Effect of fine particle content on shear characteristics of geogrid-reinforced gravelly soil
-
摘要:
加筋砾性土路基长期服役后受细粒侵入影响,筋土界面受力性能易发生劣化,目前细粒污染筋土界面的相关研究较少。为了研究细粒含量对砾性土填料剪切性能的影响,利用室内大型直剪仪开展系列不同细粒含量的加筋砾性土直剪试验,分析四种细粒含量(0%、10%、20%、30%)、三种法向应力(40,60,80 kPa)对土工格栅-砾性土界面剪切特性的影响,并建立了界面剪切膨胀系数的经验公式。结果表明:(1)加筋砾性土直剪试验的剪应力-剪切位移曲线均为应力软化型,随着细粒含量的增加,峰值剪切强度与剪切强度指标呈现出先增加后减小的趋势;(2)级配良好砾性土颗粒间的咬合力较强,宏观上表现为似黏聚力较大;(3)剪胀性曲线表现为相对剪缩—相对剪胀—相对剪缩阶段,相对剪胀量最大值的出现存在滞后现象,最大剪胀角与峰值剪切强度存在对应关系;(4)利用剪胀系数模型发现细粒含量、法向应力越小,界面剪胀性越强。研究成果可为公路工程的强度设计与劣化防护提供理论指导。
Abstract:Over prolonged service periods, reinforced gravel soil subgrades are susceptible to deterioration in interfacial mechanical properties due to the intrusion of fine particles. However, few studies focus on the interface of fine-grained polluted soil. To study the effect of fine particle content on the shear performance of gravelly soil, a series of direct shear tests of reinforced gravelly soil with different fine particle contents were carried out. The impacts of four different fine particle contents (0%, 10%, 20%, 30%) and three normal stresses (40, 60, 80 kPa) on the shear characteristics of the geogrid-gravel soil interface were analyzed, and the empirical formula of interfacial shear expansion coefficient was established. Results indicate that the shear stress-displacement curves of the reinforced gravelly soil direct shear tests are all of the stress softening type. With the increase in the fine particle content, parameters of peak strength and shear strength show an initial increase followed by a decrease trend. The particle interlocking force of well graded gravel soil is strong, which manifests as a high apparent cohesion in macroscopical. The dilatancy curve shows relative shear contraction, relative dilatancy, and relative shear contraction stages, and the occurrence of the maximum value of relative shear dilatation lags behind. The maximum dilation angle is closely associated with the peak shear strength. Through the dilation coefficient model, it is found that the smaller the fine particle content and normal stress are, the stronger the interfacial dilation is. This study can provide theoretical guidance for strength design and degradation protection of highway engineering.
-
-
表 1 土工格栅物理力学指标
Table 1. Physical and mechanical indices of geogrids
指标 极限抗拉
强度
/(kN·m−1)极限荷载下
延伸率/%2%延伸率
抗拉强度
/(kN·m−1)5%延伸率
抗拉强度
/(kN·m−1)网孔尺寸
/mm×mm值 35.78/33.51 10.0/8.7 10.26/11.55 21.30/25.30 30×30 注:/前的数值为纵向强度或延伸率,/后的数值为横向强度或延伸率。 -
[1] 刘荟达,袁晓铭,王鸾,等. 宽级配砾性土橡皮膜嵌入量计算新方法[J]. 岩石力学与工程学报,2020,39(4):804 − 816. [LIU Huida,YUAN Xiaoming,WANG Luan,et al. A new calculation method for membrane penetration in wide-graded gravelly soils[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(4):804 − 816. (in Chinese with English abstract)]
LIU Huida, YUAN Xiaoming, WANG Luan, et al. A new calculation method for membrane penetration in wide-graded gravelly soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 804 − 816. (in Chinese with English abstract)
[2] 王鸾,孙锐,刘荟达,等. 砾性土动三轴液化试验橡皮膜顺变性补偿新方法[J]. 岩土工程学报,2020,42(12):2281 − 2290. [WANG Luan,SUN Rui,LIU Huida,et al. New method to compensate for membrane compliance in dynamic triaxial liquefaction tests on gravelly soils[J]. Chinese Journal of Geotechnical Engineering,2020,42(12):2281 − 2290. (in Chinese with English abstract)] doi: 10.11779/CJGE202012015
