河水-地下水交换对河水来源组成的影响

丁兰芳, 张志远, 蒋小伟, 王旭升, 万力. 河水-地下水交换对河水来源组成的影响——以都思兔河为例[J]. 水文地质工程地质, 2025, 52(1): 42-52. doi: 10.16030/j.cnki.issn.1000-3665.202401053
引用本文: 丁兰芳, 张志远, 蒋小伟, 王旭升, 万力. 河水-地下水交换对河水来源组成的影响——以都思兔河为例[J]. 水文地质工程地质, 2025, 52(1): 42-52. doi: 10.16030/j.cnki.issn.1000-3665.202401053
DING Lanfang, ZHANG Zhiyuan, JIANG Xiaowei, WANG Xusheng, WAN Li. Impact of stream-groundwater interaction on stream water source composition: A case study of the Dosit River[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 42-52. doi: 10.16030/j.cnki.issn.1000-3665.202401053
Citation: DING Lanfang, ZHANG Zhiyuan, JIANG Xiaowei, WANG Xusheng, WAN Li. Impact of stream-groundwater interaction on stream water source composition: A case study of the Dosit River[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 42-52. doi: 10.16030/j.cnki.issn.1000-3665.202401053

河水-地下水交换对河水来源组成的影响

  • 基金项目: 国家自然科学基金项目(42172270;42402251);中央高校基本科研业务费项目(2-9-2021-005)
详细信息
    作者简介: 丁兰芳(1998—),女,硕士研究生,主要从事河水-地下水交换研究。E-mail:dlfuse@163.com
    通讯作者: 张志远(1990—),男,博士,讲师,主要从事水文地质研究工作。E-mail:zhiyuan.zhang@cugb.edu.cn
  • 中图分类号: P641.8

Impact of stream-groundwater interaction on stream water source composition: A case study of the Dosit River

More Information
  • 盈水河段和渗失河段交替出现是河水-地下水交换的常见形式,以盈水河段所在位置为来源的河水来源组成研究是近年来河流水质研究的热点之一。然而,干旱半干旱地区河水来源组成的演变特征规律尚不清晰。本研究以鄂尔多斯盆地都思兔河为例,基于河水-地下水耦合数值模型,分析了丰水年、平水年和枯水年3种年降水条件下都思兔河的河水-地下水交换特征及其对河流沿程河水来源组成的影响。结果表明:(1)都思兔河整条河流以接收地下水排泄为主,但河段尺度上的河水-地下水补排关系具有空间非均匀性,渗失河段总长度占比不低于40%;(2)河道断面上河水的来源组成具有集中效应,以下游苦水沟断面为例,丰水年、平水年和枯水年3种降水情景下河流水量的80%分别来自于河流总长度的12.3%、9.2%、18.6%;(3)河流断面处河水来源组成的集中效应与断面流量具有良好的相关性,流量越小,河水来源的位置越集中。本研究首次探究了干旱半干旱地区河水的来源组成沿程变化规律,强调了关键河段对维持河流水量的重要作用。研究结果可为干旱半干旱区水资源管理、河流污染防治提供参考。

  • 加载中
  • 图 1  研究区位置及地形(据文献[21]修改)

    Figure 1. 

    图 2  Ⅱ号剖面地层岩相分布图(据文献[20]修改)

    Figure 2. 

    图 3  观测井中观测水头与计算水头的比较

    Figure 3. 

    图 4  河水-地下水交换量的沿程分布及河水水量来源组成

    Figure 4. 

    图 5  苦水沟断面处河道相关流量及来源贡献占比

    Figure 5. 

    图 6  不同年降水量情景下河水-地下水交换量的空间分布和河水的来源组成演化

    Figure 6. 

    图 7  河流水量沿程变化图

    Figure 7. 

    图 8  典型断面流量贡献、盈水河段比例、降水量之间的关系

    Figure 8. 

