基坑施工抽水诱发土体渗透破坏的临界抽水量预测

姜伏伟, 唐书君, 邓晓飞, 李振超, 张发旺, 尹鸿远. 基坑施工抽水诱发土体渗透破坏的临界抽水量预测[J]. 水文地质工程地质, 2025, 52(1): 53-61. doi: 10.16030/j.cnki.issn.1000-3665.202401044
引用本文: 姜伏伟, 唐书君, 邓晓飞, 李振超, 张发旺, 尹鸿远. 基坑施工抽水诱发土体渗透破坏的临界抽水量预测[J]. 水文地质工程地质, 2025, 52(1): 53-61. doi: 10.16030/j.cnki.issn.1000-3665.202401044
JIANG Fuwei, TANG Shujun, DENG Xiaofei, LI Zhenchao, ZHANG Fawang, YIN Hongyuan. Predicting the critical drainage induced by soil seepage failure during pumping in foundation pit construction[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 53-61. doi: 10.16030/j.cnki.issn.1000-3665.202401044
Citation: JIANG Fuwei, TANG Shujun, DENG Xiaofei, LI Zhenchao, ZHANG Fawang, YIN Hongyuan. Predicting the critical drainage induced by soil seepage failure during pumping in foundation pit construction[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 53-61. doi: 10.16030/j.cnki.issn.1000-3665.202401044

基坑施工抽水诱发土体渗透破坏的临界抽水量预测

  • 基金项目: 国家重点研发计划项目(2023YFC3710001);国家自然科学基金项目(42467024;41130637);东华理工大学博士科研启动基金项目(DHBK2022015);青海九零六工程勘察设计院有限责任公司科技项目(2023-KJ-07)
详细信息
    作者简介: 姜伏伟(1987—),男,博士,副教授,主要从事岩溶工程地质方面研究。E-mail:jfwei666@126.com
    通讯作者: 张发旺(1965—),男,博士,二级研究员,博士生导师,主要从事水文地质环境地质及生态修复控制等方面研究。E-mail:zfawang@mail.cgs.gov.cn
  • 中图分类号: P641.2

Predicting the critical drainage induced by soil seepage failure during pumping in foundation pit construction

More Information
  • 在地下水水位埋深较浅的基坑施工过程中,常因抽水强度控制不当导致土体渗透破坏引起工程事故,造成人员伤亡及财产损失。目前,已有研究主要针对抽水诱发土体渗透破坏的土层条件、沉降变形预测、施工抽水措施等方面,较少涉及抽水诱发土体渗透破坏的临界抽水量。然而,临界抽水量是基坑施工抽水安全的关键参数,当前无有效的方法计算测试该参数。基于《水电工程钻孔抽水试验规程》(NB/T 35103—2017)推荐的抽水试验渗透系数计算公式,结合达西定理及等价无穷小公式,推导得出潜水非完整孔、潜水完整孔、承压水非完整孔和承压水完整孔4种工况条件下土体渗透破坏的临界抽水量表达式,并引入修正系数对推导的表达式进行修正。结果表明:(1)4种工况下,诱发土体渗透破坏的临界抽水量表达式是关于临界渗透速率的一次函数,说明通过测算场地土体渗透破坏的临界渗透速率可求出临界抽水量;(2)以呼和浩特某基坑为例,场地内最大可能发生抽水渗透破坏的地层为圆砾层,通过室内试验得出它的破坏临界渗透速率为7.1×10−4 m/s。为了确保场地圆砾层不受抽水破坏,设计的潜水完整抽水井SJ1临界抽水量为174.45 m3/d。实际抽水量控制在150 m3/d内未出现渗透破坏现象,说明提出的方法具有可应用性。因此,相比于基坑施工中临界抽水量预测的现有定性经验方法,文章提出的定量计算方法更具有实践应用价值。

  • 加载中
  • 图 1  基坑剖面及降水井设计图

    Figure 1. 

    图 2  渗透变形试验装置

    Figure 2. 

