2023, 56(5): 112 − 121. (in Chinese with English abstract)

    [6]

    黄强强,任非凡. 极端降雨条件下土工合成材料加筋土桥台稳定性分析[J]. 中国地质灾害与防治学报,2025,36(2):78 − 86. [HUANG Qiangqiang,REN Feifan. Stability analysis of geosynthetic-reinforced soil bridge abutments under extreme rainfall conditions[J]. The Chinese Journal of Geological Hazard and Control,2025,36(2):78 − 86. (in Chinese with English abstract)]

    HUANG Qiangqiang, REN Feifan. Stability analysis of geosynthetic-reinforced soil bridge abutments under extreme rainfall conditions[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(2): 78 − 86. (in Chinese with English abstract)

    [7]

    孙振兴,杨忠年,辛泽宇,等. 橡胶纤维加筋膨胀土的剪切强度与强度预测模型[J/OL]. 吉林大学学报(地球科学版).(2024-10-11)[2025-04-26]. [SUN Zhenxing,YANG Zhongnian,XIN Zeyu,et al. Shear strength and strength prediction model of rubber fiber-reinforced expansive soil[J/OL]. Journal of Jilin University (Earth Science Edition). (2024-10-11)[2025-04-26]. https://link.cnki.net/doi/10.13278/j.cnki.jjuese.20240001. (in Chinese with English abstract)]

    SUN Zhenxing, YANG Zhongnian, XIN Zeyu, et al. Shear strength and strength prediction model of rubber fiber-reinforced expansive soil[J/OL]. Journal of Jilin University (Earth Science Edition). (2024-10-11)[2025-04-26]. https://link.cnki.net/doi/10.13278/j.cnki.jjuese.20240001. (in Chinese with English abstract)

    [8]

    王家全,祁航翔,黄世斌,等. 土工格栅与碎石土混合料界面作用的大型直剪试验研究[J]. 水文地质工程地质,2022,49(4):81 − 90. [WANG Jiaquan,QI Hangxiang,HUANG Shibin,et al. Large-scale direct shear test on the interface between geogrid and gravel-soil mixture[J]. Hydrogeology & Engineering Geology,2022,49(4):81 − 90. (in Chinese with English abstract)]

    WANG Jiaquan, QI Hangxiang, HUANG Shibin, et al. Large-scale direct shear test on the interface between geogrid and gravel-soil mixture[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 81 − 90. (in Chinese with English abstract)

    [9]

    柴寿喜,张琳,魏丽,等. 冻融作用下纤维加筋固化盐渍土的抗压性能与微观结构[J]. 水文地质工程地质,2022,49(5):96 − 105. [CHAI Shouxi,ZHANG Lin,WEI Li,et al. Compressive properties and microstructure of saline soil added fiber and lime under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology,2022,49(5):96 − 105. (in Chinese with English abstract)]

    CHAI Shouxi, ZHANG Lin, WEI Li, et al. Compressive properties and microstructure of saline soil added fiber and lime under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 96 − 105. (in Chinese with English abstract)

    [10]

    宋飞,石磊,樊明尊. 土工格室加筋正常固结粉质黏土应力应变响应[J]. 地质科技通报,2024,43(1):184 − 193. [SONG Fei,SHI Lei,FAN Mingzun. Stress-strain response of geocell-reinforced normally consolidated silty clay[J]. Bulletin of Geological Science and Technology,2024,43(1):184 − 193. (in Chinese with English abstract)]

    SONG Fei, SHI Lei, FAN Mingzun. Stress-strain response of geocell-reinforced normally consolidated silty clay[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 184 − 193. (in Chinese with English abstract)

    [11]

    崔新壮,姜鹏,王艺霖,等. 高摩阻超静定土工格栅在粗粒土夹层中的剪胀作用研究[J]. 岩土力学,2024,45(1):141 − 152. [CUI Xinzhuang,JIANG Peng,WANG Yilin,et al. On the role of dilatancy induced by high resistance hyperstatic geogrids in coarse-grained soil layer[J]. Rock and Soil Mechanics,2024,45(1):141 − 152. (in Chinese with English abstract)]

    CUI Xinzhuang, JIANG Peng, WANG Yilin, et al. On the role of dilatancy induced by high resistance hyperstatic geogrids in coarse-grained soil layer[J]. Rock and Soil Mechanics, 2024, 45(1): 141 − 152. (in Chinese with English abstract)

    [12]

    王光进,杨春和,张超,等. 粗粒含量对散体岩土颗粒破碎及强度特性试验研究[J]. 岩土力学,2009,30(12):3649 − 3654. [WANG Guangjin,YANG Chunhe,ZHANG Chao,et al. Experimental research on particle breakage and strength characteristics of rock and soil materials with different coarse-grain contents[J]. Rock and Soil Mechanics,2009,30(12):3649 − 3654. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-7598.2009.12.015

    WANG Guangjin, YANG Chunhe, ZHANG Chao, et al. Experimental research on particle breakage and strength characteristics of rock and soil materials with different coarse-grain contents[J]. Rock and Soil Mechanics, 2009, 30(12): 3649 − 3654. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2009.12.015

    [13]

    刘飞禹,胡惠丽,王军,等. 粒孔比对筋-土界面循环剪切特性的影响[J]. 中国公路学报,2019,32(12):115 − 122. [LIU Feiyu,HU Huili,WANG Jun,et al. Influence of aperture ratio on cyclic shear behavior of geogrid-soil interface[J]. China Journal of Highway and Transport,2019,32(12):115 − 122. (in Chinese with English abstract)]

