Characteristics of water absorption capacity of weathered sandstone based on nuclear magnetic resonance and wave velocity testing
-
摘要:
水是岩石风化破坏的关键因素,高吸水性岩石一般更易受到风化破坏,但一直缺少原位评估岩石吸水能力的方法。为探究岩石吸水能力的控制因素,以云冈石窟不同风化程度砂岩为研究对象,采用核磁共振技术测得岩石样品的孔隙度和孔径分布,建立砂岩自由吸水率与密度、孔隙度、孔径的关系。结果表明:砂岩自由吸水率与密度呈线性关系,但两者的斜率与风化程度有关;砂岩自由吸水率与孔隙度、小孔(0.1~1.0 μm)占比均呈正相关性,其中孔隙度是控制砂岩自由吸水率的主要原因,孔隙结构是控制砂岩自由吸水率的次要原因;由于波速受孔隙度和孔隙结构控制,自由吸水率与波速有良好的线性关系,因此提出可以通过原位测试波速估算岩体表层自由吸水率。本研究加深了对风化砂岩吸水性控制机理的认识,并提出了一种可以原位获得石质文物自由吸水率的方法,对石质文物保护具有重要的指导意义。
Abstract:Water is a key factor in the weathering and erosion of rocks, and highly porous rocks are generally more susceptible to weathering. However, there has been a lack of in-situ methods for assessing the water absorption capacity of rocks. To investigate the controlling factors of rock water absorption capacity, sandstone with different degrees of weathering collected from the Yungang Grottoes were selected as the study material. Nuclear magnetic resonance (NMR) technology was employed to test the porosity and pore size distribution of rock samples, and to establish the relationship between the free water absorption rate of sandstone and its density, porosity, and pore size. The results indicate that there is a linear relationship between the free water absorption rate and the density of sandstone, with the slope of the relationship being influenced by the degree of weathering. Additionally, the free water absorption rate of the sandstone is positively correlated with porosity and the proportion of small pores (0.1-1.0 μm), with porosity being the primary controlling factor and pore structure being the secondary controlling factor. This study deepens our understanding of the mechanisms controlling the water absorption of weathered sandstone. Furthermore, since wave velocity is also influenced by porosity and pore structure, a good linear relationship was observed between the free water absorption rate and wave velocity. Therefore, it is suggested that the free water absorption rate of rock mass can be estimated by in-situ testing of wave velocity.
-
-
表 1 岩石样品的物理参数及各类孔隙占比
Table 1. Physical parameters and proportions of different types of pores of the rock samples
岩芯编号 自由吸水率/% 波速/(km·s−1) 密度/(g·cm−3) 孔隙度/% 微孔占比/% 小孔占比/% 中孔占比/% 大孔占比/% 1 9.44 3.38 2.33 12.28 0.21 25.46 54.47 19.86 2 8.17 3.57 2.39 10.59 5.53 23.91 53.92 16.65 3 9.10 3.47 2.37 10.50 0.00 21.59 55.62 22.79 4 8.86 3.38 2.38 10.41 0.25 12.13 59.96 27.65 6 8.67 2.91 2.44 10.20 1.40 32.96 45.37 20.27 10 8.74 3.14 2.42 10.65 0.00 17.33 56.35 26.32 16 9.13 3.09 2.40 10.72 0.00 20.40 53.26 26.35 21 8.83 3.22 2.44 10.64 1.33 21.91 50.31 26.45 111a 9.51 3.13 2.36 10.94 2.87 26.31 57.41 13.40 111b 9.49 2.90 2.33 11.34 6.17 28.11 52.48 13.24 112a 10.67 2.75 2.32 13.06 1.75 35.40 44.09 18.76 112b 10.10 2.74 2.43 12.81 2.64 42.76 41.59 13.01 136a 9.42 2.98 2.37 9.78 0.00 21.00 61.13 17.87 136b 9.36 2.90 2.40 9.84 3.96 25.27 59.33 11.45 136c 9.01 3.13 2.36 9.26 0.00 19.81 59.46 20.73 137a 8.90 3.29 2.41 9.16 0.00 29.94 52.98 17.08 137b 9.02 3.68 2.41 12.40 7.13 38.00 43.01 11.87 137d 9.06 3.47 2.37 10.51 5.57 35.05 51.10 8.28 39a 9.88 2.75 2.29 13.62 4.31 28.42 49.45 17.82 39b 10.77 2.50 2.30 12.60 4.85 33.55 48.65 12.94 40a 8.66 3.29 2.45 7.69 0.00 31.94 57.80 10.26 40b 8.84 3.03 2.41 8.68 7.08 34.46 48.80 9.66 表 2 不同岩石自由吸水率随孔隙度的变化斜率
Table 2. Slopes of the variation of free water absorption rate with porosity for different types of rocks
岩石类别 k 云岗砂岩 0.64 灰岩 0.47 大理岩 0.44 安山岩 0.83 注:k表示自由吸水率随孔隙度的变化斜率;灰岩、大理岩和安山岩k值据文献[25];云岗砂岩的k值为本次研究结果。 -
[1] CARROLL D. Rock weathering[M]. New York:Plenum Press,1970.