    表 1  模型参数设置

    Table 1.  Model parameter settings

    参数 取值
    年均降水量/mm 131(枯水年情景)
    275(平水年情景)
    468(丰水年情景)
    降水入渗系数 0.25
    水面蒸发量/(mm·a−1 1171.3[17]
    蒸发极限埋深/m 2.8[17]
    环河组水平渗透系数/(m·d−1 0.55 [29]
    洛河组水平渗透系数/(m·d−1 0.45[29]
    垂向各向异性比 100[17]
    水平各向异性比 1
    下载: 导出CSV
  • [1]

    WINTER T C,HARVEY J W,FRANKE O L,et al. Ground water and surface water:A single resource[J]. United States Geological Survey Circular,1998,1139:1 − 79.

    [2]

    FERGUSON C,MCINTOSH J C,JASECHKO S,et al. Groundwater deeper than 500 m contributes less than 0.1% of global river discharge[J]. Communications Earth & Environment,2023,4(1):1 − 8.

    [3]

    韩鹏飞,王旭升,蒋小伟,等. 氢氧同位素在地下水流系统的重分布:从高程效应到深度效应[J]. 水文地质工程地质,2023,50(2):1 − 12. [HAN Pengfei,WANG Xusheng,JIANG Xiaowei,et al. Redistribution of hydrogen and oxygen isotopes in groundwater flow systems:From altitude effect to depth effect[J]. Hydrogeology & Engineering Geology,2023,50(2):1 − 12. (in Chinese with English abstract)]

    HAN Pengfei, WANG Xusheng, JIANG Xiaowei, et al. Redistribution of hydrogen and oxygen isotopes in groundwater flow systems: From altitude effect to depth effect[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 1 − 12. (in Chinese with English abstract)

    [4]

    杜尧,马腾,邓娅敏,等. 潜流带水文-生物地球化学: 原理、方法及其生态意义[J]. 地球科学,2017,42(5):661 − 673. [DU yao,MA Teng,DENG Yamin,et al. Hydro-biogeochemistry of hyporheic zone: Principles, methods and ecological significance[J]. Earth Science,2017,42(5):661 − 673. (in Chinese with English abstract)]

    DU yao, MA Teng, DENG Yamin, et al. Hydro-biogeochemistry of hyporheic zone: Principles, methods and ecological significance[J]. Earth Science, 2017, 42(5): 661 − 673. (in Chinese with English abstract)

    [5]

    杨滨键,尚杰,于法稳. 农业面源污染防治的难点、问题及对策[J]. 中国生态农业学报(中英文),2019,27(2):236 − 245. [YANG Bingjian,SHANG Jie,YU Fawen. Difficulty, problems and countermeasures of agricultural non-point sources pollution controlin China[J]. Chinese Journal of Eco-Agriculture,2019,27(2):236 − 245. (in Chinese with English abstract)]

    YANG Bingjian, SHANG Jie, YU Fawen. Difficulty, problems and countermeasures of agricultural non-point sources pollution controlin China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(2): 236 − 245. (in Chinese with English abstract)

    [6]

    杜新强,方敏,冶雪艳. 地下水“三氮”污染来源及其识别方法研究进展[J]. 环境科学,2018,39(11):5266 − 5275. [DU Xinqiang,FANG Min,YE Xueyan. Research progress on the sources of inorganic nitrogen pollution in groundwater and identification methods[J]. Environmental Science,2018,39(11):5266 − 5275. (in Chinese with English abstract)]

    DU Xinqiang, FANG Min, YE Xueyan. Research progress on the sources of inorganic nitrogen pollution in groundwater and identification methods[J]. Environmental Science, 2018, 39(11): 5266 − 5275. (in Chinese with English abstract)

    [7]

    涂春霖,陈庆松,尹林虎,等. 我国地下水硝酸盐污染及源解析研究进展[J]. 环境科学,2024,45(6):3129 − 3141. [TU Chunlin,CHEN Qingsong,YIN Linhu,et al. Research advances of groundwater nitrate pollution and source apportionment in China[J]. Environmental Science,2024,45(6):3129 − 3141. (in Chinese with English abstract)]

    TU Chunlin, CHEN Qingsong, YIN Linhu, et al. Research advances of groundwater nitrate pollution and source apportionment in China[J]. Environmental Science, 2024, 45(6): 3129 − 3141. (in Chinese with English abstract)

    [8]

    JOHNSON H M,STETS E G. Nitrate in streams during winter low-flow conditions as an indicator of legacy nitrate[J]. Water Resources Research,2020,56(11):e2019wr026996. doi: 10.1029/2019WR026996

