Integrated model for estimation of the interaction between surface water and groundwater based on in valley watershed
-
摘要:
以往地表水-地下水交互过程研究集中于平原河网地区,而水动力交互作用强烈的山谷型流域研究甚少。选取句容北山水库流域为研究区,聚焦山谷型流域地表产汇流与浅层地下水渗流交互过程,基于SWAT-MODFLOW构建了地表水-地下水耦合模型评价流域水量交互过程及时空变化规律。结果表明:流域范围内地下水与地表水的交互存在一定的时空差异性; 2016—2019年期间整体呈现地下水补给地表水,但在丰水期局部时段,地表水补给地下水;研究区西北部、东北部山区以及南部北山水库周边地区表现为地下水补给地表水;耦合模型可较好地刻画研究区地表水与地下水的交互流量,流域地下水对河道净补给量的贡献率为8.72%,其中地下水补给量在空间分布上西部支流和中部支流区域分别占28.8%、79.8%,东部支流地表水补给地下水,地下水的补给率逆差为8.6%。研究成果可为流域水资源联合调度和开发利用提供技术支撑。
-
关键词:
- 山谷型流域 /
- 地表水-地下水 /
- SWAT-MODFLOW模型 /
- 耦合模型 /
- 水量交互
Abstract:Previous studies on surface water-groundwater (SW-GW) interactions have primarily focused on plain river networks, with limited understanding on hydrodynamic interactions in valley-type watersheds. This study focuses on the Beishan Reservoir Basin (BRB) in Jurong, specifically investigating surface runoff and shallow groundwater interactions in a valley-type watershed Jurong. A coupled SWAT-MODFLOW model was developed to evaluate the spatiotemporal variations in SW-GW interaction processes. The results show that the interaction between SW-GW varies both temporally and spatially. Temporally, the groundwater discharged into the surface water during 2016−2019, while the surface water replenished the groundwater during certain periods of wet season. Spatially, the mountainous areas in the northwest and northeast of the study area and the surrounding areas of BRB in the south of the study area are characterized by groundwater discharge into surface water. The coupling model effectively describes the surface water-groundwater (SW-GW) interaction, with groundwater contributing 8.72% to the net replenishment of rivers in the basin. The western tributaries and central tributaries of the basin receive 28.8% and 79.8% groundwater recharge in the whole basin, respectively. The eastern tributaries with negative groundwater recharge rate of 8.6% exhibit surface water discharge into groundwater. This study provides a technical support for joint scheduling and development and utilization of watershed water resources.
-
Key words:
- valley watershed /
- surface water-groundwater /
- SWAT-MODFLOW model /
- coupling model /
- water exchange
-
-
表 1 耦合模型选取参数
Table 1. Selection parameters of coupling model
参数 来源 结果 SCS径流曲线系数 SWAT 0.16 基流分割系数 SWAT 0.55 地下水延迟系数 SWAT 126.83 分区1地下水渗透系数/(m·d−1) MODFLOW 5.00 分区2地下水渗透系数/(m·d−1) MODFLOW 4.00 分区3地下水渗透系数/(m·d−1) MODFLOW 5.00 分区4地下水渗透系数/(m·d−1) MODFLOW 1.50 分区5地下水渗透系数/(m·d−1) MODFLOW 8.00 分区6地下水渗透系数/(m·d−1) MODFLOW 1.00 分区7地下水渗透系数/(m·d−1) MODFLOW 12.00 表 2 耦合模型率定期与验证期地表径流校准结果
Table 2. Coupling model verifies the calibration results of periodic and periodic surface runoff
率定期(2017年1月15日—
2019年12月15日)验证期(2020年1月15日—
9月15日)校正参数 R2 NSE PBIAS R2 NSE PBIAS 拟合值 0.98 0.89 0.79 0.99 0.90 0.77 表 3 地表水-地下水年际补给量
Table 3. Interannual recharge relationship between surface and groundwater
年份 降水量/mm 地下水向地表水
补给量/mm地表水向地下水
补给量/mm地下水向地表水
净补给量/mm地下水补给地表
水面积/km2地表水补给地下