WANG Luan, SUN Rui, LIU Huida, et al. New method to compensate for membrane compliance in dynamic triaxial liquefaction tests on gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2281 − 2290. (in Chinese with English abstract) doi: 10.11779/CJGE202012015
[3] 刘大鹏,杨晓华,王婧,等. 新疆三莎高速公路砾类土的临界动应力试验研究[J]. 新疆大学学报(自然科学版),2016,33(4):481 − 485. [LIU Dapeng,YANG Xiaohua,WANG Jing,et al. Experimental study on critical dynamic stress of gravel soil in Xinjiang Sanchakou-Shache expressway[J]. Journal of Xinjiang University(Natural Science Edition),2016,33(4):481 − 485. (in Chinese with English abstract)]
LIU Dapeng, YANG Xiaohua, WANG Jing, et al. Experimental study on critical dynamic stress of gravel soil in Xinjiang Sanchakou-Shache expressway[J]. Journal of Xinjiang University(Natural Science Edition), 2016, 33(4): 481 − 485. (in Chinese with English abstract)
[4] 吴曙光. 土力学[M]. 重庆:重庆大学出版社,2016. [WU Shuguang. Soil mechanics[M]. Chongqing:Chongqing University Press,2016. (in Chinese)]
WU Shuguang. Soil mechanics[M]. Chongqing: Chongqing University Press, 2016. (in Chinese)
[5] 王家全,祝梦柯,林志南,等. 细粒含量对饱和砾性土静动力学特性的影响[J]. 土木工程学报,2023,56(5):112 − 121. [WANG Jiaquan,ZHU Mengke,LIN Zhinan,et al. Influence of fines content on static and dynamic characteristics of saturated gravelly soil[J]. China Civil Engineering Journal,2023,56(5):112 − 121. (in Chinese with English abstract)]
WANG Jiaquan, ZHU Mengke, LIN Zhinan, et al. Influence of fines content on static and dynamic characteristics of saturated gravelly soil[J]. China Civil Engineering Journal, 2023, 56(5): 112 − 121. (in Chinese with English abstract)
[6] 黄强强,任非凡. 极端降雨条件下土工合成材料加筋土桥台稳定性分析[J]. 中国地质灾害与防治学报,2025,36(2):78 − 86. [HUANG Qiangqiang,REN Feifan. Stability analysis of geosynthetic-reinforced soil bridge abutments under extreme rainfall conditions[J]. The Chinese Journal of Geological Hazard and Control,2025,36(2):78 − 86. (in Chinese with English abstract)]
HUANG Qiangqiang, REN Feifan. Stability analysis of geosynthetic-reinforced soil bridge abutments under extreme rainfall conditions[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(2): 78 − 86. (in Chinese with English abstract)
[7] 孙振兴,杨忠年,辛泽宇,等. 橡胶纤维加筋膨胀土的剪切强度与强度预测模型[J/OL]. 吉林大学学报(地球科学版).(2024-10-11)[2025-04-26]. [SUN Zhenxing,YANG Zhongnian,XIN Zeyu,et al. Shear strength and strength prediction model of rubber fiber-reinforced expansive soil[J/OL]. Journal of Jilin University (Earth Science Edition). (2024-10-11)[2025-04-26]. https://link.cnki.net/doi/10.13278/j.cnki.jjuese.20240001. (in Chinese with English abstract)]
SUN Zhenxing, YANG Zhongnian, XIN Zeyu, et al. Shear strength and strength prediction model of rubber fiber-reinforced expansive soil[J/OL]. Journal of Jilin University (Earth Science Edition). (2024-10-11)[2025-04-26]. https://link.cnki.net/doi/10.13278/j.cnki.jjuese.20240001. (in Chinese with English abstract)
[8] 王家全,祁航翔,黄世斌,等. 土工格栅与碎石土混合料界面作用的大型直剪试验研究[J]. 水文地质工程地质,2022,49(4):81 − 90. [WANG Jiaquan,QI Hangxiang,HUANG Shibin,et al. Large-scale direct shear test on the interface between geogrid and gravel-soil mixture[J]. Hydrogeology & Engineering Geology,2022,49(4):81 − 90. (in Chinese with English abstract)]