    LIU Feiyu, HU Huili, WANG Jun, et al. Influence of aperture ratio on cyclic shear behavior of geogrid-soil interface[J]. China Journal of Highway and Transport, 2019, 32(12): 115 − 122. (in Chinese with English abstract)

    [14]

    VANGLA P,LATHA GALI M. Effect of particle size of sand and surface asperities of reinforcement on their interface shear behaviour[J]. Geotextiles and Geomembranes,2016,44(3):254 − 268. doi: 10.1016/j.geotexmem.2015.11.002

    [15]

    SWETA K,HUSSAINI S K K. Effect of shearing rate on the behavior of geogrid-reinforced railroad ballast under direct shear conditions[J]. Geotextiles & Geomembranes,2018,46(3):251 − 256.

    [16]

    HAN Bingye,LING Jianming,SHU Xiang,et al. Laboratory investigation of particle size effects on the shear behavior of aggregate-geogrid interface[J]. Construction and Building Materials,2018,158:1015 − 1025. doi: 10.1016/j.conbuildmat.2017.10.045

    [17]

    WANG J,LIU F Y,WANG P,et al. Particle size effects on coarse soil-geogrid interface response in cyclic and post-cyclic direct shear tests[J]. Geotextiles and Geomembranes,2016,44(6):854 − 861. doi: 10.1016/j.geotexmem.2016.06.011

    [18]

    NYE C J,FOX P J. Dynamic shear behavior of a needlepunched geosynthetic clay liner[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(8):973 − 983. doi: 10.1061/(ASCE)1090-0241(2007)133:8(973)

    [19]

    VIEIRA C S,LOPES M L,CALDEIRA L M. Sand-geotextile interface characterisation through monotonic and cyclic direct shear tests[J]. Geosynthetics International,2013,20(1):26 − 38. doi: 10.1680/gein.12.00037

    [20]

    王家全,王晴,祝梦柯,等. 三级循环荷载下细粒含量对砾砂动力特性的影响分析[J]. 自然灾害学报,2023,32(4):239 − 248. [WANG Jiaquan,WANG Qing,ZHU Mengke,et al. Influence of fines content on dynamic properties of gravel under three-level cyclic loading[J]. Journal of Natural Disasters,2023,32(4):239 − 248. (in Chinese with English abstract)]

    WANG Jiaquan, WANG Qing, ZHU Mengke, et al. Influence of fines content on dynamic properties of gravel under three-level cyclic loading[J]. Journal of Natural Disasters, 2023, 32(4): 239 − 248. (in Chinese with English abstract)

    [21]

    中华人民共和国住房和城乡建设部. 土工试验方法标准:GB/T 50123—2019[S]. 北京:中国计划出版社,2019. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method:GB/T 50123—2019[S]. Beijing:China Planning Press,2019. (in Chinese)]

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [22]

    李君纯. 青海沟后水库溃坝原因分析[J]. 岩土工程学报,1994,16(6):1 − 14. [LI Junchun. Analysis of the causes of the Qinghai Gouhou reservoir dam failure[J]. Chinese Journal of Geotechnical Engineering,1994,16(6):1 − 14. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-4548.1994.06.001

    LI Junchun. Analysis of the causes of the Qinghai Gouhou reservoir dam failure[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(6): 1 − 14. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1994.06.001

    [23]

    王军,林旭,符洪涛. 砂土-格栅筋土界面特性的本构模型研究[J]. 岩土力学,2014,35(增刊2):75 − 84. [WANG Jun,LIN Xu,FU Hongtao. Study of constitutive model of sand-geogrid interface behavior in geogrid/geotextile reinforced soil[J]. Rock and Soil Mechanics,2014,35(Sup2):75 − 84. (in Chinese with English abstract)]

    WANG Jun, LIN Xu, FU Hongtao. Study of constitutive model of sand-geogrid interface behavior in geogrid/geotextile reinforced soil[J]. Rock and Soil Mechanics, 2014, 35(Sup2): 75 − 84. (in Chinese with English abstract)

    [24]

    AFZALI-NEJAD A,LASHKARI A,SHOURIJEH P T. Influence of particle shape on the shear strength and dilation of sand-woven geotextile interfaces[J]. Geotextiles and Geomembranes,2017,45(1):54 − 66. doi: 10.1016/j.geotexmem.2016.07.005

    [25]

    SWETA K,HUSSAINI S K K. Behavior evaluation of geogrid-reinforced ballast-subballast interface under shear condition[J]. Geotextiles and Geomembranes,2019,47(1):23 − 31. doi: 10.1016/j.geotexmem.2018.09.002

    [26]

    刘飞禹,林旭,王军. 砂土颗粒级配对筋土界面抗剪特性的影响[J]. 岩石力学与工程学报,2013,32(12):2575 − 2582. [LIU Feiyu,LIN Xu,WANG Jun. Influence of particle-size gradation on shear behavior of geosynthetics and sand interface[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(12):2575 − 2582. (in Chinese with English abstract)]

    LIU Feiyu, LIN Xu, WANG Jun. Influence of particle-size gradation on shear behavior of geosynthetics and sand interface[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2575 − 2582. (in Chinese with English abstract)

  • 加载中

(9)

(1)

计量
  • 文章访问数:  26
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2024-02-02
修回日期:  2024-04-01
刊出日期:  2025-07-15

目录