Progress in developments and applications of the HYDRUS model and associated coupling model packages
-
摘要:
HYDRUS模型由于可以综合考虑土壤-植物-大气系统中水、热及污染物的运移,已被广泛应用于农业灌溉和污染运移的模拟,但已有关于HYDRUS模型的综述尚缺乏对植物根系影响下水分和溶质运移模拟以及对低影响开发(low impact development,LID)设施模拟的总结。文章系统综述了植物根系影响下HYDRUS模型对水、盐和氮、重金属及有机物等污染物运移的模拟以及对LID设施的模拟,并分析了影响模拟精度的因素。结果表明,HYDRUS模型可以很好地模拟植物根系影响下水分和盐分以及污染物等溶质的运移,但模拟精度受到植物根系、土壤及其物理化学生物特征等多种因素的影响。同时,由于模型相关参数可以通过历史文献、实验测量、模型预测和参数反演等不同方式确定,模拟效果也有一定差异。未来,应重点考虑以下几方面的研究:(1)HYDRUS模型对植物根系效应的模拟应重点考虑植物不同生长年限、不同植物根系类型以及不同根长、根直径、根体积和根密度等根系特征;(2)HYDRUS模型对新污染物运移的模拟需要进一步积累大量新污染物运移参数,包括扩散、吸附和降解等;(3)HYDRUS模型对包气带介质的非均质性需要进一步详细刻画及模拟;(4)HYDRUS模型对参数的获取及确定需要结合机器学习和人工智能手段进一步加强;(5)HYDRUS耦合模型仍需进一步开发及应用,以实现对渗流过程中地表水-土壤水-饱和地下水的全过程模拟。
Abstract:HYDRUS model is widely used in agricultural irrigation and pollution transport because it can comprehensively consider the movement of water, heat, and pollutants in the soil-plant-atmosphere system. However, there is no summary of water and solute transport simulations under the influence of plant roots and the simulation of Low Impact Development (LID) facilities. This paper systematically summarized the simulation of water, salt, nitrogen, heavy metals and organic substances under the influence of plant roots and the simulation of LID facilities, and analyzed the simulation accuracy. The results show that HYDRUS can well simulate the movement of water, salts, and pollutants under the influence of plant roots, but the simulation accuracy is affected by many factors such as plant roots, soil and its physical, and chemical and biological characteristics. Additionally, since the relevant model parameters can be determined by historical documents, experimental measurements, and model prediction and inversion, the simulation results are also different. Future research should focus on the following aspects: (1) Considering the effects of different planting years, different root types, and different root characteristics such as root length, root diameter, root volume, and root density in the simulation of plant root effect by HYDRUS. (2) Accumulating more transport parameters for new pollutants, including diffusion, adsorption, and degradation, to improve the simulation of pollutant transport. (3) Enhancing the description and simulation of the heterogeneity of unsaturated zone media. (4) Strengthening the acquisition and determination of parameters through the integration of Machine Learning and Artificial Intelligence. (5) Further developing and applying HYDRUS coupling models to enable comprehensive simulations of the entire process of surface water, soil water, and saturated groundwater during seepage.
-
Key words:
- seepage /
- plant /
- aerated zone /
- HYDRUS /
- new pollutants
-
-
表 1 基于HYDRUS模型的不同植被类型影响下土壤水分运移模拟研究
Table 1. Simulations on the soil water transport under the influences of different plant types based on HYDRUS
植被 研究内容 参数确定 模拟效果 参考文献 草本植物 茵陈篙 利用HYDRUS-1D分析根系效应在不同水文
条件下对湿地水分垂向通量的影响历史文献+试验测定+
反演率定RMSE:0.017~0.120 cm3/cm3
R2:0.87~0.91[12] 狼尾草、
紫花苜蓿利用HYDRUS-1D模拟不同水文年气候特征
下的蒸发和蒸腾过程试验测定+人工调试+
反演率定R2:0.67~0.80
R2:0.72~0.74[13] 小麦 利用HYDRUS-1D模拟研究影响水分运移的驱动因素 试验测定+模型预测 RMSE: 0.0053 ~0.0348 cm3/cm3
NSE:0.782~0.897[14] 木本植物 苹果 利用HYDRUS-1D模拟苹果园深度10 m剖面
土壤水分的垂直分布和时间变化试验测定+反演率定 RMSE:0.01~0.02 cm3/cm3
R2:0.65~0.85
NSE:0.55~0.83[15] 毛白杨 利用HYDRUS-2D/3D模拟毛白杨人工林地土壤
水分短期运移规律的精度和可行性试验测定+模型预测+
反演率定RMSE:0.017~0.023 cm3/cm3
R2:0.85~0.99[16] 注:RMSE 为均方根误差;R2 为决定系数;NSE为纳什效率系数。 表 2 基于HYDRUS模型的包气带不同污染物运移模拟研究
Table 2. Simulations on the migration of the different pollutants in vadose zone based on HYDRUS
污染物 研究内容 参数确定 模拟效果 参考文献 氮 氨氮 利用HYDRUS-1D模拟 ${\mathrm{NH}}^+_4 $ 在壤土中的运移试验测定+模型反演 RMSE:0.020~0.034 mg/L
R2:0.87~0.98[25] 硝氮 利用HYDRUS-1D模拟农业区非饱和带的含水量和 ${\mathrm{NO}}^-_3 $ 分布历史文献+模型反演 RMSE: 0.0059 mg/cm3
MAE:0.0032 mg/cm3[26] 重金属 Cr 利用HYDRUS-1D模拟Cr6+浓度、流速及pH对Cr6+在土壤中运移的影响 试验测定+反演率定 R2:0.978~0.998 [27] 有机物 全氟化合物(PFCs) 利用HYDRUS-1D模拟PFCs在土壤中的运移 试验测定+模型反演 RMSE:0.069~0.113 mg/L
R2:0.967~0.991[28] 注:MAE为平均绝对误差。 表 3 基于HYDRUS的不同土壤质地和灌溉方式土壤水盐运移模拟研究
Table 3. Simulations on the soil water and salt transport under different soil textures and irrigation methods based on HYDRUS
类型 研究内容 参数确定 模拟效果 参考文献 土壤
质地黏土 利用HYDRUS-1D模拟微咸水灌溉条件下含黏土夹层土壤的水分和盐分运移规律 历史文献+反演率定 RMSE:0.008~0.023 dS/m [39] 砂土 利用HYDRUS-1D研究砂土对水盐运移影响 历史文献 — [40] 夹砂层 利用HYDRUS-1D模拟不同夹砂层分布下的玉米农田蒸散发、