[2] SHI Zhenming,JIANG Tao,JIANG Mingjing,et al. DEM investigation of weathered rocks using a novel bond contact model[J]. Journal of Rock Mechanics and Geotechnical Engineering,2015,7(3):327 − 336. doi: 10.1016/j.jrmge.2015.01.005
[3] CHIZHIKOVA N P,LESSOVAIA S N,GORBUSHINA A A. Biogenic weathering of mineral substrates (review)[M]//Lecture Notes in Earth System Sciences. Cham:Springer International Publishing,2015:7 − 14.
[4] TIAN Fei,TIAN Mingzhong,LIU Jin. Characteristics,multi-phase evolution and genesis of weathering pits in Qing Mountain,Inner Mongolia,China[J]. Journal of Earth Science,2013,24(3):457 − 470. doi: 10.1007/s12583-013-0336-z
[5] 汪军,徐金明,龚明权,等. 基于扫描电镜图像和微观渗流模型的云冈石窟砂岩风化特征分析[J]. 水文地质工程地质,2021,48(6):122 − 130. [WANG Jun,XU Jinming,GONG Mingquan,et al. Investigating weathering features of sandstones in the Yungang Grottoes based on SEM images and micro-scale flow model[J]. Hydrogeology & Engineering Geology,2021,48(6):122 − 130. (in Chinese with English abstract)]
WANG Jun, XU Jinming, GONG Mingquan, et al. Investigating weathering features of sandstones in the Yungang Grottoes based on SEM images and micro-scale flow model[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 122 − 130. (in Chinese with English abstract)
[6] 安程. 石窟环境监测模拟及整体性分析研究[M]. 北京:科学出版社,2019. [AN Cheng. Study on environmental monitoring simulation and holistic analysis of grottoes[M]. Beijing:Science Press,2019. (in Chinese)]
AN Cheng. Study on environmental monitoring simulation and holistic analysis of grottoes[M]. Beijing: Science Press, 2019. (in Chinese)
[7] 侯志鑫,者瑞,张中俭. 砂岩质文物风化机理研究——以云冈石窟为例[J]. 工程勘察,2020,48(9):1 − 5. [HOU Zhixin,ZHE Rui,ZHANG Zhongjian. Experimental study on the weathering mechanism of sandstone cultural relics:A case study of Yungang Grottoes[J]. Geotechnical Investigation & Surveying,2020,48(9):1 − 5. (in Chinese with English abstract)]
HOU Zhixin, ZHE Rui, ZHANG Zhongjian. Experimental study on the weathering mechanism of sandstone cultural relics: A case study of Yungang Grottoes[J]. Geotechnical Investigation & Surveying, 2020, 48(9): 1 − 5. (in Chinese with English abstract)
[8] 黄继忠,袁道先,万力,等. 水岩作用对云冈石窟石雕风化破坏的化学效应研究[J]. 敦煌研究,2010(6):59 − 63. [HUANG Jizhong,YUAN Daoxian,WAN Li,et al. A study on chemical effect on the water-rock interaction on the weathering of stone sculpture Yungang Grottoes[J]. Dunhuang Research,2010(6):59 − 63. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-4106.2010.06.011
HUANG Jizhong, YUAN Daoxian, WAN Li, et al. A study on chemical effect on the water-rock interaction on the weathering of stone sculpture Yungang Grottoes[J]. Dunhuang Research, 2010(6): 59 − 63. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-4106.2010.06.011
[9] HALL K,HALL A. Weathering by wetting and drying:Some experimental results[J]. Earth Surface Processes and Landforms,1996,21(4):365 − 376. doi: 10.1002/(SICI)1096-9837(199604)21:4<365::AID-ESP571>3.0.CO;2-L
[10] SUMNER P D,LOUBSER M J. Experimental sandstone weathering using different wetting and drying moisture amplitudes[J]. Earth Surface Processes and Landforms,2008,33(6):985 − 990. doi: 10.1002/esp.1586
[11] TURKINGTON A V,PARADISE T R. Sandstone weathering:A century of research and innovation[J]. Geomorphology,2005,67(1/2):229 − 253.