WANG Jiaquan, QI Hangxiang, HUANG Shibin, et al. Large-scale direct shear test on the interface between geogrid and gravel-soil mixture[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 81 − 90. (in Chinese with English abstract)
[9] 柴寿喜,张琳,魏丽,等. 冻融作用下纤维加筋固化盐渍土的抗压性能与微观结构[J]. 水文地质工程地质,2022,49(5):96 − 105. [CHAI Shouxi,ZHANG Lin,WEI Li,et al. Compressive properties and microstructure of saline soil added fiber and lime under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology,2022,49(5):96 − 105. (in Chinese with English abstract)]
CHAI Shouxi, ZHANG Lin, WEI Li, et al. Compressive properties and microstructure of saline soil added fiber and lime under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 96 − 105. (in Chinese with English abstract)
[10] 宋飞,石磊,樊明尊. 土工格室加筋正常固结粉质黏土应力应变响应[J]. 地质科技通报,2024,43(1):184 − 193. [SONG Fei,SHI Lei,FAN Mingzun. Stress-strain response of geocell-reinforced normally consolidated silty clay[J]. Bulletin of Geological Science and Technology,2024,43(1):184 − 193. (in Chinese with English abstract)]
SONG Fei, SHI Lei, FAN Mingzun. Stress-strain response of geocell-reinforced normally consolidated silty clay[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 184 − 193. (in Chinese with English abstract)
[11] 崔新壮,姜鹏,王艺霖,等. 高摩阻超静定土工格栅在粗粒土夹层中的剪胀作用研究[J]. 岩土力学,2024,45(1):141 − 152. [CUI Xinzhuang,JIANG Peng,WANG Yilin,et al. On the role of dilatancy induced by high resistance hyperstatic geogrids in coarse-grained soil layer[J]. Rock and Soil Mechanics,2024,45(1):141 − 152. (in Chinese with English abstract)]
CUI Xinzhuang, JIANG Peng, WANG Yilin, et al. On the role of dilatancy induced by high resistance hyperstatic geogrids in coarse-grained soil layer[J]. Rock and Soil Mechanics, 2024, 45(1): 141 − 152. (in Chinese with English abstract)
[12] 王光进,杨春和,张超,等. 粗粒含量对散体岩土颗粒破碎及强度特性试验研究[J]. 岩土力学,2009,30(12):3649 − 3654. [WANG Guangjin,YANG Chunhe,ZHANG Chao,et al. Experimental research on particle breakage and strength characteristics of rock and soil materials with different coarse-grain contents[J]. Rock and Soil Mechanics,2009,30(12):3649 − 3654. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-7598.2009.12.015
WANG Guangjin, YANG Chunhe, ZHANG Chao, et al. Experimental research on particle breakage and strength characteristics of rock and soil materials with different coarse-grain contents[J]. Rock and Soil Mechanics, 2009, 30(12): 3649 − 3654. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2009.12.015
[13] 刘飞禹,胡惠丽,王军,等. 粒孔比对筋-土界面循环剪切特性的影响[J]. 中国公路学报,2019,32(12):115 − 122. [LIU Feiyu,HU Huili,WANG Jun,et al. Influence of aperture ratio on cyclic shear behavior of geogrid-soil interface[J]. China Journal of Highway and Transport,2019,32(12):115 − 122. (in Chinese with English abstract)]
LIU Feiyu, HU Huili, WANG Jun, et al. Influence of aperture ratio on cyclic shear behavior of geogrid-soil interface[J]. China Journal of Highway and Transport, 2019, 32(12): 115 − 122. (in Chinese with English abstract)
[14] VANGLA P,LATHA GALI M. Effect of particle size of sand and surface asperities of reinforcement on their interface shear behaviour[J]. Geotextiles and Geomembranes,2016,44(3):254 − 268. doi: 10.1016/j.geotexmem.2015.11.002
[15] SWETA K,HUSSAINI S K K. Effect of shearing rate on the behavior of geogrid-reinforced railroad ballast under direct shear conditions[J]. Geotextiles & Geomembranes,2018,46(3):251 − 256.