水面积/km22016 1807.70 −194.17 97.15 −97.02 34.33 21.00 2017 1464.80 −157.34 66.54 −90.80 33.06 22.27 2018 1226.90 −148.97 64.32 −84.65 31.84 23.49 2019 743.00 −136.90 59.45 −77.45 31.66 23.67 年均 1310.60 −161.65 71.87 −87.48 32.72 22.61 表 4 研究区地表水-地下水补给地形高程
Table 4. Topographic elevation of surface-groundwater recharge in the study area
年份 地下水补给
地表水最小
高程/m地下水补给
地表水最大
高程/m地表水补给
地下水最小
高程/m地表水补给
地下水最大
高程/m2016 48.41 225.88 47.50 171.31 2017 48.35 222.12 47.45 175.31 2018 48.63 227.63 47.35 172.88 2019 47.44 214.25 48.47 185.47 年均 48.21 222.47 47.69 176.24 表 5 各支流地表水-地下水年际交换量
Table 5. Annual surface-groundwater exchange capacity of tributaries
年份 西部支流/mm 中部支流/mm 东部支流/mm 合计/mm 2016 − 1411.03 1085.58 − 3586.80 − 3912.25 2017 − 3937.60 672.16 − 10498.98 − 13764.40 2018 − 3586.05 901.70 − 10144.49 − 12828.80 2019 − 3223.45 981.01 − 9496.33 − 11738.80 年均 − 3039.53 910.11 − 8431.65 − 10561.10 表 6 模拟期年际水均衡量
Table 6. Inter-annual average water balance in the simulation period
年份 降水量
/mm地表径
流量/mm地下水向地表水
补给量/mm地表水向地下水
补给量/mm地下水储量
/mm地表水储量
/mm河流侧向
补给量/mm含水层
渗漏量/mm2016 1807.7 1047.97 194.17 97.15 13304.95 655.76 116.39 113.87 2017 1464.8 813.2 157.34 66.54 14220.41 539.44 90.45 78.97 2018 1226.9 619.62 148.97 64.32 14758.89 459.66 80.23 70.34 2019 743.00 309.13 136.90 59.45 15078.01 408.13 48.75 24.92 2020 975.00 476.18 97.62 49.41 11457.97 307.52 63.62 47.01 年均 1243.48 653.22 147.00 67.37 13764.05 474.10 78.89 67.02 -
[1] 周铮,吴剑锋,杨蕴,等. 基于SWAT模型的北山水库流域地表径流模拟[J]. 南水北调与水利科技,2020,18(1):66 − 73. [ZHOU Zheng,WU Jianfeng,YANG Yun,et al. Surface runoff simulation based on SWAT model in Beishan Reservoir watershed[J]. South-to-North Water Transfers and Water Science & Technology,2020,18(1):66 − 73. (in Chinese with English abstract)]
ZHOU Zheng, WU Jianfeng, YANG Yun, et al. Surface runoff simulation based on SWAT model in Beishan Reservoir watershed[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(1): 66 − 73. (in Chinese with English abstract)
[2] 李文鹏. 对地表水资源与地下水资源重复量的认识与水资源开发利用理念探讨[J]. 水文地质工程地质,2023,50(1):1 − 2. [LI Wenpeng. Understanding of the duplication of surface water resources and groundwater resources and discussion on the concept of water resources development and utilization[J]. Hydrogeology & Engineering Geology,2023,50(1):1 − 2. (in Chinese)]
LI Wenpeng. Understanding of the duplication of surface water resources and groundwater resources and discussion on the concept of water resources development and utilization[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 1 − 2. (in Chinese)
[3] 梅其岳,吴世明. 山谷型填埋及堆体边坡稳定分析[J]. 岩土工程学报,2000,22(3):375 − 378. [MEI Qiyue,WU Shiming. Valley landfill and stability analysis of pile slope[J]. Chinese Journal of Geotechnical Engineering,2000,22(3):375 − 378. (in Chinese)] doi: 10.3321/j.issn:1000-4548.2000.03.025
MEI Qiyue, WU Shiming. Valley landfill and stability analysis of pile slope[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 375 − 378. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.03.025
[4] GILLI E,MANGAN C,MUDRY J. Hydrogeology - objectives, methods, applications[M]. Enfield:Science Publishers,2012.