土壤水分深层渗漏与地下水补给、玉米根系吸水等过程试验测定 R2:0.89~0.94
NSE:0.85~0.94
RMSE:0.06~0.10 cm3/cm3[41] 灌溉
方式滴灌 利用HYDRUS-2D模拟盐碱地农田土壤盐分运移 试验测定+模型预测 RMSE:0.39~1.26 g/kg
NSE:0.66~0.97[42] 畦灌 利用HYDRUS-3D模拟畦灌模式下盐随水动的驱动过程 试验测定+模型预测 RMSE:0.176~0.231 mg/cm3 [43] 沟灌 利用HYDRUS-3D模拟一个灌水周期内田间土壤水盐运移 试验测定+模型预测 RMSE:0.166~0.272 mg/cm3 [44] 表 4 基于HYDRUS模型不同LID措施下雨水径流及其污染物迁移模拟研究
Table 4. Simulations on the rainwater runoff and pollutant migration under different LID measures based on HYDRUS
LID措施 研究内容 参数确定 模拟效果 参考文献 生物滞留池 利用HYDRUS-1D 分析不同水力负荷、蓄水层高和初始
含水率影响因素下生物滞留设施雨水径流水文调控效应试验测定+模型预测 RMSE:0.038~0.134 cm3/cm3
R2:0.894~0.999[53] 绿色屋顶 研究HYDRUS-1D在预测不同空间尺度下浅层和
大面积绿屋顶水文行为方面的适用性试验测定+模型预测 NSE:0.16
RSR:0.84[59] 雨水花园 利用HYDRUS-1D计算次降雨入渗补给系数 试验测定+模型预测 NSE:0.804~0.957
R2:0.824~0.969[60] 透水铺装 利用HYDRUS-1D研究透水铺装的
水力特性以及填料的水力参数试验测定+历史文献+模型反演 NSE:0.91~0.99
R2:0.83~0.91[61] 注:RSR为均方根误差与测量数据标准差之比。 表 5 不同HYDRUS耦合模型功能特点比较
Table 5. Comparison of functional characteristics of different HYDRUS coupling models
耦合模型 耦合类型 模拟功能 模型应用 参考文献 MODFLOW-
HYDRUS迭代耦合 可以实时计算包气带和饱水带的水分交换量,降水入渗或灌溉入渗补给量、
潜水蒸发量具有自适应性,提高了非饱和带和饱和带上边界源汇项的计算精度,
增加了数值模拟的仿真度分析不同情景下地下水水位
控制范围及排水效果[66] SHAW-
HYDRUS迭代耦合 可以模拟全年际(作物主要为生育期、秋浇期和冻融期)的水量、热量和溶质运移过程 为季节性冻融区膜下滴灌农田
确定合理的非生育期淋洗制度[67] DSSAT-
HYDRUS迭代耦合 可以将作物参数和天气数据作为输入参数来计算作物生长,模拟农作物生长发育
期间的营养生长和生殖生长等,而且可以对气象和土壤参数实现准确的定量预估预测不同环境下土壤水动态
变化情况和作物生长发育情况[68] EPIC-
HYDRUS迭代耦合 可以推导基于保护地下水的土壤风险控制值,评估盐度胁迫对蒸散、粮食产量和水分
利用效率的影响,以及长期使用盐水对粮食产量和盐分积累的影响应用于土壤与地下水
治理修复或风险管控[69] -
[1] MA Lin,LIU Yifei,ZHANG Jin,et al. Impacts of irrigation water sources and geochemical conditions on vertical distribution of pharmaceutical and personal care products (PPCPs) in the vadose zone soils[J]. Science of the Total Environment,2018,626:1148 − 1156. doi: 10.1016/j.scitotenv.2018.01.168
[2] 陈磊,周雪辉,余宇,等. 城镇建成区内涝和非点源污染联合风险评价方法[J]. 水科学进展,2023,34(1):76 − 87. [CHEN Lei,ZHOU Xuehui,YU Yu,et al. A joint risk assessment method of waterlogging and non- point source pollution in urban built- up areas[J]. Advances in Water Science,2023,34(1):76 − 87. (in Chinese with English abstract)]
CHEN Lei, ZHOU Xuehui, YU Yu, et al. A joint risk assessment method of waterlogging and non- point source pollution in urban built- up areas[J]. Advances in Water Science, 2023, 34(1): 76 − 87. (in Chinese with English abstract)
[3] WANG Ruoyu,YUAN Yongping,YEN H,et al. A review of pesticide fate and transport simulation at watershed level using SWAT:Current status and research concerns[J]. Science of the Total Environment,2019,669:512 − 526. doi: 10.1016/j.scitotenv.2019.03.141
[4] LI Pei,REN Li. Evaluating the saline water irrigation schemes using a distributed agro-hydrological model[J]. Journal of Hydrology,2021,594:125688. doi: 10.1016/j.jhydrol.2020.125688
[5] BOUZOUIDJA R,SÉRÉ G,CLAVERIE R,et al. Green roof aging:Quantifying the impact of substrate evolution on hydraulic performances at the lab-scale[J]. Journal of Hydrology,2018,564:416 − 423. doi: 10.1016/j.jhydrol.2018.07.032
[6] 高震国,钟瑞林,杨帅,等. Hydrus模型在中国的最新研究与应用进展[J]. 土壤,2022,54(2):219 − 231. [GAO Zhenguo,ZHONG Ruilin,YANG Shuai,et al. Recent progresses in research and applications of hydrus model in China[J]. Soils,2022,54(2):219 − 231. (in Chinese with English abstract)]
GAO Zhenguo, ZHONG Ruilin, YANG Shuai, et al. Recent progresses in research and applications of hydrus model in China[J]. Soils, 2022, 54(2): 219 − 231. (in Chinese with English abstract)
[7] 王旭东, 韩鹏飞, 张锁, 等. 基于HYDRUS模拟的ABCD模型变量及参数物理基础研究[J]. 水文地质工程地质,2023,50(5):20 − 27. [WANG Xudong, HAN Pengfei, ZHANG Suo, et al. Research on the physical basis of variables and parameters of ABCD model based on HYDRUS simulation[J]. Hydrogeology & Engineering Geology,2023,50(5):20 − 27. (in Chinese with English abstract)] doi: 10.1007/s40333-013-0176-9
WANG Xudong, HAN Pengfei, ZHANG Suo, et al. Research on the physical basis of variables and parameters of ABCD model based on HYDRUS simulation[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 20 − 27. (in Chinese with English abstract) doi: 10.1007/s40333-013-0176-9
[8] GILTRAP D,JOLLY B,BISHOP P,et al. Modelling 3D urine patch spread in grazed pasture soils to determine potential inhibitor effectiveness[J]. Agriculture,Ecosystems & Environment,2020,292:106809.