    表 1  土层渗透系数

    Table 1.  Permeability coefficients of rock strata

    层底
    深度/m
    厚度/
    m
    地层岩性 单层渗透
    系数/(m·d−1
    1.5 1.5 素填土:褐色,稍密
    3.3 1.8 粉土:褐色,稍湿,稍密 0.3
    5.4 2.1 粉质黏土:黑褐色,可塑 0.005
    6.3 0.9 细砂:黑褐色,潮湿,中密 10
    11.5 5.2 圆砾:黄褐色,磨圆度一般,
    潮湿至饱和,中密至密实
    80
    13.4 1.9 粉土:褐黄色,潮湿,中密 0.3
    15.0 1.6 粉砂:褐黄色,饱和,中密 5
    17.8 2.8 粉质黏土:灰色,可塑 0.005
    23.8 6.0 中砂:褐黄色,饱和,中密至密实 20
    下载: 导出CSV

    表 2  场地土体渗透破坏临界渗透速率

    Table 2.  Critical velocity of soil infiltration failure in the site

    土层 试样
    编号
    破坏时
    浊度/NTU
    临界
    水头差/cm
    平均临界
    水力坡降
    临界
    渗透速率/(m·s−1
    圆砾YL16211.20.777.1×10−4
    YL24612.0
    YL35511.6
    粉土FT112356.53.961.4×10−5
    FT216860.2
    FT39861.6
    粉砂FS110521.71.438.3×10−5
    FS26721.2
    FS38621.3
    中砂ZS17716.01.032.4×10−4
    ZS24215.1
    ZS35815.4
    下载: 导出CSV
  • [1]

    罗凤江. 长江漫滩地区深基坑降水设计与施工问题分析[J]. 市政技术,2023,41(11):130 − 136. [LUO Fengjiang. Dewatering design and construction analysis of deep foundation pit in flood area of Yangtze River[J]. Journal of Municipal Technology,2023,41(11):130 − 136. (in Chinese with English abstract)]

    LUO Fengjiang. Dewatering design and construction analysis of deep foundation pit in flood area of Yangtze River[J]. Journal of Municipal Technology, 2023, 41(11): 130 − 136. (in Chinese with English abstract)

    [2]

    主灿,张云,何国峰,等. 天津滨海新区抽水引起地面沉降现场试验研究[J]. 水文地质工程地质,2018,45(2):159 − 164. [ZHU Can,ZHANG Yun,HE Guofeng,et al. In-situ tests of land subsidence caused by pumping in the Tianjin Binhai New Area[J]. Hydrogeology & Engineering Geology,2018,45(2):159 − 164. (in Chinese with English abstract)]

    ZHU Can, ZHANG Yun, HE Guofeng, et al. In-situ tests of land subsidence caused by pumping in the Tianjin Binhai New Area[J]. Hydrogeology & Engineering Geology, 2018, 45(2): 159 − 164. (in Chinese with English abstract)

    [3]

    黄健民,吕镁娜,郭宇,等. 广州金沙洲岩溶地面塌陷地质灾害成因分析[J]. 中国岩溶,2013,32(2):167 − 174. [HUANG Jianmin,LYU Meina,GUO Yu,et al. Research on the reason for geologic disaster by Karst surface collapse at Jinshazhou in Guangzhou[J]. Carsologica Sinica,2013,32(2):167 − 174. (in Chinese with English abstract)]

    HUANG Jianmin, LYU Meina, GUO Yu, et al. Research on the reason for geologic disaster by Karst surface collapse at Jinshazhou in Guangzhou[J]. Carsologica Sinica, 2013, 32(2): 167 − 174. (in Chinese with English abstract)

    [4]

    赵燕容,董小松,李猛,等. 基于抗突涌稳定性安全系数控制的基坑降水最优化模型研究[J]. 水力发电,2023,49(4):23 − 28. [ZHAO Yanrong,DONG Xiaosong,LI Meng,et al. Study on the optimization model of foundation pit dewatering based on safety coefficient control of anti-inrushing stability[J]. Water Power,2023,49(4):23 − 28. (in Chinese with English abstract)]

    ZHAO Yanrong, DONG Xiaosong, LI Meng, et al. Study on the optimization model of foundation pit dewatering based on safety coefficient control of anti-inrushing stability[J]. Water Power, 2023, 49(4): 23 − 28. (in Chinese with English abstract)