    [9]

    薛禹群,张幼宽. 地下水污染防治在我国水体污染控制与治理中的双重意义[J]. 环境科学学报,2009,29(3):474 − 481. [XUE Yuqun,ZHANG Youkuan. Twofold significance of ground water pollution prevention in China’s water pollution control[J]. Acta Scientiae Circumstantiae,2009,29(3):474 − 481. (in Chinese with English abstract)] doi: 10.3321/j.issn:0253-2468.2009.03.002

    XUE Yuqun, ZHANG Youkuan. Twofold significance of ground water pollution prevention in China’s water pollution control[J]. Acta Scientiae Circumstantiae, 2009, 29(3): 474 − 481. (in Chinese with English abstract) doi: 10.3321/j.issn:0253-2468.2009.03.002

    [10]

    COVINO T,MCGLYNN B,MALLARD J. Stream-groundwater exchange and hydrologic turnover at the network scale[J]. Water Resources Research,2011,47(12):e2011wr010942. doi: 10.1029/2011WR010942

    [11]

    MALLARD J,MCGLYNN B,COVINO T. Lateral inflows,stream-groundwater exchange,and network geometry influence stream water composition[J]. Water Resources Research,2014,50(6):4603 − 4623. doi: 10.1002/2013WR014944

    [12]

    ZHANG Zhiyuan,SCHMIDT C,NIXDORF E,et al. Effects of heterogeneous stream-groundwater exchange on the source composition of stream discharge and solute load[J]. Water Resources Research,2021,57(8):1 − 19.

    [13]

    JÄHKEL A,GRAEBER D,FLECKENSTEIN J H,et al. Hydrologic turnover matters—gross gains and losses of six first-order streams across contrasting landscapes and flow regimes[J]. Water Resources Research,2022,58(7):e2022wr032129. doi: 10.1029/2022WR032129

    [14]

    CONANT B,CHERRY J A,GILLHAM R W. A PCE groundwater plume discharging to a river:Influence of the streambed and near-river zone on contaminant distributions[J]. Journal of Contaminant Hydrology,2004,73(1/2/3/4):249 − 279.

    [15]

    SCHMIDT C,BAYER-RAICH M,SCHIRMER M. Characterization of spatial heterogeneity of groundwater-stream water interactions using multiple depth streambed temperature measurements at the reach scale[J]. Hydrology and Earth System Sciences,2006,10(6):849 − 859. doi: 10.5194/hess-10-849-2006

    [16]

    BATLLE-AGUILAR J,HARRINGTON G A,LEBLANC M,et al. Chemistry of groundwater discharge inferred from longitudinal river sampling[J]. Water Resources Research,2014,50(2):1550 − 1568. doi: 10.1002/2013WR013591

    [17]

    王俊智. 盆地多级次地下水流系统识别方法研究[D]. 北京:中国地质大学(北京),2015. [WANG Junzhi. A methodological study on the identification of hierarchically nested groundwater flow systems in Drainage Basins[D]. Beijing:China University of Geosciences (Beijing),2015. (in Chinese with English abstract)]

    WANG Junzhi. A methodological study on the identification of hierarchically nested groundwater flow systems in Drainage Basins[D]. Beijing: China University of Geosciences (Beijing), 2015. (in Chinese with English abstract)

    [18]

    钱会,窦妍,李西建,等. 都思兔河氢氧稳定同位素沿流程的变化及其对河水蒸发的指示[J]. 水文地质工程地质,2007,34(1):107 − 112. [QIAN Hui,DOU Yan,LI Xijian,et al. Changes of δ18O and δD along Dousitu River and its indication of river water evaporation[J]. Hydrogeology & Engineering Geology,2007,34(1):107 − 112. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-3665.2007.01.024

    QIAN Hui, DOU Yan, LI Xijian, et al. Changes of δ18O and δD along Dousitu River and its indication of river water evaporation[J]. Hydrogeology & Engineering Geology, 2007, 34(1): 107 − 112. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2007.01.024

    [19]