[12] 任建光,孟田华,黄继忠,等. 云冈石窟顶部第四纪土壤覆盖层含水率变化特征及洞窟渗漏水问题探讨[J]. 文物保护与考古科学,2023,35(3):80 − 86. [REN Jianguang,MENG Tianhua,HUANG Jizhong,et al. Discussion on the variation characteristics of water content of Quaternary soil cover on the top of Yungang Grottoes and the problem of water seepage in caves[J]. Sciences of Conservation and Archaeology,2023,35(3):80 − 86. (in Chinese with English abstract)]
REN Jianguang, MENG Tianhua, HUANG Jizhong, et al. Discussion on the variation characteristics of water content of Quaternary soil cover on the top of Yungang Grottoes and the problem of water seepage in caves[J]. Sciences of Conservation and Archaeology, 2023, 35(3): 80 − 86. (in Chinese with English abstract)
[13] 马雪雅,张理想,陈银桥,等. 庆阳北石窟寺濒危岩体变形特征分析[J]. 地震工程学报,2023,45(5):1145 − 1155. [MA Xueya,ZHANG Lixiang,CHEN Yinqiao,et al. Deformation characteristics of dangerous rock masses in the North Grotto Temple,Qingyang City[J]. China Earthquake Engineering Journal,2023,45(5):1145 − 1155. (in Chinese with English abstract)]
MA Xueya, ZHANG Lixiang, CHEN Yinqiao, et al. Deformation characteristics of dangerous rock masses in the North Grotto Temple, Qingyang City[J]. China Earthquake Engineering Journal, 2023, 45(5): 1145 − 1155. (in Chinese with English abstract)
[14] LI Hongshou,WANG Wanfu,ZHAN Hongtao,et al. Water in the Mogao Grottoes,China:Where it comes from and how it is driven[J]. Journal of Arid Land,2015,7(1):37 − 45. doi: 10.1007/s40333-014-0072-y
[15] 马策,蒋小伟,闫宏彬,等. 基于红外热成像技术的石窟壁面凝结水形成规律研究[J]. 水文地质工程地质,2022,49(4):30 − 36. [MA Ce,JIANG Xiaowei,YAN Hongbin,et al. A study of the formation pattern of condensation water in grottoes based on the infrared thermal imaging technology[J]. Hydrogeology & Engineering Geology,2022,49(4):30 − 36. (in Chinese with English abstract)]
MA Ce, JIANG Xiaowei, YAN Hongbin, et al. A study of the formation pattern of condensation water in grottoes based on the infrared thermal imaging technology[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 30 − 36. (in Chinese with English abstract)
[16] 朱华,杨刚亮,方云,等. 龙门石窟潜溪寺凝结水病害形成机理及防治对策研究[J]. 中原文物,2008(4):109 − 112. [ZHU Hua,YANG Gangliang,FANG Yun,et al. Study on formation mechanism and prevention measures of condensate disease in Qianxi Temple of Longmen Grottoes[J]. Cultural Relics of Central China,2008(4):109 − 112. ( in Chinese with English abstract] doi: 10.3969/j.issn.1003-1731.2008.04.018
ZHU Hua, YANG Gangliang, FANG Yun, et al. Study on formation mechanism and prevention measures of condensate disease in Qianxi Temple of Longmen Grottoes[J]. Cultural Relics of Central China, 2008(4): 109 − 112. ( in Chinese with English abstract doi: 10.3969/j.issn.1003-1731.2008.04.018
[17] ÇELIK M Y,KAÇMAZ A U. The investigation of static and dynamic capillary by water absorption in porous building stones under normal and salty water conditions[J]. Environmental Earth Sciences,2016,75(4):307. doi: 10.1007/s12665-015-5132-x
[18] WINKLER E M. Stone in architecture[M]. Berlin Heidelberg:Springer Berlin Heidelberg,2011.
