Experiment of precipitation-driven dynamic compaction technology in the treatment of silty clay sites: A case study of Yangluo project in Wuhan
-
摘要:
针对传统软基处理方法在淤泥质黏土地基应用中效果不佳的问题,以武汉阳逻项目为实例,探讨了新型降水强夯工艺在软土地基处理中的加固机制及其施工工艺参数。研究将强夯技术和井点降水法相结合,充分利用井点具备的较大排气量和较大真空度特性,减消强夯技术产生的超静孔隙水压力并排除孔隙水。阳逻项目第一遍点夯前地下水位降到地面以下3 m需要约2 d,第二遍点夯前地下水位降到地面以下5 m需要约3 d,满夯前地下水位降到地面以下5 m需要约6 d,整个降水周期所需时间约为11 d。第一遍点夯之后超静孔隙水压力消散70%需要约7 d。试验结果显示,降水强夯法可以在短时间内显著提高软黏土的固结度,减少“橡皮土”现象的发生,有效处理深度达到6.0 m,并能显著提高软土地基的承载能力至150 kPa以上。通过对比分析现场监测和室内试验数据,进一步证明了降水强夯工艺处理淤泥质黏土地基的有效性。研究结果可为中国沿海地区广为分布的软土地基处理工程提供理论基础和施工工艺参数。
Abstract:Traditional soft foundation treatment methods often prove ineffective for muck clay soil foundations. This study investigated the reinforcement mechanism and construction process parameters of a novel dewatering-intensive tamping technique using the Yangluo project as a case study. The method integrated dynamic compaction with well-point dewatering, leveraging well-points to reduce excess pore water pressure generated by tamping while facilitating pore water discharge. During the Yangluo project, the groundwater level was lowered to 3 m below the ground surface within about 2 d before the first round of tamping, to 5 m within about 3 d before the second round of tamping, and to 5 m within about 6 d before the tamping, with the entire dewatering cycle of approximately 11 d. After the first round of tamping, the excess pore water pressure dissipated by 70% in about 7 d. The test results show that the dewatering-intensive tamping method can improve the consolidation of soft clay significantly in a short time, mitigates the “rubber soil” phenomenon, effectively treat the soil to a depth of 6.0 meters, and enhances the bearing capacity of the soft soil foundation (>150 kPa). This study establishes a theoretical foundation and practical construction parameters for the treatment of soft soil foundations, particularly in China’s coastal regions, where such conditions are prevalent.
-
Key words:
- foundation treatment /
- dewatering /
- dynamic compaction /
- silty clay /
- construction parameters
-
-
表 1 码头区地层主要物理力学指标
Table 1. Main physical and mechanical indicators of stratum in dock area
单元
土体
编号单元土体
名称天然
含水
率/%天然
孔隙比土粒
比重湿密度
/(g∙cm−3)干密度
/ (g∙cm−3)液限
/%塑限
/%塑性
指数液性
指数无侧限
抗压强度
(原状)/kPa压缩系数
/MPa−1压缩模量
/MPa静力触探比
贯入阻力
/MPa标准
贯入
击数② 粉质黏土 31.9 0.886 2.72 1.89 1.42 37.1 21.6 15.3 0.63 61.38 0.37 4.4 0.91 4.5 ③ 淤泥质粉质黏土 39.1 1.077 2.72 1.82 1.30 37.4 21.6 15.7 1.10 27.57 0.56 3.2 0.51 2.9 ③-1 粉质黏土 33.1 0.915 2.72 1.88 1.40 32.8 20.1 12.6 1.00 37.95 0.42 4.0 0.89 3.7 ④ 粉砂夹黏性土 8.0 4.42 11.3 ④-1 淤泥质粉质黏土 38.9 1.080 2.73 1.82 1.31 37.7 21.3 16.4 1.08 28.90 0.56 3.4 3.0 ④-2 粉质黏土夹砂 31.0 0.873 2.72 1.88 1.42 32.2 19.4 12.3 0.87 47.52 0.35 4.0 1.26 4.1 ⑤ 粉细砂 10.0 8.78 20.7 ⑥ 粉细砂 12.0 16.15 32.1 表 2 施工参数
Table 2. Construction parameters
工序 真空管排距/m×点距/m 夯击能/kJ 夯点间距/m 每点击数 第一遍 4×4/4×2 1500 ~1800 4×10 4~6 第二遍 4×4/4×2 2200 ~2500 4×10 6~8 第三遍 满夯 1000 搭接1/4锤径 2 表 3 土工试验数据统计分析表