    孙芳强. 鄂尔多斯盆地都思兔河流域地下水循环及生态环境效应研究[D]. 西安:长安大学,2010. [SUN Fangqiang. Research on groundwater circulation and environment effect of Dusitu river in Ordos Basin[D]. Xi’an:Chang’an University,2010. (in Chinese with English abstract)]

    SUN Fangqiang. Research on groundwater circulation and environment effect of Dusitu river in Ordos Basin[D]. Xi’an: Chang’an University, 2010. (in Chinese with English abstract)

    [20]

    侯光才,张茂省,刘方,等. 鄂尔多斯盆地地下水勘查研究[M]. 北京:地质出版社,2008. [HOU Guangcai,ZHANG Maosheng,LIU Fang,et al. Study on groundwater exploration in Ordos basin[M]. Beijing:Geological Publishing House,2008. (in Chinese)]

    HOU Guangcai, ZHANG Maosheng, LIU Fang, et al. Study on groundwater exploration in Ordos basin[M]. Beijing: Geological Publishing House, 2008. (in Chinese)

    [21]

    蒋小伟,万力,王旭升. 区域地下水流理论进展[M]. 北京:地质出版社,2013. [JIANG Xiaowei,WAN Li,WANG Xusheng. Advances in the theory of regional groundwater flow[M]. Beijing:Geological Publishing House,2013. (in Chinese)]

    JIANG Xiaowei, WAN Li, WANG Xusheng. Advances in the theory of regional groundwater flow[M]. Beijing: Geological Publishing House, 2013. (in Chinese)

    [22]

    王恒. 基于水化学演化规律的盆地地下水循环研究[D]. 北京:中国地质大学(北京),2016. [WANG Heng. A methodological study on the hydrogeochemical characterization of hierarchically nested groundwater flow systems[D]. Beijing:China University of Geosciences (Beijing),2016. (in Chinese with English abstract)]

    WANG Heng. A methodological study on the hydrogeochemical characterization of hierarchically nested groundwater flow systems[D]. Beijing: China University of Geosciences (Beijing), 2016. (in Chinese with English abstract)

    [23]

    庞忠和,黄天明,杨硕,等. 包气带在干旱半干旱地区地下水补给研究中的应用[J]. 工程地质学报,2018,26(1):51 − 61. [PANG Zhonghe,HUANG Tianming,YANG Shuo,et al. The potential of the unsturated zone in groundwater recharge in arid and semiarid areas[J]. Journal of Engineering Geology,2018,26(1):51 − 61. (in Chinese with English abstract)]

    PANG Zhonghe, HUANG Tianming, YANG Shuo, et al. The potential of the unsturated zone in groundwater recharge in arid and semiarid areas[J]. Journal of Engineering Geology, 2018, 26(1): 51 − 61. (in Chinese with English abstract)

    [24]

    陈飞,徐翔宇,羊艳,等. 中国地下水资源演变趋势及影响因素分析[J]. 水科学进展,2020,31(6):811 − 818. [CHEN Fei,XU Xiangyu,YANG Yan,et al. Investigation on the evolution trends and influencing factors of groundwater resources in China[J]. Advances In Water Science,2020,31(6):811 − 818. (in Chinese with English abstract)]

    CHEN Fei, XU Xiangyu, YANG Yan, et al. Investigation on the evolution trends and influencing factors of groundwater resources in China[J]. Advances In Water Science, 2020, 31(6): 811 − 818. (in Chinese with English abstract)

    [25]

    赵芳,田质胜,冯一鸣,等. 变化环境下的地下水动态响应研究进展[J]. 济南大学学报(自然科学版),2020,34(1):69 − 75. . [ZHAO Fang,TIAN Zhisheng,FENG Yiming,et al. Research progress on groundwater dynamic response under changing environments[J]. Journal of University of Jinan (Science and Technology),2020,34(1):69 − 75. (in Chinese with English abstract)]

    ZHAO Fang, TIAN Zhisheng, FENG Yiming, et al. Research progress on groundwater dynamic response under changing environments[J]. Journal of University of Jinan (Science and Technology), 2020, 34(1): 69 − 75. (in Chinese with English abstract)

    [26]