[5] NONNER J C. Introduction to hydrogeology[M]. Leiden:Taylor & Francis,2002.
[6] 张丽娟,吴佩鹏,张盛艳,等. 河床地形起伏变化对地表水-地下水-湿地水交互过程的影响研究[J]. 水文地质工程地质,2024,51(1):22 − 29. [ZHANG Lijuan,WU Peipeng,ZHANG Shengyan,et al. Impact of topographic fluctuation of riverbed on surface water-groundwater-wetland water interaction[J]. Hydrogeology & Engineering Geology,2024,51(1):22 − 29. (in Chinese with English abstract)]
ZHANG Lijuan, WU Peipeng, ZHANG Shengyan, et al. Impact of topographic fluctuation of riverbed on surface water-groundwater-wetland water interaction[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 22 − 29. (in Chinese with English abstract)
[7] CHEN Sheming,LIU Futian,ZHANG Zhuo,et al. Changes of groundwater flow field of Luanhe River Delta under the human activities and its impact on the ecological environment in the past 30 years[J]. China Geology,2021,4(3):455 − 462.
[8] 孔俊,宋志尧,赵红军. 基于扩展型浅水方程的地表水与地下水整体数值模型[J]. 水动力学研究与进展A辑,2010,25(4):460 − 468. [KONG Jun,SONG Zhiyao,ZHAO Hongjun. Integrated surface and subsurface flow model based on extended shallow water equations[J]. Chinese Journal of Hydrodynamics,2010,25(4):460 − 468. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-4874.2010.04.005
KONG Jun, SONG Zhiyao, ZHAO Hongjun. Integrated surface and subsurface flow model based on extended shallow water equations[J]. Chinese Journal of Hydrodynamics, 2010, 25(4): 460 − 468. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-4874.2010.04.005
[9] MARKSTROM S L,NISWONGER R G,REGAN R S,et al. GSFLOW-coupled ground-water and surface-water flow model based on the integration of the precipitation-runoff modeling system (PRMS) and the modular ground-water flow model (MODFLOW-2005)[J]. US Geological Survey Techniques and Methods,2008,6:240.
[10] CAMPORESE M,PANICONI C,PUTTI M,et al. Surface-subsurface flow modeling with path-based runoff routing,boundary condition-based coupling,and assimilation of multisource observation data[J]. Water Resources Research,2010,46(2):e2008wr007536. doi: 10.1029/2008WR007536
[11] 崔素芳. 变化环境下大沽河流域地表水—地下水联合模拟与预测[D]. 济南:山东师范大学,2015. [CUI Sufang. Joint simulation and prediction of surface water and groundwater in Dagu River basin under changing environment[D]. Jinan:Shandong Normal University,2015. (in Chinese with English abstract)]
CUI Sufang. Joint simulation and prediction of surface water and groundwater in Dagu River basin under changing environment[D]. Jinan: Shandong Normal University, 2015. (in Chinese with English abstract)
[12] 余钟波,李敏娟,刘芸辰,等. 基于氡同位素的河水与地下水水力交换研究[J]. 河海大学学报(自然科学版),2020,48(1):8 − 13. [YU Zhongbo,LI Minjuan,LIU Yunchen,et al. Study on hydraulic exchange of river water and groundwater based on radon isotope[J]. Journal of Hohai University (Natural Sciences),2020,48(1):8 − 13. (in Chinese with English abstract)] doi: 10.3876/j.issn.1000-1980.2020.01.002
YU Zhongbo, LI Minjuan, LIU Yunchen, et al. Study on hydraulic exchange of river water and groundwater based on radon isotope[J]. Journal of Hohai University (Natural Sciences), 2020, 48(1): 8 − 13. (in Chinese with English abstract) doi: 10.3876/j.issn.1000-1980.2020.01.002