[9] 杨海,姜月华,周权平,等. 空间链接器式多维通用饱和-非饱和流模型研究[J]. 水文地质工程地质,2020,47(5):31 − 42. [YANG Hai,JIANG Yuehua,ZHOU Quanping,et al. A generalized multi-dimensional saturated-unsaturated flow model based on spatial linkers[J]. Hydrogeology & Engineering Geology,2020,47(5):31 − 42. (in Chinese with English abstract)]
YANG Hai, JIANG Yuehua, ZHOU Quanping, et al. A generalized multi-dimensional saturated-unsaturated flow model based on spatial linkers[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 31 − 42. (in Chinese with English abstract)
[10] 白晓,贾小旭,邵明安,等. 黄土高原北部土地利用变化对长期土壤水分平衡影响模拟[J]. 水科学进展,2021,32(1):109 − 119. [BAI Xiao,JIA Xiaoxu,SHAO Ming’an,et al. Simulating long-term soil water balance in response to land use change in the Northern China’s Loess Plateau[J]. Advances in Water Science,2021,32(1):109 − 119. (in Chinese with English abstract)]
BAI Xiao, JIA Xiaoxu, SHAO Ming’an, et al. Simulating long-term soil water balance in response to land use change in the Northern China’s Loess Plateau[J]. Advances in Water Science, 2021, 32(1): 109 − 119. (in Chinese with English abstract)
[11] BUTTAFUOCO G,CASTRIGNANÒ A,BUSONI E,et al. Studying the spatial structure evolution of soil water content using multivariate geostatistics[J]. Journal of Hydrology,2005,311(1/2/3/4):202 − 218.
[12] 鲁建荣,张奇,李云良,等. 鄱阳湖典型洲滩湿地植物根系对水分垂向通量的影响[J]. 中国环境科学,2020,40(5):2180 − 2189. [LU Jianrong,ZHANG Qi,LI Yunliang,et al. Impact of typical plant roots on vertical soil water movement in Poyang Lake wetland:A numerical study[J]. China Environmental Science,2020,40(5):2180 − 2189. (in Chinese with English abstract)]
LU Jianrong, ZHANG Qi, LI Yunliang, et al. Impact of typical plant roots on vertical soil water movement in Poyang Lake wetland: A numerical study[J]. China Environmental Science, 2020, 40(5): 2180 − 2189. (in Chinese with English abstract)
[13] LI Lanjun,SONG Xiaoyu,XIA Lu,et al. Modelling the effects of climate change on transpiration and evaporation in natural and constructed grasslands in the semi-arid Loess Plateau,China[J]. Agriculture,Ecosystems & Environment,2020,302:107077.
[14] 李琦,李发东,张秋英,等. 基于HYDRUS模型的华北平原小麦种植区水盐运移模拟[J]. 中国生态农业学报(中英文),2021,29(6):1085 − 1094. [LI Qi,LI Fadong,ZHANG Qiuying,et al. Water and salt transport simulation in the wheat growing area of the North China Plain based on HYDRUS model[J]. Chinese Journal of Eco-Agriculture,2021,29(6):1085 − 1094. (in Chinese with English abstract)]
LI Qi, LI Fadong, ZHANG Qiuying, et al. Water and salt transport simulation in the wheat growing area of the North China Plain based on HYDRUS model[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1085 − 1094. (in Chinese with English abstract)
[15] LI Bingbing,WANG Yunqiang,HILL R L,et al. Effects of apple orchards converted from farmlands on soil water balance in the deep loess deposits based on HYDRUS-1D model[J]. Agriculture,Ecosystems & Environment,2019,285:106645.