    [5]

    王长生,王浩楠,李良琦,等. 强透水地层基坑降水对渗透变形和沉降安全的影响分析[J]. 人民黄河,2023,45(4):143 − 149. [WANG Changsheng,WANG Haonan,LI Liangqi,et al. Analysis of foundation pit dewatering on seepage deformation and ground settlement safety in strong permeable stratum[J]. Yellow River,2023,45(4):143 − 149. (in Chinese with English abstract)]

    WANG Changsheng, WANG Haonan, LI Liangqi, et al. Analysis of foundation pit dewatering on seepage deformation and ground settlement safety in strong permeable stratum[J]. Yellow River, 2023, 45(4): 143 − 149. (in Chinese with English abstract)

    [6]

    栗晴瀚,张静涛,郑刚,等. 含水层越流情况下基坑降水引发变形机理及控制措施[J]. 土木工程学报,2023,56(5):89 − 101. [LI Qinghan,ZHANG Jingtao,ZHENG Gang,et al. Mechanisms and countermeasures of deformation induced by dewatering of excavation in leaky aquifers[J]. China Civil Engineering Journal,2023,56(5):89 − 101. (in Chinese with English abstract)]

    LI Qinghan, ZHANG Jingtao, ZHENG Gang, et al. Mechanisms and countermeasures of deformation induced by dewatering of excavation in leaky aquifers[J]. China Civil Engineering Journal, 2023, 56(5): 89 − 101. (in Chinese with English abstract)

    [7]

    任壮,丁春林,吴烁,等. 富水软弱地层基坑开挖中的土体变形与渗流特性[J]. 城市轨道交通研究,2022,25(8):107 − 111. [REN Zhuang,DING Chunlin,WU Shuo,et al. Soil deformation and seepage characteristics of foundation pit excavation engineering in water-rich soft stratum[J]. Urban Mass Transit,2022,25(8):107 − 111. (in Chinese with English abstract)]

    REN Zhuang, DING Chunlin, WU Shuo, et al. Soil deformation and seepage characteristics of foundation pit excavation engineering in water-rich soft stratum[J]. Urban Mass Transit, 2022, 25(8): 107 − 111. (in Chinese with English abstract)

    [8]

    于丽,王明年. 成都卵石土深基坑施工降水对地表变形的影响[J]. 四川建筑科学研究,2016,42(2):51 − 54. [YU Li,WANG Mingnian. Ground settlement caused by pumping when deep foundation was constructed in Chengdu[J]. Sichuan Building Science,2016,42(2):51 − 54. (in Chinese with English abstract)]

    YU Li, WANG Mingnian. Ground settlement caused by pumping when deep foundation was constructed in Chengdu[J]. Sichuan Building Science, 2016, 42(2): 51 − 54. (in Chinese with English abstract)

    [9]

    贾亚杰,梁发云,崔振东,等. 基于层间位移协调的承压水降压引起土层变形分析[J]. 岩土力学,2016,37(增刊1):42 − 48. [JIA Yajie,LIANG Fayun,CUI Zhendong,et al. Analysis of soil deformation caused by decompression of confined water based on displacement coordination condition[J]. Rock and Soil Mechanics,2016,37(Sup1):42 − 48. (in Chinese with English abstract)]

    JIA Yajie, LIANG Fayun, CUI Zhendong, et al. Analysis of soil deformation caused by decompression of confined water based on displacement coordination condition[J]. Rock and Soil Mechanics, 2016, 37(Sup1): 42 − 48. (in Chinese with English abstract)

    [10]

    刘波,张功,江永华,等. 基于变渗透系数的深基坑单井抽水沉降研究[J]. 工程地质学报,2014,22(6):1123 − 1127. [LIU Bo,ZHANG Gong,JIANG Yonghua,et al. Settlement research on single pumping well of foundation pit using changeable permeability coefficient model[J]. Journal of Engineering Geology,2014,22(6):1123 − 1127. (in Chinese with English abstract)]