[19] 欧阳恺皋,蒋小伟,马策,等. 岩体表层凝结水的形成与转化规律:对岩石风化水分来源的指示意义[J]. 地学前缘,2023,30(2):506 − 513. [OUYANG Kaigao,JIANG Xiaowei,MA Ce,et al. Formation and transformation of condensate water inside rocks:Insight into source of rock moisture affecting weathering[J]. Earth Science Frontiers,2023,30(2):506 − 513. (in Chinese with English abstract)]
OUYANG Kaigao, JIANG Xiaowei, MA Ce, et al. Formation and transformation of condensate water inside rocks: Insight into source of rock moisture affecting weathering[J]. Earth Science Frontiers, 2023, 30(2): 506 − 513. (in Chinese with English abstract)
[20] RUEDRICH J,BARTELSEN T,DOHRMANN R,et al. Moisture expansion as a deterioration factor for sandstone used in buildings[J]. Environmental Earth Sciences,2011,63(7/8):1545 − 1564.
[21] DE KOCK T,TURMEL A,FRONTEAU G,et al. Rock fabric heterogeneity and its influence on the petrophysical properties of a building limestone:Lede stone (Belgium) as an example[J]. Engineering Geology,2017,216:31 − 41. doi: 10.1016/j.enggeo.2016.11.007
[22] SASS O,VILES H. Heritage hydrology:A conceptual framework for understanding water fluxes and storage in built and rock-hewn heritage[J]. Heritage Science,2022,10(1):66. doi: 10.1186/s40494-022-00693-7
[23] 邓华锋,张恒宾,李建林,等. 水-岩作用对砂岩卸荷力学特性及微观结构的影响[J]. 岩土力学,2018,39(7):2344 − 2352. [DENG Huafeng,ZHANG Hengbin,LI Jianlin,et al. Effect of water-rock interaction on unloading mechanical properties and microstructure of sandstone[J]. Rock and Soil Mechanics,2018,39(7):2344 − 2352. (in Chinese with English abstract)]
DENG Huafeng, ZHANG Hengbin, LI Jianlin, et al. Effect of water-rock interaction on unloading mechanical properties and microstructure of sandstone[J]. Rock and Soil Mechanics, 2018, 39(7): 2344 − 2352. (in Chinese with English abstract)
[24] 陈钊,兰恒星,刘世杰,等. 干湿循环作用下石窟砂岩的抗拉强度劣化机理及破坏模式[J]. 地球科学,2024,49(2):612 − 624. [CHEN Zhao,LAN Hengxing,LIU Shijie,et al. Mechanism and failure mode of tensile strength deterioration of shikuosi sandstone under dry and wet cycling[J]. Earth Science,2024,49(2):612 − 624. (in Chinese with English abstract)]
CHEN Zhao, LAN Hengxing, LIU Shijie, et al. Mechanism and failure mode of tensile strength deterioration of shikuosi sandstone under dry and wet cycling[J]. Earth Science, 2024, 49(2): 612 − 624. (in Chinese with English abstract)
[25] OZCELIK Y,OZGUVEN A. Water absorption and drying features of different natural building stones[J]. Construction and Building Materials,2014,63:257 − 270. doi: 10.1016/j.conbuildmat.2014.04.030
[26] ZHANG Yaoyao,CAO Yingbing,LI Zhijun,et al. Mechanical properties and failure mechanism of granite with maximum free water absorption under triaxial compression[J]. Applied Sciences,2022,12(8):3930. doi: 10.3390/app12083930
[27] JIANG Liming,SUN Jun,LIU Xiaobo. Pore-space microstructure and clay content effect on the elastic properties of sandstones[J]. Petroleum Science and Technology,2012,30(8):830 − 840. doi: 10.1080/10916466.2010.492372
[28] REZAEI M,DAVOODI P K,NAJMODDINI I. Studying the correlation of rock properties with P-wave velocity index in dry and saturated conditions[J]. Journal of Applied Geophysics,2019,169:49 − 57. doi: 10.1016/j.jappgeo.2019.04.017
[29] MOHAMED,KASSAB,ANDREAS,et al. Porosity estimation from compressional wave velocity:A study based on egyptian carbonate samples[J]. Journal of Earth Science,2013,3(5):314 − 321.