[16] 李豆豆,席本野,唐连峰,等. 砂壤土下滴灌毛白杨幼林土壤水分运移规律与模拟[J]. 林业科学,2018,54(12):157 − 168. [LI Doudou,XI Benye,TANG Lianfeng,et al. Patterns of soil water movement in drip-irrigated young populus tomentosa plantations on sandy loam soil and their simulation[J]. Scientia Silvae Sinicae,2018,54(12):157 − 168. (in Chinese with English abstract)] doi: 10.11707/j.1001-7488.20181218
LI Doudou, XI Benye, TANG Lianfeng, et al. Patterns of soil water movement in drip-irrigated young populus tomentosa plantations on sandy loam soil and their simulation[J]. Scientia Silvae Sinicae, 2018, 54(12): 157 − 168. (in Chinese with English abstract) doi: 10.11707/j.1001-7488.20181218
[17] 陈喜,宋琪峰,高满,等. 植被—土壤—水文相互作用及生态水文模型参数的动态表述[J]. 北京师范大学学报(自然科学版),2016,52(3):362 − 368. [CHEN Xi,SONG Qifeng,GAO Man,et al. Vegetation-soil-hydrology interaction and expression of parameter variations in ecohydrological models[J]. Journal of Beijing Normal University (Natural Science),2016,52(3):362 − 368. (in Chinese with English abstract)]
CHEN Xi, SONG Qifeng, GAO Man, et al. Vegetation-soil-hydrology interaction and expression of parameter variations in ecohydrological models[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(3): 362 − 368. (in Chinese with English abstract)
[18] YUGE K,SHIGEMATSU K,ANAN M,et al. Effect of crop root on soil water retentivity and movement[J]. American Journal of Plant Sciences,2012,3(12):1782 − 1787. doi: 10.4236/ajps.2012.312A218
[19] 吴元芝,黄明斌. 基于Hydrus-1D模型的玉米根系吸水影响因素分析[J]. 农业工程学报,2011,27(增刊2):66 − 73. [WU Yuanzhi,HUANG Mingbin. Analysis of influencing factors on water absorption of maize roots based on hydrus-1D model[J]. Transactions of the Chinese Society of Agricultural Engineering,2011,27(Sup 2):66 − 73. (in Chinese)]
WU Yuanzhi, HUANG Mingbin. Analysis of influencing factors on water absorption of maize roots based on hydrus-1D model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(Sup 2): 66 − 73. (in Chinese)
[20] XU Xiuli,ZHANG Qi,LI Yunliang,et al. Evaluating the influence of water table depth on transpiration of two vegetation communities in a lake floodplain wetland[J]. Hydrology Research,2016,47(Sup 1):293 − 312. doi: 10.2166/nh.2016.011
[21] 席本野,贾黎明,王烨,等. 地下滴灌条件下三倍体毛白杨根区土壤水分动态模拟[J]. 应用生态学报,2011,22(1):21 − 28. [XI Benye,JIA Liming,WANG Ye,et al. Simulation of soil water dynamics in triploid Populus tomentosa root zone under subsurface drip irrigation[J]. Chinese Journal of Applied Ecology,2011,22(1):21 − 28. (in Chinese with English abstract)]
XI Benye, JIA Liming, WANG Ye, et al. Simulation of soil water dynamics in triploid Populus tomentosa root zone under subsurface drip irrigation[J]. Chinese Journal of Applied Ecology, 2011, 22(1): 21 − 28. (in Chinese with English abstract)
[22] 虎胆·吐马尔白,焦萍,米力夏提·米那多拉. 新疆干旱区成龄核桃滴灌制度优化[J]. 农业工程学报,2020,36(15):134 − 141. [HUDAN Tumarday,JIAO Ping,MILIXIATI Minadola. Optimization of drip irrigation scheme for mature walnut in arid areas of Xinjiang,China[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(15):134 − 141. (in Chinese with English abstract)]
HUDAN Tumarday, JIAO Ping, MILIXIATI Minadola. Optimization of drip irrigation scheme for mature walnut in arid areas of Xinjiang, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 134 − 141. (in Chinese with English abstract)
[23] 郑策,高万德,陈云飞,等. 季节性冻土区包气带水汽热耦合运移研究进展[J]. 农业工程学报,2022,38(24):110 − 117. [ZHENG Ce,GAO Wande,CHEN Yunfei,et al. Review of coupled water,vapor,and heat transport of the vadose zone in the seasonal frozen soil region[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(24):110 − 117. (in Chinese with English abstract)]
ZHENG Ce, GAO Wande, CHEN Yunfei, et al. Review of coupled water, vapor, and heat transport of the vadose zone in the seasonal frozen soil region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(24): 110 − 117. (in Chinese with English abstract)
[24] 江训才,冯洪川,祝晓彬,等. 入渗补给范围对包气带水气两相流运移过程影响的数值模拟研究[J]. 灌溉排水学报,2022,41(11):78 − 84. [JIANG Xuncai,FENG Hongchuan,ZHU Xiaobin,et al. Numerical simulation of the influence of infiltration range on gas and water flow in vadose zone[J]. Journal of Irrigation and Drainage,2022,41(11):78 − 84. (in Chinese with English abstract)]
JIANG Xuncai, FENG Hongchuan, ZHU Xiaobin, et al. Numerical simulation of the influence of infiltration range on gas and water flow in vadose zone[J]. Journal of Irrigation and Drainage, 2022, 41(11): 78 − 84. (in Chinese with English abstract)
[25] HOU Lizhu,HU B X,QI Zhiming,et al. Evaluating equilibrium and non-equilibrium transport of ammonium in a loam soil column[J]. Hydrological Processes,2018,32(1):80 − 92. doi: 10.1002/hyp.11400
[26] ZHANG Han,YANG Ruxing,GUO Shanshan,et al. Modeling fertilization impacts on nitrate leaching and groundwater contamination with HYDRUS-1D and MT3DMS[J]. Paddy and Water Environment,2020,18(3):481 − 498. doi: 10.1007/s10333-020-00796-6
[27] 焦独醒,李家斌,李进花,等. 应用HYDRUS-1D模型分析Cr(Ⅵ)在负载针铁矿的石英砂中的迁移特征[J]. 环境工程,2023,41(增刊2):1186 − 1189. [JIAO Duxing,LI Jiabin,LI Jinhua,et al. Simulation of Cr(VI)transport in goethite coated sand column by hydrus-1D model[J]. Environmental Engineering,2023,41(Sup 2):1186 − 1189. (in Chinese)]