Table 3. Statistical analysis of geotechnical test data
土层 无侧限抗压强度/kPa 黏聚力/kPa 最小值 最大值 均值 最小值 最大值 均值 淤泥、淤泥质土 处理前 3.8 14.8 8.7 21.9 38.6 29.0 处理后 7.5 26.6 17.0 7.5 23.2 15.4 黏土 处理前 6.2 18.5 12.7 30.9 65.8 43.8 处理后 23.8 111.9 67.9 27.5 89.1 58.3 表 4 3组检测孔标贯试验结果统计表
Table 4. Standard penetration test results of 3 sets of detection holes
土层 标贯击数 统计项目 处理前 处理后 1 2 3 淤泥质黏土 最小值 2.0 0.0 1.0 0.0 最大值 4.0 2.0 4.0 3.0 均值 3.0 1.0 2.5 1.5 粉质黏土、
黏土最小值 3.0 7.0 5.0 4.0 最大值 6.0 15.0 16.0 13.0 均值 4.5 11.0 10.5 8.5 表 5 4组静力触探试验数据统计分析表
Table 5. Statistical analysis of 4 sets of static cone penetration test data
组号 锥尖阻力平均值/MPa 增长百分比/% 施工前 施工后 1 0.897 1.066 15.85 2 0.880 1.030 14.56 3 0.889 1.048 15.17 4 0.886 1.052 15.78 表 6 3组十字板试验数据统计分析表
Table 6. Statistical analysis of 3 sets of cross plate tests
组号 剪切强度/MPa 增长百分比/% 施工前 施工后 1 19.62 30.12 53.52 2 25.10 31.30 24.70 3 23.44 36.27 35.37 注:表中所列数据为现场十字板剪切试验各点次原状土剪切强度的平均值。 -
[1] 杨云玫. 深圳机场换填地基拦淤堤沉底技术研究[J]. 人民长江,1990,(9):24 − 29. [YANG Yunmei. Research on bottom-settling technology of subgrade filling embankment to stop silt in Shenzhen Airport[J].Yangtze River, 1990,(9):24 − 29. (in Chinese )]
YANG Yunmei. Research on bottom-settling technology of subgrade filling embankment to stop silt in Shenzhen Airport[J].Yangtze River, 1990, (9): 24 − 29. (in Chinese )
[2] 么玉鹏,姚坚毅,唐世雄. 珠江口地区岩土层工程地质特征及物理力学性质研究[J]. 水文地质工程地质,2022,49(2):64 − 70. [YAO Yupeng,YAO Jianyi,TANG Shixiong. Study on engineering geological characteristics and physical and mechanical properties of rock and soil layers in the the Pearl River Estuary area[J]. Hydrogeology & Engineering Geology,2022,49(2):64 − 70. (in Chinese with English abstract)]
YAO Yupeng, YAO Jianyi, TANG Shixiong. Study on engineering geological characteristics and physical and mechanical properties of rock and soil layers in the the Pearl River Estuary area[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 64 − 70. (in Chinese with English abstract)
[3] 加瑞,赵栋,雷华阳. 黏土结构性对孔压静力触探结果的影响分析[J]. 水文地质工程地质,2023,50(5):80 − 88. [JIA Rui,ZHAO Dong,LEI Huayang. Analysis of the influence of clay structure on the results of pore pressure static penetration test[J]. Hydrogeology & Engineering Geology,2023,50(5):80 − 88. (in Chinese with English abstract)]
JIA Rui, ZHAO Dong, LEI Huayang. Analysis of the influence of clay structure on the results of pore pressure static penetration test[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 80 − 88. (in Chinese with English abstract)
[4] 杨爱武,杨少朋,杨少坤,等. 冻融循环作用下城市污泥固化土动强度特性研究[J]. 工程地质学报,2020,30(4):1044 − 1058. [YANG Aiwu,YANG Shaopeng,YANG Shaokun,et al. Dynamic performance of municipal sludge solidified soil under freeze thaw cycle[J]. Journal of Engineering Geology,2020,30(4):1044 − 1058. (in Chinese with English abstract)]
YANG Aiwu, YANG Shaopeng, YANG Shaokun, et al. Dynamic performance of municipal sludge solidified soil under freeze thaw cycle[J]. Journal of Engineering Geology, 2020, 30(4): 1044 − 1058. (in Chinese with English abstract)