    LIU Bo, ZHANG Gong, JIANG Yonghua, et al. Settlement research on single pumping well of foundation pit using changeable permeability coefficient model[J]. Journal of Engineering Geology, 2014, 22(6): 1123 − 1127. (in Chinese with English abstract)

    [11]

    黄建华,李瑞. 基于HS-Small模型临江深基坑降水变形特性分析[J]. 水电能源科学,2023,41(11):116 − 120. [HUANG Jianhua,LI Rui. Analysis of deformation characteristics of deep foundation pit dewatering closes to the river based on HS-small model[J]. Water Resources and Power,2023,41(11):116 − 120. (in Chinese with English abstract)]

    HUANG Jianhua, LI Rui. Analysis of deformation characteristics of deep foundation pit dewatering closes to the river based on HS-small model[J]. Water Resources and Power, 2023, 41(11): 116 − 120. (in Chinese with English abstract)

    [12]

    李莎,成建梅,宫辉力. 基于变渗透系数的地下水开采-地面沉降三维模拟研究[J]. 水文地质工程地质,2018,45(3):14 − 21. [LI Sha,CHENG Jianmei,GONG Huili. Three dimensional simulation of groundwater exploitation and land subsidence based on variable permeability[J]. Hydrogeology & Engineering Geology,2018,45(3):14 − 21. (in Chinese with English abstract)]

    LI Sha, CHENG Jianmei, GONG Huili. Three dimensional simulation of groundwater exploitation and land subsidence based on variable permeability[J]. Hydrogeology & Engineering Geology, 2018, 45(3): 14 − 21. (in Chinese with English abstract)

    [13]

    骆勇,祝晓彬,郭飞,等. 不同方法求解疏排水引起的地面沉降对比研究[J]. 水文地质工程地质,2018,45(5):150 − 157. [LUO Yong,ZHU Xiaobin,GUO Fei,et al. A comparative study of land subsidence caused by drainage with different methods[J]. Hydrogeology & Engineering Geology,2018,45(5):150 − 157. (in Chinese with English abstract)]

    LUO Yong, ZHU Xiaobin, GUO Fei, et al. A comparative study of land subsidence caused by drainage with different methods[J]. Hydrogeology & Engineering Geology, 2018, 45(5): 150 − 157. (in Chinese with English abstract)

    [14]

    蔡娇娇,冯晓腊,李滕龙,等. 武汉一级阶地基坑降水引起土层水位变化及压缩变形研究[J]. 水文地质工程地质,2018,45(2):90 − 95. [CAI Jiaojiao,FENG Xiaola,LI Tenglong,et al. Research on groundwater level variation and ground subsidence caused by foundation pit dewatering at the Wuhan first terrace[J]. Hydrogeology & Engineering Geology,2018,45(2):90 − 95. (in Chinese with English abstract)]

    CAI Jiaojiao, FENG Xiaola, LI Tenglong, et al. Research on groundwater level variation and ground subsidence caused by foundation pit dewatering at the Wuhan first terrace[J]. Hydrogeology & Engineering Geology, 2018, 45(2): 90 − 95. (in Chinese with English abstract)

    [15]

    李晓生. 富水深厚砂卵石地层深基坑降水引起的地层沉降预测[J]. 河南科技大学学报(自然科学版),2023,44(1):77 − 83. [LI Xiaosheng. Prediction of stratum deformation caused by deep foundation pit dewatering in water-rich and deep sandy pebble stratum[J]. Journal of Henan University of Science and Technology (Natural Science),2023,44(1):77 − 83. (in Chinese with English abstract)]

    LI Xiaosheng. Prediction of stratum deformation caused by deep foundation pit dewatering in water-rich and deep sandy pebble stratum[J]. Journal of Henan University of Science and Technology (Natural Science), 2023, 44(1): 77 − 83. (in Chinese with English abstract)

    [16]

    李雷明,蒋昊楠. 轻型井点降水在粉质土基坑中的运用[J]. 人民黄河,2023,45(增刊1):173 − 174. [LI Leiming,JIANG Haonan. Application of light well point dewatering in silty soil foundation pit[J]. Yellow River,2023,45(Sup1):173 − 174. (in Chinese with English abstract)]