JIAO Duxing, LI Jiabin, LI Jinhua, et al. Simulation of Cr(VI)transport in goethite coated sand column by hydrus-1D model[J]. Environmental Engineering, 2023, 41(Sup 2): 1186 − 1189. (in Chinese)
[28] 邰托娅,郑跃军,王金生. 应用HYDRUS-1D模型模拟分析PFCs在土壤中的迁移特征[J]. 农业环境科学学报,2018,37(10):2175 − 2182. [TAI Tuoya,ZHENG Yuejun,WANG Jinsheng. Simulation and analysis of PFCs migration in the soil column using the Hydrus-1D model[J]. Journal of Agro-Environment Science,2018,37(10):2175 − 2182. (in Chinese with English abstract)]
TAI Tuoya, ZHENG Yuejun, WANG Jinsheng. Simulation and analysis of PFCs migration in the soil column using the Hydrus-1D model[J]. Journal of Agro-Environment Science, 2018, 37(10): 2175 − 2182. (in Chinese with English abstract)
[29] BEHROOZI A,ARORA M,FLETCHER T D,et al. Sorption and transport behavior of zinc in the soil: Implications for stormwater management[J]. Geoderma,2020,367:114243. doi: 10.1016/j.geoderma.2020.114243
[30] 高靖勋,冯洪川,祝晓彬,等. 层状非均质结构包气带入渗过程单相流与两相流数值模拟对比研究[J]. 水文地质工程地质,2022,49(2):24 − 32. [GAO Jingxun,FENG Hongchuan,ZHU Xiaobin,et al. A comparative numerical simulation study of single-phase flow and water-gas two-phase flow infiltration process in the vadose zone with the layered heterogeneous structure[J]. Hydrogeology & Engineering Geology,2022,49(2):24 − 32. (in Chinese with English abstract)]
GAO Jingxun, FENG Hongchuan, ZHU Xiaobin, et al. A comparative numerical simulation study of single-phase flow and water-gas two-phase flow infiltration process in the vadose zone with the layered heterogeneous structure[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 24 − 32. (in Chinese with English abstract)
[31] 王士军,田路遥,刘丙霞. 地下水浅埋区层状土壤结构对包气带硝态氮累积和淋失的影响[J]. 中国生态农业学报(中英文),2023,31(1):125 − 135. [WANG Shijun,TIAN Luyao,LIU Bingxia. Effects of layered soil on the accumulation and leaching of nitrate-nitrogen in shallow groundwater regions[J]. Chinese Journal of Eco-Agriculture,2023,31(1):125 − 135. (in Chinese with English abstract)]
WANG Shijun, TIAN Luyao, LIU Bingxia. Effects of layered soil on the accumulation and leaching of nitrate-nitrogen in shallow groundwater regions[J]. Chinese Journal of Eco-Agriculture, 2023, 31(1): 125 − 135. (in Chinese with English abstract)
[32] LU Jie,BAI Zhaohai,VELTHOF G L,et al. Accumulation and leaching of nitrate in soils in wheat-maize production in China[J]. Agricultural Water Management,2019,212:407 − 415. doi: 10.1016/j.agwat.2018.08.039
[33] EKEMEN KESKIN T,TOPTAŞ S. Heavy metal pollution in the surrounding ore deposits and mining activity:A case study from koyulhisar (Sivas-Turkey)[J]. Environmental Earth Sciences,2012,67(3):859 − 866. doi: 10.1007/s12665-012-1541-2
[34] PATTERSON B M,DAVIS G B. Quantification of vapor intrusion pathways into a slab-on-ground building under varying environmental conditions[J]. Environmental Science & Technology,2009,43(3):650 − 656.
[35] 王珍,李久生,栗岩峰. 土壤空间变异对滴灌水氮淋失风险影响的模拟评估[J]. 水利学报,2013,44(3):302 − 311. [WANG Zhen,LI Jiusheng,LI Yanfeng. Assessing the influence of soil spatial variability on water leakage and nitrate leaching under drip irrigation through simulation[J]. Journal of Hydraulic Engineering,2013,44(3):302 − 311. (in Chinese with English abstract)]
WANG Zhen, LI Jiusheng, LI Yanfeng. Assessing the influence of soil spatial variability on water leakage and nitrate leaching under drip irrigation through simulation[J]. Journal of Hydraulic Engineering, 2013, 44(3): 302 − 311. (in Chinese with English abstract)
[36] 杨洋,李娟,李鸣晓,等. HYDRUS-1D软件在地下水污染源强定量评价中的应用[J]. 环境工程学报,2014,8(12):5293 − 5298. [YANG Yang,LI Juan,LI Mingxiao,et al. Application of HYDRUS-1D model in quantitative assessment of groundwater pollution resource intensity[J]. Chinese Journal of Environmental Engineering,2014,8(12):5293 − 5298. (in Chinese with English abstract)]
YANG Yang, LI Juan, LI Mingxiao, et al. Application of HYDRUS-1D model in quantitative assessment of groundwater pollution resource intensity[J]. Chinese Journal of Environmental Engineering, 2014, 8(12): 5293 − 5298. (in Chinese with English abstract)
[37] 张惠,林青,徐绍辉. 磺胺嘧啶在覆铁石英砂中迁移特征及数值模拟[J]. 中国环境科学,2019,39(11):4712 − 4721. [ZHANG Hui,LIN Qing,XU Shaohui. Characteristics of sulfadiazine migration in iron oxide coated sand and a comparison with simulation results[J]. China Environmental Science,2019,39(11):4712 − 4721. (in Chinese with English abstract)]
ZHANG Hui, LIN Qing, XU Shaohui. Characteristics of sulfadiazine migration in iron oxide coated sand and a comparison with simulation results[J]. China Environmental Science, 2019, 39(11): 4712 − 4721. (in Chinese with English abstract)
[38] 杜学军,闫彬伟,许可,等. 盐碱地水盐运移理论及模型研究进展[J]. 土壤通报,2021,52(3):713 − 721. [DU Xuejun,YAN Binwei,XU Ke,et al. Research progress on water-salt transport theories and models in saline-alkali soil[J]. Chinese Journal of Soil Science,2021,52(3):713 − 721. (in Chinese with English abstract)]
DU Xuejun, YAN Binwei, XU Ke, et al. Research progress on water-salt transport theories and models in saline-alkali soil[J]. Chinese Journal of Soil Science, 2021, 52(3): 713 − 721. (in Chinese with English abstract)