[13] 祁晓凡,李文鹏,崔虎群,等. 黑河流域中游盆地地表水与地下水转化机制研究[J]. 水文地质工程地质,2022,49(3):29 − 43. [QI Xiaofan,LI Wenpeng,CUI Huqun,et al. Study on the conversion mechanism of surface water and groundwater in the middle reaches of the Heihe River Basin[J]. Hydrogeology & Engineering Geology,2022,49(3):29 − 43. (in Chinese with English abstract)]
QI Xiaofan, LI Wenpeng, CUI Huqun, et al. Study on the conversion mechanism of surface water and groundwater in the middle reaches of the Heihe River Basin[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 29 − 43. (in Chinese with English abstract)
[14] 张多纯,张幼宽. GSFLOW在沙颖河流域地表水与地下水联合模拟的应用[J]. 水文地质工程地质,2015,42(2):1 − 9. [ZHANG Duochun,ZHANG Youkuan. Application of GSFLOW to a coupled surface water and groundwater model for Shaying River Basin[J]. Hydrogeology & Engineering Geology,2015,42(2):1 − 9. (in Chinese with English abstract)]
ZHANG Duochun, ZHANG Youkuan. Application of GSFLOW to a coupled surface water and groundwater model for Shaying River Basin[J]. Hydrogeology & Engineering Geology, 2015, 42(2): 1 − 9. (in Chinese with English abstract)
[15] 刘文冲,赵良杰,崔亚莉,等. 基于SWAT-MODFLOW地表-地下水耦合模型的结构与应用研究[J]. 中国岩溶,2023,42(6):1131 − 1139. [LIU Wenchong,ZHAO Liangjie,CUI Yali,et al. Structure and application of SWAT-MODFLOW coupling model for surface-groundwater[J]. Carsologica Sinica,2023,42(6):1131 − 1139. (in Chinese with English abstract)] doi: 10.11932/karst2023y014
LIU Wenchong, ZHAO Liangjie, CUI Yali, et al. Structure and application of SWAT-MODFLOW coupling model for surface-groundwater[J]. Carsologica Sinica, 2023, 42(6): 1131 − 1139. (in Chinese with English abstract) doi: 10.11932/karst2023y014
[16] 郑丽,金鑫,金彦香,等. 高寒内陆河流域植被覆盖增加对地下水补给的影响[J]. 生态学报,2023,43(1):140 − 152. [ZHENG Li,JIN Xin,JIN Yanxiang,et al. Impacts of the increasing vegetation coverage on groundwater recharge in an alpine and arid endorheic river watershed[J]. Acta Ecologica Sinica,2023,43(1):140 − 152. (in Chinese with English abstract)]
ZHENG Li, JIN Xin, JIN Yanxiang, et al. Impacts of the increasing vegetation coverage on groundwater recharge in an alpine and arid endorheic river watershed[J]. Acta Ecologica Sinica, 2023, 43(1): 140 − 152. (in Chinese with English abstract)
[17] 傅笛,金鑫,金彦香,等. 基于SWAT-MODFLOW耦合模型的巴音河中游泽令沟盆地地表水-地下水转换关系研究[J]. 地理科学,2022,42(6):1124 − 1132. [FU Di,JIN Xin,JIN Yanxiang,et al. Modelling of the surface-ground water exchange yield in zelinggou basin,middle reaches of the bayin river based on SWAT-MODFLOW coupled model[J]. Scientia Geographica Sinica,2022,42(6):1124 − 1132. (in Chinese with English abstract)]
FU Di, JIN Xin, JIN Yanxiang, et al. Modelling of the surface-ground water exchange yield in zelinggou basin, middle reaches of the bayin river based on SWAT-MODFLOW coupled model[J]. Scientia Geographica Sinica, 2022, 42(6): 1124 − 1132. (in Chinese with English abstract)
[18] 李永坤,薛联青,邸苏闯,等. 基于Infoworks ICM模型的典型海绵措施径流减控效果评估[J]. 河海大学学报(自然科学版),2020,48(5):398 − 405. [LI Yongkun,XUE Lianqing,DI Suchuang,et al. Evaluation of runoff reduction effect of typical sponge measures based on Infoworks ICM model[J]. Journal of Hohai University (Natural Sciences),2020,48(5):398 − 405. (in Chinese with English abstract)] doi: 10.3876/j.issn.1000-1980.2020.05.003