    王平. 西北干旱区间歇性河流与含水层水量交换研究进展与展望[J]. 地理科学进展,2018,37(2):183 − 197. [WANG Ping. Progress and prospect of research on water exchange between intermittent rivers and aquifers in arid regions of northwestern China[J]. Progress in Geography,2018,37(2):183 − 197. (in Chinese with English abstract)]

    WANG Ping. Progress and prospect of research on water exchange between intermittent rivers and aquifers in arid regions of northwestern China[J]. Progress in Geography, 2018, 37(2): 183 − 197. (in Chinese with English abstract)

    [27]

    孙金,王怡璇,杨璐,等. 锡林河上游雨季降水、河水和地下水转化关系[J]. 环境科学,2023,44(12):6754 − 6766. [SUN Jin,WANG Yixuan,YANG Lu,et al. Relationship Between precipitation, river water, and groundwater conversion in the upper reaches of Xilin River during the rainy season[J]. Environmental Science,2023,44(12):6754 − 6766. (in Chinese with English abstract)]

    SUN Jin, WANG Yixuan, YANG Lu, et al. Relationship Between precipitation, river water, and groundwater conversion in the upper reaches of Xilin River during the rainy season[J]. Environmental Science, 2023, 44(12): 6754 − 6766. (in Chinese with English abstract)

    [28]

    刘荣. 都思兔河水环境现状调查分析[D]. 呼和浩特:内蒙古大学,2019. [LIU Rong. Investigation and analysis of water environment of Dustu River[D]. Hohhot:Inner Mongolia University,2019. (in Chinese with English abstract)]

    LIU Rong. Investigation and analysis of water environment of Dustu River[D]. Hohhot: Inner Mongolia University, 2019. (in Chinese with English abstract)

    [29]

    张志远. 巨厚潜水含水层自流井的水动力特征研究[D]. 北京:中国地质大学(北京),2018. [ZHANG Zhiyuan. A study on hydrodynamic characteristic of flowing wells in thick unconfined aquifers[D]. Beijing:China University of Geosciences (Beijing),2018. (in Chinese with English abstract)]

    ZHANG Zhiyuan. A study on hydrodynamic characteristic of flowing wells in thick unconfined aquifers[D]. Beijing: China University of Geosciences (Beijing), 2018. (in Chinese with English abstract)

    [30]

    NISWONGER R G,PRUDIC D E. Documentation of the streamflow-routing (SFR2) package to include unsaturated flow beneath streams - A modification to SFR1[J]. Techniques and Methods,2005,6(A13):1 − 50.

    [31]

    余忠波,黄勇,FRANKLIN W S. 地下水水文学原理[M]. 北京:科学出版社,2008. [YU Zhongbo,HUANG Yong,FRANKLIN W S. Principles of groundwater hydrology[M]. Beijing:Science Press,2008. (in Chinese)].

    [32]

    靳孟贵,鲜阳,刘延锋. 脱节型河流与地下水相互作用研究进展[J]. 水科学进展,2017,28(1):149 − 160. [JIN Menggui,XIAN Yang,LIU Yanfeng. Disconnected stream and groundwater interaction:A review[J]. Advances in Water Science,2017,28(1):149 − 160. (in Chinese with English abstract)]

    JIN Menggui, XIAN Yang, LIU Yanfeng. Disconnected stream and groundwater interaction: A review[J]. Advances in Water Science, 2017, 28(1): 149 − 160. (in Chinese with English abstract)

    [33]

    胡汝骥,樊自立,王亚俊,等. 中国西北干旱区的地下水资源及其特征[J]. 自然资源学报,2002,17(3):321 − 326. [HU Ruji,FAN Zili,WANG Yajun,et al. Groundwater resources and their characteristics in arid lands of NorthWestern China[J]. Journal of Natural Resources,2002,17(3):321 − 326. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-3037.2002.03.012

    HU Ruji, FAN Zili, WANG Yajun, et al. Groundwater resources and their characteristics in arid lands of NorthWestern China[J]. Journal of Natural Resources, 2002, 17(3): 321 − 326. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-3037.2002.03.012

  • 加载中

(8)

(1)

计量
  • 文章访问数:  212
  • PDF下载数:  38
  • 施引文献:  0
出版历程
收稿日期:  2024-01-14
修回日期:  2024-03-19
刊出日期:  2025-01-15

目录