[39] 陈丽娟,冯起,王昱,等. 微咸水灌溉条件下含黏土夹层土壤的水盐运移规律[J]. 农业工程学报,2012,28(8):44 − 51. [CHEN Lijuan,FENG Qi,WANG Yu,et al. Water and salt movement under saline water irrigation in soil with clay interlayer[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(8):44 − 51. (in Chinese with English abstract)] doi: 10.3969/j.issn.1002-6819.2012.08.007
CHEN Lijuan, FENG Qi, WANG Yu, et al. Water and salt movement under saline water irrigation in soil with clay interlayer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(8): 44 − 51. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-6819.2012.08.007
[40] 范严伟,黄宁,马孝义,等. 应用HYDRUS-1D模拟砂质夹层土壤入渗特性[J]. 土壤,2016,48(1):193 − 200. [FAN Yanwei,HUANG Ning,MA Xiaoyi,et al. Simulation of infiltration characteristics in soil with sand interlayer using HYDRUS-1D[J]. Soils,2016,48(1):193 − 200. (in Chinese with English abstract)]
FAN Yanwei, HUANG Ning, MA Xiaoyi, et al. Simulation of infiltration characteristics in soil with sand interlayer using HYDRUS-1D[J]. Soils, 2016, 48(1): 193 − 200. (in Chinese with English abstract)
[41] 冯壮壮,史海滨,苗庆丰,等. 基于HYDRUS-1D模型的河套灌区典型夹砂层耕地水分利用分析[J]. 农业工程学报,2021,37(18):90 − 99. [FENG Zhuangzhuang,SHI Haibin,MIAO Qingfeng,et al. Water use analysis of cultivated land with typical sand layers in Hetao irrigation district of Inner Mongolia using HYDRUS-1D model[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(18):90 − 99. (in Chinese with English abstract)] doi: 10.11975/j.issn.1002-6819.2021.18.011
FENG Zhuangzhuang, SHI Haibin, MIAO Qingfeng, et al. Water use analysis of cultivated land with typical sand layers in Hetao irrigation district of Inner Mongolia using HYDRUS-1D model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 90 − 99. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2021.18.011
[42] 刘洪光,白振涛,李开明. 基于HYDRUS-2D模型的膜下滴灌暗管排水棉田土壤盐分变化[J]. 农业工程学报,2021,37(2):130 − 141. [LIU Hongguang,BAI Zhentao,LI Kaiming. Soil salinity changes in cotton field under mulched drip irrigation with subsurface pipes drainage using HYDRUS-2D model[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(2):130 − 141. (in Chinese with English abstract)] doi: 10.11975/j.issn.1002-6819.2021.2.016
LIU Hongguang, BAI Zhentao, LI Kaiming. Soil salinity changes in cotton field under mulched drip irrigation with subsurface pipes drainage using HYDRUS-2D model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(2): 130 − 141. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2021.2.016
[43] 徐钰德,刘子金,程慧,等. 基于HYDRUS-3D的畦灌模式下田间水盐运移模拟[J]. 水利水电技术(中英文),2021,52(7):14 − 22. [XU Yude,LIU Zijin,CHENG Hui,et al. Simulation of water and salt transportation under border irrigation in field scale based on HYDRUS-3D[J]. Water Resources and Hydropower Engineering,2021,52(7):14 − 22. (in Chinese with English abstract)]
XU Yude, LIU Zijin, CHENG Hui, et al. Simulation of water and salt transportation under border irrigation in field scale based on HYDRUS-3D[J]. Water Resources and Hydropower Engineering, 2021, 52(7): 14 − 22. (in Chinese with English abstract)
[44] 徐存东,赵志宏,程慧,等. 基于HYDRUS-3D的干旱区土壤沟灌模式水盐运移模拟[J]. 干旱区资源与环境,2021,35(12):134 − 141. [XU Cundong,ZHAO Zhihong,CHENG Hui,et al. HYDRUS-3D-based simulation of water and salt transport in arid land soil under furrow irrigation patterns[J]. Journal of Arid Land Resources and Environment,2021,35(12):134 − 141. (in Chinese with English abstract)]
XU Cundong, ZHAO Zhihong, CHENG Hui, et al. HYDRUS-3D-based simulation of water and salt transport in arid land soil under furrow irrigation patterns[J]. Journal of Arid Land Resources and Environment, 2021, 35(12): 134 − 141. (in Chinese with English abstract)
[45] 马波,周青云,张宝忠,等. 基于HYDRUS-2D的滨海地区膜下滴灌土壤水盐运移模拟研究[J]. 干旱地区农业研究,2020,38(5):182 − 191. [MA Bo,ZHOU Qingyun,ZHANG Baozhong,et al. Simulation of soil water and salt transport under mulched drip irrigation based on HYDRUS Model in coastal area[J]. Agricultural Research in the Arid Areas,2020,38(5):182 − 191. (in Chinese with English abstract)]
MA Bo, ZHOU Qingyun, ZHANG Baozhong, et al. Simulation of soil water and salt transport under mulched drip irrigation based on HYDRUS Model in coastal area[J]. Agricultural Research in the Arid Areas, 2020, 38(5): 182 − 191. (in Chinese with English abstract)
[46] CHEN Lijuan,FENG Qi,LI Fengrui,et al. A bidirectional model for simulating soil water flow and salt transport under mulched drip irrigation with saline water[J]. Agricultural Water Management,2014,146:24 − 33. doi: 10.1016/j.agwat.2014.07.021
[47] 王云权. 腾格里沙漠边缘不同土壤类型水盐运移规律与数值模拟研究[D]. 兰州:兰州大学,2011. [WANG Yunquan. Study on water and salt transport law and numerical simulation of different soil types on the edge of Tengger desert[D]. Lanzhou:Lanzhou University,2011. (in Chinese with English abstract)]
WANG Yunquan. Study on water and salt transport law and numerical simulation of different soil types on the edge of Tengger desert[D]. Lanzhou: Lanzhou University, 2011. (in Chinese with English abstract)