[5] 金胜赫,王修山,吴越鹏. 矿渣-脱硫石膏-电石渣固化剂固化黏土的研究[J]. 工程地质学报,2023,31(2):397 − 408. [JIN Shenghe,WANG Xiushan,WU Yuepeng. Study on modification of marine clay treated with new GDC soil stabilizer[J]. Journal of Engineering Geology,2023,31(2):397 − 408. (in Chinese with English abstract)]
JIN Shenghe, WANG Xiushan, WU Yuepeng. Study on modification of marine clay treated with new GDC soil stabilizer[J]. Journal of Engineering Geology, 2023, 31(2): 397 − 408. (in Chinese with English abstract)
[6] WANG Dongxing,YANG Duo,YUAN Yong. Strength improvement and micromechanism of inorganic/organic additive-modified magnesium oxychloride cement solidified sludge[J]. Construction and Building Materials,2023,366:130 − 159.
[7] ARULRAJAH A,ABDULLAH A,BO M W,et al. Ground improvement techniques for railway embankments[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement,2009,162(1):3 − 14. doi: 10.1680/grim.2009.162.1.3
[8] 周灵刚,胡奕挺,陈欣蔚,等. 基于神经网络的板墙组合式固化土地基承载力计算方法与优化设计[J]. 地质科技通报,2024,43(6):102 − 113. [ZHOU Linggang,HU Yiting,CHEN Xinwei,et al. Calculation of capacity and optimization design-composite slab wall soil solidification foundation based on neural network[J]. Bulletin of Geological Science and Technology,2024,43(6):102 − 113. (in Chinese with English abstract)]
ZHOU Linggang, HU Yiting, CHEN Xinwei, et al. Calculation of capacity and optimization design-composite slab wall soil solidification foundation based on neural network[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 102 − 113. (in Chinese with English abstract)
[9] CONSOLI N C,DA SILVA A B,FESTUGATO L. Parameters controlling stiffness and strength of lime-stabilized soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2011,137(6):628 − 632. doi: 10.1061/(ASCE)GT.1943-5606.0000470
[10] ZUBER S Z S,KAMARUDIN H,ABDULLAH M,et al. Review on soil stabilization techniques[J]. Australian Journal of Basic and Applied Sciences,2013,7(5):258 − 265.
[11] 陈锐,郝若愚,李笛,等. 碱激发材料固化低液限粉黏土路用性能及抗冻融特性研究[J]. 工程地质学报,2022,30(2):327 − 337. [CHEN Rui,HAO Ruoyu,LI Di,et al. Study on road performance and freeze thaw resistance of alkali activated material stabilized low liquid limit silty clay[J]. Journal of Engineering Geology,2022,30(2):327 − 337. (in Chinese with English abstract)]
CHEN Rui, HAO Ruoyu, LI Di, et al. Study on road performance and freeze thaw resistance of alkali activated material stabilized low liquid limit silty clay[J]. Journal of Engineering Geology, 2022, 30(2): 327 − 337. (in Chinese with English abstract)
[12] 李丽华,韩琦培,杨星,等. 稻壳灰-水泥固化淤泥土力学特性及微观机理研究[J]. 土木工程学报,2023,56(12):166 − 176. [LI Lihua,HAN Qipei,YANG Xing,et al. Mechanical properties and micro-mechanisms of RHA-cement solidified sludge[J]. China Civil Engineering Journal,2023,56(12):166 − 176. (in Chinese with English abstract)].
[13] AIKEN T A,KWASNY J,RUSSELL M,et al. Effect of partial MgO replacement on the properties of magnesium oxychloride cement[J]. Cement and Concrete Composites,2022,134:104791.