[30] 孟召平,刘常青,贺小黑,等. 煤系岩石声波速度及其影响因素实验分析[J]. 采矿与安全工程学报,2008,25(4):389 − 393. [MENG Zhaoping,LIU Changqing,HE Xiaohei,et al. Experimental research on acoustic wave velocity of coal measures rocks and its influencing factors[J]. Journal of Mining & Safety Engineering,2008,25(4):389 − 393. (in Chinese with English abstract)] doi: 10.3969/j.issn.1673-3363.2008.04.003
MENG Zhaoping, LIU Changqing, HE Xiaohei, et al. Experimental research on acoustic wave velocity of coal measures rocks and its influencing factors[J]. Journal of Mining & Safety Engineering, 2008, 25(4): 389 − 393. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-3363.2008.04.003
[31] 黄继忠,郑伊,张悦,等. 云冈石窟砂岩水汽扩散特性研究[J]. 西北大学学报(自然科学版),2021,51(3):370 − 378. [HUANG Jizhong,ZHENG Yi,ZHANG Yue,et al. The water vapor diffusion characteristics of sandstone in Yungang Grottoes[J]. Journal of Northwest University (Natural Science Edition),2021,51(3):370 − 378. (in Chinese with English abstract)]
HUANG Jizhong, ZHENG Yi, ZHANG Yue, et al. The water vapor diffusion characteristics of sandstone in Yungang Grottoes[J]. Journal of Northwest University (Natural Science Edition), 2021, 51(3): 370 − 378. (in Chinese with English abstract)
[32] ÜNAL M,ALTUNOK E. Determination of water absorption properties of natural building stones and their relation to porosity[J]. e-journal of new world sciences academy,2019,14(1):39 − 45.
[33] LAI Fengpeng,LI Zhiping,ZHANG Tiantian,et al. Characteristics of microscopic pore structure and its influence on spontaneous imbibition of tight gas reservoir in the Ordos Basin,China[J]. Journal of Petroleum Science and Engineering,2019,172:23 − 31. doi: 10.1016/j.petrol.2018.09.020
[34] 王萍,屈展. 基于核磁共振的脆硬性泥页岩水化损伤演化研究[J]. 岩土力学,2015,36(3):687 − 693. [WANG Ping,QU Zhan. NMR technology based hydration damage evolution of hard brittle shale[J]. Rock and Soil Mechanics,2015,36(3):687 − 693. (in Chinese with English abstract)]
WANG Ping, QU Zhan. NMR technology based hydration damage evolution of hard brittle shale[J]. Rock and Soil Mechanics, 2015, 36(3): 687 − 693. (in Chinese with English abstract)
[35] PARK K,LEE B Y,LEE K,et al. Analysis of effects of rock physical properties changes from freeze–thaw weathering in ny-ålesund region:Part 2—correlations and prediction of weathered properties[J]. Applied Sciences,2020,10(10):3392. doi: 10.3390/app10103392
[36] 李炳武,李立芬,郭静娜. 云冈石窟:彪炳千秋的北魏佛国[M]. 西安:西安出版社,2020. [BING Wu,LI Lifen,GUO Jingna. Yungang Grottoes:The glorious buddhist kingdom of Northern Wei for thousands of years [M] Xi’an:Xi’an Publishing House,2020. (in Chinese)]
BING Wu, LI Lifen, GUO Jingna. Yungang Grottoes: The glorious buddhist kingdom of Northern Wei for thousands of years [M] Xi’an: Xi’an Publishing House, 2020. (in Chinese)
[37] 严绍军,陈嘉琦,窦彦,等. 云冈石窟砂岩特性与岩石风化试验[J]. 现代地质,2015,29(2):442 − 447. [YAN Shaojun,CHEN Jiaqi,DOU Yan,et al. Characteristics of Yungang Grottoes sandstone and weathering simulation tests[J]. Geoscience,2015,29(2):442 − 447. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-8527.2015.02.031