    LI Leiming, JIANG Haonan. Application of light well point dewatering in silty soil foundation pit[J]. Yellow River, 2023, 45(Sup1): 173 − 174. (in Chinese with English abstract)

    [17]

    祁凌飞,曲新钢,周山君,等. 富水砂层深基坑悬挂式止水帷幕降水方案优化研究[J]. 工程力学,2023,40(增刊1):213 − 218. [QI Lingfei,QU Xingang,ZHOU Shanjun,et al. Dewatering design optimization for deep excavation with suspended impervious curtain in water-sandy layer [J]. Engineering Mechanics,2023,40(Sup 1):213 − 218. (in Chinese with English abstract)]

    QI Lingfei, QU Xingang, ZHOU Shanjun, et al. Dewatering design optimization for deep excavation with suspended impervious curtain in water-sandy layer [J]. Engineering Mechanics, 2023, 40(Sup 1): 213 − 218. (in Chinese with English abstract)

    [18]

    孟立民,王珂,冯澄宇,等. 富水厚砂层地铁车站洞桩法施工降水关键技术及监测分析[J]. 现代城市轨道交通,2022(11):42 − 46. [MENG Limin,WANG Ke,FENG Chengyu,et al. Key technique of dewatering and monitoring analysis for Pile-Beam-Arch-method (PBA method) construction of metro station in water-rich thick sand strata[J]. Modern Urban Transit,2022(11):42 − 46. (in Chinese with English abstract)]

    MENG Limin, WANG Ke, FENG Chengyu, et al. Key technique of dewatering and monitoring analysis for Pile-Beam-Arch-method (PBA method) construction of metro station in water-rich thick sand strata[J]. Modern Urban Transit, 2022(11): 42 − 46. (in Chinese with English abstract)

    [19]

    黄弈茗,刘国强,赵永宽,等. 复杂环境超深基坑降水施工技术[J]. 建筑施工,2023,45(3):442 − 445. [HUANG Yiming,LIU Guoqiang,ZHAO Yongkuan,et al. Dewatering construction technology of ultra-deep foundation pit in complex environment[J]. Building Construction,2023,45(3):442 − 445. (in Chinese with English abstract)]

    HUANG Yiming, LIU Guoqiang, ZHAO Yongkuan, et al. Dewatering construction technology of ultra-deep foundation pit in complex environment[J]. Building Construction, 2023, 45(3): 442 − 445. (in Chinese with English abstract)

    [20]

    刁钰,高泽东,郑刚,等. 天津市基坑抽排地下水量计量研究[J]. 岩土工程学报,2019,41(增刊1):69 − 72. [DIAO Yu,GAO Zedong,ZHENG Gang,et al. Measurement of groundwater dewatering in excavations in Tianjin[J]. Chinese Journal of Geotechnical Engineering,2019,41(Sup1):69 − 72. (in Chinese with English abstract)]

    DIAO Yu, GAO Zedong, ZHENG Gang, et al. Measurement of groundwater dewatering in excavations in Tianjin[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Sup1): 69 − 72. (in Chinese with English abstract)

    [21]

    姜伏伟,张发旺,柳林,等. 南宁地铁施工降水诱发岩溶塌陷条件及安全防控措施[J]. 中国岩溶,2018,37(3):415 − 420. [JIANG Fuwei,ZHANG Fawang,LIU Lin,et al. Dewatering induced Karst collapse conditions and safety prevention and control measures in Nanning subway construction[J]. Carsologica Sinica,2018,37(3):415 − 420. (in Chinese with English abstract)] doi: 10.11932/karst20180312

    JIANG Fuwei, ZHANG Fawang, LIU Lin, et al. Dewatering induced Karst collapse conditions and safety prevention and control measures in Nanning subway construction[J]. Carsologica Sinica, 2018, 37(3): 415 − 420. (in Chinese with English abstract) doi: 10.11932/karst20180312

    [22]