[48] 李仁海,周志超,李杰彪,等. 甘肃北山地区典型沟谷包气带土壤渗透特征研究[J]. 土壤通报,2020,51(6):1380 − 1385. [LI Renhai,ZHOU Zhichao,LI Jiebiao,et al. Characteristics of the soil permeability in a typical gully aerated zone of Beishan in Gansu Province[J]. Chinese Journal of Soil Science,2020,51(6):1380 − 1385. (in Chinese with English abstract)]
LI Renhai, ZHOU Zhichao, LI Jiebiao, et al. Characteristics of the soil permeability in a typical gully aerated zone of Beishan in Gansu Province[J]. Chinese Journal of Soil Science, 2020, 51(6): 1380 − 1385. (in Chinese with English abstract)
[49] 马萌华,李家科,邓陈宁. 基于SWMM模型的城市内涝与面源污染的模拟分析[J]. 水力发电学报,2017,36(11):62 − 72. [MA Menghua,LI Jiake,DENG Chenning. Analysis of urban waterlogging and pollution load based on SWMM model[J]. Journal of Hydroelectric Engineering,2017,36(11):62 − 72. (in Chinese with English abstract)] doi: 10.11660/slfdxb.20171107
MA Menghua, LI Jiake, DENG Chenning. Analysis of urban waterlogging and pollution load based on SWMM model[J]. Journal of Hydroelectric Engineering, 2017, 36(11): 62 − 72. (in Chinese with English abstract) doi: 10.11660/slfdxb.20171107
[50] BROWN R A,SKAGGS R W,HUNT W F. Calibration and validation of DRAINMOD to model bioretention hydrology[J]. Journal of Hydrology,2013,486:430 − 442. doi: 10.1016/j.jhydrol.2013.02.017
[51] 涂安国,李英,莫明浩,等. 基于RECARGA模型生物滞留池设计参数的水文效应[J]. 水土保持学报,2020,34(1):149 − 153. [TU Anguo,LI Ying,MO Minghao,et al. Hydrological effects of design parameters optimization of bioretention facility based on RECARGA model[J]. Journal of Soil and Water Conservation,2020,34(1):149 − 153. (in Chinese with English abstract)]
TU Anguo, LI Ying, MO Minghao, et al. Hydrological effects of design parameters optimization of bioretention facility based on RECARGA model[J]. Journal of Soil and Water Conservation, 2020, 34(1): 149 − 153. (in Chinese with English abstract)
[52] LI Jiake,ZHAO Ruisong,LI Yajiao,et al. Simulation and optimization of layered bioretention facilities by HYDRUS-1D model and response surface methodology[J]. Journal of Hydrology,2020,586:124813. doi: 10.1016/j.jhydrol.2020.124813
[53] 张炜,王浩远,赵玉华,等. 基于HYDRUS-1D生物滞留设施雨水径流水文调控模拟[J]. 水资源保护,2022,38(3):102 − 108. [ZHANG Wei,WANG Haoyuan,ZHAO Yuhua,et al. Hydrological regulation simulation of rainwater runoff of bioretention based on HYDRUS-1D[J]. Water Resources Protection,2022,38(3):102 − 108. (in Chinese with English abstract)] doi: 10.3880/j.issn.1004-6933.2022.03.014
ZHANG Wei, WANG Haoyuan, ZHAO Yuhua, et al. Hydrological regulation simulation of rainwater runoff of bioretention based on HYDRUS-1D[J]. Water Resources Protection, 2022, 38(3): 102 − 108. (in Chinese with English abstract) doi: 10.3880/j.issn.1004-6933.2022.03.014
[54] 王超月,李方红,韩忠民,等. 生物滞留池对石家庄市雨水径流的水文响应[J]. 灌溉排水学报,2022,41(8):87 − 94. [WANG Chaoyue,LI Fanghong,HAN Zhongmin,et al. The effect of bioretention systems on stormwater runoff of Shijiazhuang[J]. Journal of Irrigation and Drainage,2022,41(8):87 − 94. (in Chinese with English abstract)]
WANG Chaoyue, LI Fanghong, HAN Zhongmin, et al. The effect of bioretention systems on stormwater runoff of Shijiazhuang[J]. Journal of Irrigation and Drainage, 2022, 41(8): 87 − 94. (in Chinese with English abstract)
[55] LI Jiake,LIU Zhouli,JIANG Chunbo,et al. Optimization design of key parameters for bioretention cells with mixed filter media via HYDRUS-1D model and regression analysis[J]. Ecological Engineering,2021,164:106206. doi: 10.1016/j.ecoleng.2021.106206
[56] 李家科,蒋春博,张思翀,等. 生态滤沟对城市路面径流的净化效果试验及模拟[J]. 水科学进展,2016,27(6):898 − 908. [LI Jiake,JIANG Chunbo,ZHANG Sichong,et al. Pilot scale experiments and simulation of the purification effects of bioswale on urban road runoff[J]. Advances in Water Science,2016,27(6):898 − 908. (in Chinese with English abstract)]
LI Jiake, JIANG Chunbo, ZHANG Sichong, et al. Pilot scale experiments and simulation of the purification effects of bioswale on urban road runoff[J]. Advances in Water Science, 2016, 27(6): 898 − 908. (in Chinese with English abstract)
[57] 李鹏,李家科,林培娟,等. 生物滞留槽对城市路面径流水质处理效果的试验研究[J]. 水力发电学报,2016,35(8):72 − 79. [LI Peng,LI Jiake,LIN Peijuan,et al. Experimental study on effects of bioretention tank purifying urban road runoff[J]. Journal of Hydroelectric Engineering,2016,35(8):72 − 79. (in Chinese with English abstract)] doi: 10.11660/slfdxb.20160809
LI Peng, LI Jiake, LIN Peijuan, et al. Experimental study on effects of bioretention tank purifying urban road runoff[J]. Journal of Hydroelectric Engineering, 2016, 35(8): 72 − 79. (in Chinese with English abstract) doi: 10.11660/slfdxb.20160809
[58] GURUNG S B,GERONIMO F K,HONG J,et al. Application of indices to evaluate LID facilities for sediment and heavy metal removal[J]. Chemosphere,2018,206:693 − 700. doi: 10.1016/j.chemosphere.2018.05.077
[59] HAKIMDAVAR R,CULLIGAN P J,FINAZZI M,et al. Scale dynamics of extensive green roofs:Quantifying the effect of drainage area and rainfall characteristics on observed and modeled green roof hydrologic performance[J]. Ecological Engineering,2014,73:494 − 508. doi: 10.1016/j.ecoleng.2014.09.080