YAN Shaojun, CHEN Jiaqi, DOU Yan, et al. Characteristics of Yungang Grottoes sandstone and weathering simulation tests[J]. Geoscience, 2015, 29(2): 442 − 447. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2015.02.031
[38] 方云,乔梁,陈星,等. 云冈石窟砂岩循环冻融试验研究[J]. 岩土力学,2014,35(9):2433 − 2442. [FANG Yun,QIAO Liang,CHEN Xing,et al. Experimental study of freezing-thawing cycles on sandstone in Yungang grottos[J]. Rock and Soil Mechanics,2014,35(9):2433 − 2442. (in Chinese with English abstract)]
FANG Yun, QIAO Liang, CHEN Xing, et al. Experimental study of freezing-thawing cycles on sandstone in Yungang grottos[J]. Rock and Soil Mechanics, 2014, 35(9): 2433 − 2442. (in Chinese with English abstract)
[39] 中国电力企业联合会. 工程岩体试验方法标准:GB/T 50266―2013[S]. 北京:中国计划出版社,2013. [China Electricity Council. Standard for test methods of engineering rock mass:GB/T 50266―2013[S]. Beijing:China Planning Press,2013. (in Chinese)]
China Electricity Council. Standard for test methods of engineering rock mass: GB/T 50266―2013[S]. Beijing: China Planning Press, 2013. (in Chinese)
[40] SHARMA S,CASANOVA F,WACHE W,et al. Analysis of historical porous building materials by the NMR-MOUSE[J]. Magnetic Resonance Imaging,2003,21(3/4):249 − 255.
[41] BOWERS M C,EHRLICH R,HOWARD J J,et al. Determination of porosity types from NMR data and their relationship to porosity types derived from thin section[J]. Journal of Petroleum Science and Engineering,1995,13(1):1 − 14. doi: 10.1016/0920-4105(94)00056-A
[42] 张倩,董艳辉,童少青,等. 核磁共振冷冻测孔法及其在页岩纳米孔隙表征的应用[J]. 科学通报,2016,61(21):2387 − 2394. [ZHANG Qian,DONG Yanhui,TONG Shaoqing,et al. Nuclear magnetic resonance cryoporometry as a tool to measure pore size distribution of shale rock[J]. Chinese Science Bulletin,2016,61(21):2387 − 2394. (in Chinese with English abstract)] doi: 10.1360/N972015-01267
ZHANG Qian, DONG Yanhui, TONG Shaoqing, et al. Nuclear magnetic resonance cryoporometry as a tool to measure pore size distribution of shale rock[J]. Chinese Science Bulletin, 2016, 61(21): 2387 − 2394. (in Chinese with English abstract) doi: 10.1360/N972015-01267
[43] 周华,高峰,周萧,等. 云冈石窟不同类型砂岩的核磁共振T2谱—压汞毛管压力换算C值研究[J]. 地球物理学进展,2013,28(5):2759 − 2766. [ZHOU Hua,GAO Feng,ZHOU Xiao,et al. The translation Rresearch of different types sandstone of Yungang Grottoes in NMR T2-mercury capillary pressure[J]. Progress in Geophysics,2013,28(5):2759 − 2766. (in Chinese with English abstract)] doi: 10.6038/pg20130561
ZHOU Hua, GAO Feng, ZHOU Xiao, et al. The translation Rresearch of different types sandstone of Yungang Grottoes in NMR T2-mercury capillary pressure[J]. Progress in Geophysics, 2013, 28(5): 2759 − 2766. (in Chinese with English abstract) doi: 10.6038/pg20130561