    柳林,姜伏伟,张发旺,等. 岩溶地下工程施工抽水诱发黏土层地面塌陷机理及临界条件探讨[J]. 中国岩溶,2019,38(5):752 − 758. [LIU Lin,JIANG Fuwei,ZHANG Fawang,et al. Discussion on the mechanism and critical condition of ground collapse of clay layer induced by Karst groundwater pumping in underground engineering construction[J]. Carsologica Sinica,2019,38(5):752 − 758. (in Chinese with English abstract)] doi: 10.11932/karst20190511

    LIU Lin, JIANG Fuwei, ZHANG Fawang, et al. Discussion on the mechanism and critical condition of ground collapse of clay layer induced by Karst groundwater pumping in underground engineering construction[J]. Carsologica Sinica, 2019, 38(5): 752 − 758. (in Chinese with English abstract) doi: 10.11932/karst20190511

    [23]

    中华人民共和国国家能源局. 水电工程钻孔抽水试验规程:NB/T 35103—2017[S]. 北京:中国电力出版社,2017. [National Energy Administration of People’s Republic of China . Specification for borehole pumping test of hydropower projects:NB/T 35103—2017[S]. Beijing: China Electric Power Press,2017.(in Chinese)]

    National Energy Administration of People’s Republic of China . Specification for borehole pumping test of hydropower projects: NB/T 35103—2017[S]. Beijing: China Electric Power Press, 2017.(in Chinese)

    [24]

    方光秀,马祥,罗江波. 地铁车站超深基坑工程大口径管井降水的设计与施工[J]. 施工技术,2012,41(13):13 − 17. [FANG Guangxiu,MA Xiang,LUO Jiangbo. Design and construction of large well dewatering in ultra-deep foundation excavation of subway stations[J]. Construction Technology,2012,41(13):13 − 17. (in Chinese with English abstract)]

    FANG Guangxiu, MA Xiang, LUO Jiangbo. Design and construction of large well dewatering in ultra-deep foundation excavation of subway stations[J]. Construction Technology, 2012, 41(13): 13 − 17. (in Chinese with English abstract)

    [25]

    王玉喜. 砂卵石地层地铁车站降水施工技术[J]. 国防交通工程与技术,2014,12(3):71 − 73. [WANG Yuxi. The dewatering techniques for the construction of the subway station in the sand and gravel stratum[J]. Traffic Engineering and Technology for National Defence,2014,12(3):71 − 73. (in Chinese with English abstract)]

    WANG Yuxi. The dewatering techniques for the construction of the subway station in the sand and gravel stratum[J]. Traffic Engineering and Technology for National Defence, 2014, 12(3): 71 − 73. (in Chinese with English abstract)

    [26]

    王冲,项后军,余颂. 基于大口径稳定流抽水试验的基坑降水方案设计[J]. 中国勘察设计,2021(4):89 − 93. [WANG Chong,XIANG Houjun,YU Song. Design of dewatering scheme for foundation pit based on large-diameter steady-flow pumping test[J]. China Engineering Consulting,2021(4):89 − 93. (in Chinese with English abstract)] doi: 10.3969/j.issn.1006-9607.2021.04.024

    WANG Chong, XIANG Houjun, YU Song. Design of dewatering scheme for foundation pit based on large-diameter steady-flow pumping test[J]. China Engineering Consulting, 2021(4): 89 − 93. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-9607.2021.04.024

    [27]

    马健,冯科明. 大口径管井降水在北京地铁施工中的应用[J]. 岩土工程技术,2012,26(4):204 − 207. [MA Jian,FENG Keming. Application of large diameter tube well dewatering in subway construction[J]. Geotechnical Engineering Technique,2012,26(4):204 − 207. (in Chinese with English abstract)] doi: 10.3969/j.issn.1007-2993.2012.04.011

    MA Jian, FENG Keming. Application of large diameter tube well dewatering in subway construction[J]. Geotechnical Engineering Technique, 2012, 26(4): 204 − 207. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-2993.2012.04.011

  • 加载中

(2)

(2)

计量
  • 文章访问数:  99
  • PDF下载数:  22
  • 施引文献:  0
出版历程
收稿日期:  2024-01-18
修回日期:  2024-03-27
刊出日期:  2025-01-15

目录