LI Yongkun, XUE Lianqing, DI Suchuang, et al. Evaluation of runoff reduction effect of typical sponge measures based on Infoworks ICM model[J]. Journal of Hohai University (Natural Sciences), 2020, 48(5): 398 − 405. (in Chinese with English abstract) doi: 10.3876/j.issn.1000-1980.2020.05.003
[19] BAILEY R T,WIBLE T C,ARABI M,et al. Assessing regional-scale spatio-temporal patterns of groundwater-surface water interactions using a coupled SWAT-MODFLOW model[J]. Hydrological Processes,2016,30(23):4420 − 4433. doi: 10.1002/hyp.10933
[20] GASSMAN P W,SADEGHI A M,SRINIVASAN R. Applications of the SWAT model special section:Overview and insights[J]. Journal of Environmental Quality,2014,43(1):1 − 8. doi: 10.2134/jeq2013.11.0466
[21] GASSMAN P W,REYES M R,GREEN C H,et al. The soil and water assessment tool:Historical development,applications,and future research directions[J]. Transactions of the ASABE,2007,50(4):1211 − 1250. doi: 10.13031/2013.23637
[22] 张琳琳,崔亚莉,梁桂星,等. SWAT-MODFLOW耦合模型在地下水量均衡分析中的应用[J]. 南水北调与水利科技(中英文),2020,18(6):176 − 183. [ZHANG Linlin,CUI Yali,LIANG Guixing,et al. Application of SWAT-MODFLOW coupling model in groundwater balance analysis[J]. South-to-North Water Transfers and Water Science & Technology,2020,18(6):176 − 183. (in Chinese with English abstract)]
ZHANG Linlin, CUI Yali, LIANG Guixing, et al. Application of SWAT-MODFLOW coupling model in groundwater balance analysis[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(6): 176 − 183. (in Chinese with English abstract)
[23] 刘路广,崔远来. 灌区地表水—地下水耦合模型的构建[J]. 水利学报,2012,43(7):826 − 833. [LIU Luguang,CUI Yuanlai. Construction of integrated surface water and groundwater model for irrigation area[J]. Journal of Hydraulic Engineering,2012,43(7):826 − 833. (in Chinese with English abstract)]
LIU Luguang, CUI Yuanlai. Construction of integrated surface water and groundwater model for irrigation area[J]. Journal of Hydraulic Engineering, 2012, 43(7): 826 − 833. (in Chinese with English abstract)
[24] WEI X L,BAILEY R T,RECORDS R M,et al. Comprehensive simulation of nitrate transport in coupled surface-subsurface hydrologic systems using the linked SWAT-MODFLOW-RT3D model[J]. Environmental Modelling & Software,2019,122:104242.
[25] 郜会彩,肖玉福,胡云进,等. 基于GSFLOW的镜湖湿地地表水与地下水耦合数值模拟[J]. 水文地质工程地质,2022,49(3):182 − 191. [GAO Huicai,XIAO Yufu,HU Yunjin,et al. Numerical simulation of coupling surface water and groundwater based on GSFLOW for the Jinghu Wetland[J]. Hydrogeology & Engineering Geology,2022,49(3):182 − 191. (in Chinese with English abstract)]
GAO Huicai, XIAO Yufu, HU Yunjin, et al. Numerical simulation of coupling surface water and groundwater based on GSFLOW for the Jinghu Wetland[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 182 − 191. (in Chinese with English abstract)
[26] GOWDA P H,MULLA D J,DESMOND E D,et al. ADAPT:Model use,calibration,and validation[J]. Transactions of the ASABE,2012,55(4):1345 − 1352. doi: 10.13031/2013.42246
-