[60] 李凯,王建龙,王雪婷,等. 次降雨入渗补给系数评估雨水花园补给地下水可行性及计算方法研究[J]. 水利水电技术(中英文),2023,54(2):108 − 117. [LI Kai,WANG Jianlong,WANG Xueting,et al. The feasibility and compute methods of sub-rainfall infiltration recharge coefficient used for evaluation of groundwater recharge capacity by rain garden[J]. Water Resources and Hydropower Engineering,2023,54(2):108 − 117. (in Chinese with English abstract)]
LI Kai, WANG Jianlong, WANG Xueting, et al. The feasibility and compute methods of sub-rainfall infiltration recharge coefficient used for evaluation of groundwater recharge capacity by rain garden[J]. Water Resources and Hydropower Engineering, 2023, 54(2): 108 − 117. (in Chinese with English abstract)
[61] TURCO M,KODEŠOVÁ R,BRUNETTI G,et al. Unsaturated hydraulic behaviour of a permeable pavement:Laboratory investigation and numerical analysis by using the HYDRUS-2D model[J]. Journal of Hydrology,2017,554:780 − 791. doi: 10.1016/j.jhydrol.2017.10.005
[62] 陈雨,陈璇,刘瑞芬. 基于HYDRUS-1D模型的植物根系对人工基质水分特征曲线参数的影响[J]. 环境科学学报,2022,42(8):325 − 336. [CHEN Yu,CHEN Xuan,LIU Ruifen. Effect of plant roots on water characteristic curve parameters of artificial substrate based on HYDRUS-1D model[J]. Acta Scientiae Circumstantiae,2022,42(8):325 − 336. (in Chinese with English abstract)]
CHEN Yu, CHEN Xuan, LIU Ruifen. Effect of plant roots on water characteristic curve parameters of artificial substrate based on HYDRUS-1D model[J]. Acta Scientiae Circumstantiae, 2022, 42(8): 325 − 336. (in Chinese with English abstract)
[63] LIU Ruifeng,FASSMAN-BECK E. Pore structure and unsaturated hydraulic conductivity of engineered media for living roofs and bioretention based on water retention data[J]. Journal of Hydrologic Engineering,2018,23(3):1 − 13.
[64] 李亚娇,徐毓江,李家科. 低影响开发单项设施模拟模型研究与应用进展[J]. 水资源与水工程学报,2017,28(5):135 − 141. [LI Yajiao,XU Yujiang,LI Jiake. Research and application progress of low-impact development single facility simulation model[J]. Journal of Water Resources and Water Engineering,2017,28(5):135 − 141. (in Chinese with English abstract)]
LI Yajiao, XU Yujiang, LI Jiake. Research and application progress of low-impact development single facility simulation model[J]. Journal of Water Resources and Water Engineering, 2017, 28(5): 135 − 141. (in Chinese with English abstract)
[65] LISENBEE W A,HATHAWAY J M,BURNS M J,et al. Modeling bioretention stormwater systems:Current models and future research needs[J]. Environmental Modelling & Software,2021,144:105146.
[66] 代锋刚,王晓燕,谷明旭,等. 基于Modflow-Hydrus耦合模型的改良盐碱土水平井排水效果分析[J]. 排灌机械工程学报,2021,39(1):61 − 67. [DAI Fenggang,WANG Xiaoyan,GU Mingxu,et al. Analysis of horizontal drainage well effect of saline-alkali soil amelioration based on Modflow-Hydrus coupling model[J]. Journal of Drainage and Irrigation Machinery Engineering,2021,39(1):61 − 67. (in Chinese with English abstract)]
DAI Fenggang, WANG Xiaoyan, GU Mingxu, et al. Analysis of horizontal drainage well effect of saline-alkali soil amelioration based on Modflow-Hydrus coupling model[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(1): 61 − 67. (in Chinese with English abstract)
[67] ZHAO Ying,PETH S,HORN R,et al. Modeling grazing effects on coupled water and heat fluxes in Inner Mongolia grassland[J]. Soil and Tillage Research,2010,109(2):75 − 86. doi: 10.1016/j.still.2010.04.005
[68] SHELIA V,ŠIMŮNEK J,BOOTE K,et al. Coupling DSSAT and HYDRUS-1D for simulations of soil water dynamics in the soil-plant-atmosphere system[J]. Journal of Hydrology and Hydromechanics,2018,66(2):232 − 245. doi: 10.1515/johh-2017-0055
[69] 郝远远,徐旭,任东阳,等. 河套灌区土壤水盐和作物生长的HYDRUS-EPIC模型分布式模拟[J]. 农业工程学报,2015,31(11):110 − 116. [HAO Yuanyuan,XU Xu,REN Dongyang,et al. Distributed modeling of soil water-salt dynamics and crop yields based on HYDRUS-EPIC model in Hetao Irrigation District[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(11):110 − 116. (in Chinese with English abstract)] doi: 10.11975/j.issn.1002-6819.2015.11.016
HAO Yuanyuan, XU Xu, REN Dongyang, et al. Distributed modeling of soil water-salt dynamics and crop yields based on HYDRUS-EPIC model in Hetao Irrigation District[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(11): 110 − 116. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2015.11.016
[70] ZENG Jicai,YANG Jinzhong,ZHA Yuanyuan,et al. Capturing soil-water and groundwater interactions with an iterative feedback coupling scheme:New HYDRUS package for MODFLOW[J]. Hydrology and Earth System Sciences,2019,23(2):637 − 655. doi: 10.5194/hess-23-637-2019
[71] 林挺,罗飞,朱艳,等. Hydrus-1D模型在推导基于保护地下水的土壤风险控制值中的应用[J]. 环境科学,2019,40(12):5640 − 5648. [LIN Ting,LUO Fei,ZHU Yan,et al. Calculation of the soil risk control value through a hydrus-1D model for groundwater protection[J]. Environmental Science,2019,40(12):5640 − 5648. (in Chinese with English abstract)]
LIN Ting, LUO Fei, ZHU Yan, et al. Calculation of the soil risk control value through a hydrus-1D model for groundwater protection[J]. Environmental Science, 2019, 40(12): 5640 − 5648. (in Chinese with English abstract)
[72] WANG Mengqin,ZHU Yan,MAO Wei,et al. Chemical characteristics and reactive transport of soil salt ions in frozen soil during the freeze and thaw period[J]. Journal of Hydrology,2023,621:129580. doi: 10.1016/j.jhydrol.2023.129580
-