[44] 姚艳斌,刘大锰. 基于核磁共振弛豫谱的煤储层岩石物理与流体表征[J]. 煤炭科学技术,2016,44(6):14 − 22. [YAO Yanbin,LIU Dameng. Petrophysics and fluid properties characterizations of coalbed methane reservoir by using NMR relaxation time analysis[J]. Coal Science and Technology,2016,44(6):14 − 22. (in Chinese with English abstract)]
YAO Yanbin, LIU Dameng. Petrophysics and fluid properties characterizations of coalbed methane reservoir by using NMR relaxation time analysis[J]. Coal Science and Technology, 2016, 44(6): 14 − 22. (in Chinese with English abstract)
[45] 姜德义,张水林,陈结,等. 砂岩循环冻融损伤的低场核磁共振与声发射概率密度研究[J]. 岩土力学,2019,40(2):436 − 444. [JIANG Deyi,ZHANG Shuilin,CHEN Jie,et al. Low filed NMR and acoustic emission probability density study of freezing and thawing cycles damage for sandstone[J]. Rock and Soil Mechanics,2019,40(2):436 − 444. (in Chinese with English abstract)]
JIANG Deyi, ZHANG Shuilin, CHEN Jie, et al. Low filed NMR and acoustic emission probability density study of freezing and thawing cycles damage for sandstone[J]. Rock and Soil Mechanics, 2019, 40(2): 436 − 444. (in Chinese with English abstract)
[46] 刘志军,杨栋,邵继喜,等. 基于低场核磁共振的抚顺油页岩孔隙连通性演化研究[J]. 波谱学杂志,2019,36(3):309 − 318. [LIU Zhijun,YANG Dong,SHAO Jixi,et al. Evolution of pore connectivity in the Fushun oil shale by low-field nuclear magnetic resonance spectroscopy[J]. Chinese Journal of Magnetic Resonance,2019,36(3):309 − 318. (in Chinese with English abstract)] doi: 10.11938/cjmr20182687
LIU Zhijun, YANG Dong, SHAO Jixi, et al. Evolution of pore connectivity in the Fushun oil shale by low-field nuclear magnetic resonance spectroscopy[J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 309 − 318. (in Chinese with English abstract) doi: 10.11938/cjmr20182687
[47] 廖颜萱. 风化岩分带指标定量研究[M]. 北京:地震出版社,1994. [LIAO Yanxuan. Quantitative study on zoning index of weathered rock[M]. Beijing:Seismological Press,1994. (in Chinese)]
LIAO Yanxuan. Quantitative study on zoning index of weathered rock[M]. Beijing: Seismological Press, 1994. (in Chinese)
[48] STÜCK H L,PLATZ T,MÜLLER A,et al. Natural stones of the Saale–unstrut Region (Germany):Petrography and weathering phenomena[J]. Environmental Earth Sciences,2018,77(8):300. doi: 10.1007/s12665-018-7476-5
[49] LIU Bin,ZHANG Tong,ZHANG Hongwei,et al. Mechanical properties and acoustic emission characteristics of weakly cemented sandstone with different grain sizes[J]. Frontiers in Earth Science,2022,10:939372. doi: 10.3389/feart.2022.939372
[50] 徐松林,郑文,刘永贵,等. 岩体中弹性波传播尺度效应的初步分析[J]. 岩土工程学报,2011,33(9):1348 − 1356. [XU Songlin,ZHENG Wen,LIU Yonggui,et al. A preliminary analysis of scale effect of elastic wave propagation in rock mass[J]. Chinese Journal of Geotechnical Engineering,2011,33(9):1348 − 1356. (in Chinese with English abstract)]
XU Songlin, ZHENG Wen, LIU Yonggui, et al. A preliminary analysis of scale effect of elastic wave propagation in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1348 − 1356. (in Chinese with English abstract)
-