[16] HAN Bingye,LING Jianming,SHU Xiang,et al. Laboratory investigation of particle size effects on the shear behavior of aggregate-geogrid interface[J]. Construction and Building Materials,2018,158:1015 − 1025. doi: 10.1016/j.conbuildmat.2017.10.045
[17] WANG J,LIU F Y,WANG P,et al. Particle size effects on coarse soil-geogrid interface response in cyclic and post-cyclic direct shear tests[J]. Geotextiles and Geomembranes,2016,44(6):854 − 861. doi: 10.1016/j.geotexmem.2016.06.011
[18] NYE C J,FOX P J. Dynamic shear behavior of a needlepunched geosynthetic clay liner[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(8):973 − 983. doi: 10.1061/(ASCE)1090-0241(2007)133:8(973)
[19] VIEIRA C S,LOPES M L,CALDEIRA L M. Sand-geotextile interface characterisation through monotonic and cyclic direct shear tests[J]. Geosynthetics International,2013,20(1):26 − 38. doi: 10.1680/gein.12.00037
[20] 王家全,王晴,祝梦柯,等. 三级循环荷载下细粒含量对砾砂动力特性的影响分析[J]. 自然灾害学报,2023,32(4):239 − 248. [WANG Jiaquan,WANG Qing,ZHU Mengke,et al. Influence of fines content on dynamic properties of gravel under three-level cyclic loading[J]. Journal of Natural Disasters,2023,32(4):239 − 248. (in Chinese with English abstract)]
WANG Jiaquan, WANG Qing, ZHU Mengke, et al. Influence of fines content on dynamic properties of gravel under three-level cyclic loading[J]. Journal of Natural Disasters, 2023, 32(4): 239 − 248. (in Chinese with English abstract)
[21] 中华人民共和国住房和城乡建设部. 土工试验方法标准:GB/T 50123—2019[S]. 北京:中国计划出版社,2019. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method:GB/T 50123—2019[S]. Beijing:China Planning Press,2019. (in Chinese)]
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
[22] 李君纯. 青海沟后水库溃坝原因分析[J]. 岩土工程学报,1994,16(6):1 − 14. [LI Junchun. Analysis of the causes of the Qinghai Gouhou reservoir dam failure[J]. Chinese Journal of Geotechnical Engineering,1994,16(6):1 − 14. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-4548.1994.06.001
LI Junchun. Analysis of the causes of the Qinghai Gouhou reservoir dam failure[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(6): 1 − 14. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1994.06.001
[23] 王军,林旭,符洪涛. 砂土-格栅筋土界面特性的本构模型研究[J]. 岩土力学,2014,35(增刊2):75 − 84. [WANG Jun,LIN Xu,FU Hongtao. Study of constitutive model of sand-geogrid interface behavior in geogrid/geotextile reinforced soil[J]. Rock and Soil Mechanics,2014,35(Sup2):75 − 84. (in Chinese with English abstract)]
WANG Jun, LIN Xu, FU Hongtao. Study of constitutive model of sand-geogrid interface behavior in geogrid/geotextile reinforced soil[J]. Rock and Soil Mechanics, 2014, 35(Sup2): 75 − 84. (in Chinese with English abstract)
[24] AFZALI-NEJAD A,LASHKARI A,SHOURIJEH P T. Influence of particle shape on the shear strength and dilation of sand-woven geotextile interfaces[J]. Geotextiles and Geomembranes,2017,45(1):54 − 66. doi: 10.1016/j.geotexmem.2016.07.005
[25] SWETA K,HUSSAINI S K K. Behavior evaluation of geogrid-reinforced ballast-subballast interface under shear condition[J]. Geotextiles and Geomembranes,2019,47(1):23 − 31. doi: 10.1016/j.geotexmem.2018.09.002
[26] 刘飞禹,林旭,王军. 砂土颗粒级配对筋土界面抗剪特性的影响[J]. 岩石力学与工程学报,2013,32(12):2575 − 2582. [LIU Feiyu,LIN Xu,WANG Jun. Influence of particle-size gradation on shear behavior of geosynthetics and sand interface[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(12):2575 − 2582. (in Chinese with English abstract)]
LIU Feiyu, LIN Xu, WANG Jun. Influence of particle-size gradation on shear behavior of geosynthetics and sand interface[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2575 − 2582. (in Chinese with English abstract)
-