[14] 牛鹏尧,庄建琦,贾珂程,等. 聚丙烯酸钠混合剂固化黄土特性研究[J]. 工程地质学报,2022,30(4):1028 − 1035. [NIU Pengyao,ZHUANG Jianqi,JIA Kecheng,et al. Study on properties of loess solidified by polyacrylate sodium[J]. Journal of Engineering Geology,2022,30(4):1028 − 1035. (in Chinese with English abstract)]
NIU Pengyao, ZHUANG Jianqi, JIA Kecheng, et al. Study on properties of loess solidified by polyacrylate sodium[J]. Journal of Engineering Geology, 2022, 30(4): 1028 − 1035. (in Chinese with English abstract)
[15] Han J. Principles and practice of ground improvement[M]. New York:John Wiley & Sons,2015.
[16] 姚宝宽,刘聪,李全军,等. 真空井点降水,挤密砂桩联合浅层强夯在软基处理中的应用[J]. 地基处理,2021,3(2):118 − 125. [YAO Baokuan,LIU Cong,LI Quanjun,et al. Application of vacuum well point dewatering and sand compaction pile combined with dynamic compaction method in soft foundation treatment[J]. Journal of Ground Improvement,2021,3(2):118 − 125. (in Chinese with English abstract)]
YAO Baokuan, LIU Cong, LI Quanjun, et al. Application of vacuum well point dewatering and sand compaction pile combined with dynamic compaction method in soft foundation treatment[J]. Journal of Ground Improvement, 2021, 3(2): 118 − 125. (in Chinese with English abstract)
[17] 雷鸣,王星华,唐依民. 基于孔压实测资料的真空预压机理及沉降计算探讨[J]. 水文地质工程地质,2010,37(6):81 − 85. [LEI Ming,WANG Xinghua,TANG Yimin. Discussion of the mechanism of vacuum preloading and settlement calculation based on measured values of pore water pressure[J]. Hydrogeology & Engineering Geology,2010,37(6):81 − 85. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-3665.2010.06.016
LEI Ming, WANG Xinghua, TANG Yimin. Discussion of the mechanism of vacuum preloading and settlement calculation based on measured values of pore water pressure[J]. Hydrogeology & Engineering Geology, 2010, 37(6): 81 − 85. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2010.06.016
[18] 刘景锦,雷华阳,卢海滨,等. 真空预压法淤堵泥层形成机理及预测模型研究[J]. 水文地质工程地质,2017,44(3):61 − 71. [LIU Jingjin,LEI Huayang,LU Haibin,et al. A study of siltation mud formation mechanism and prediction model of vacuum preloading method[J]. Hydrogeology & Engineering Geology,2017,44(3):61 − 71. (in Chinese with English abstract)]
LIU Jingjin, LEI Huayang, LU Haibin, et al. A study of siltation mud formation mechanism and prediction model of vacuum preloading method[J]. Hydrogeology & Engineering Geology, 2017, 44(3): 61 − 71. (in Chinese with English abstract)
[19] 杨爱武, 杨少朋, 齐杰杰. 吹填软土UU三轴剪切应力松弛特性试验研究[J]. 煤田地质与勘探,2022,50(10):76 − 84. [YANG Aiwu, YANG Shaopeng, QI Jiejie. Experimental study on stress relaxation characteristics of soft dredger fill under UU triaxial shear[J]. Coal Geology & Exploration,2022,50(10):76 − 84. (in Chinese with English abstract)]
YANG Aiwu, YANG Shaopeng, QI Jiejie. Experimental study on stress relaxation characteristics of soft dredger fill under UU triaxial shear[J]. Coal Geology & Exploration, 2022, 50(10): 76 − 84. (in Chinese with English abstract)
[20] 袁帅,王君,吴朝峰,等. 虹吸排水法处理软土地基的水位与沉降计算模型[J]. 吉林大学学报(地球科学版),2024,54(1):208 − 218. [YUAN Shuai,WANG Jun,WU Zhaofeng,et al. Calculation model for water level and settlement of soft foundation treated by siphon drainage[J]. Journal of Jilin University (Earth Science Edition),2024,54(1):208 − 218. (in Chinese with English abstract)]
YUAN Shuai, WANG Jun, WU Zhaofeng, et al. Calculation model for water level and settlement of soft foundation treated by siphon drainage[J]. Journal of Jilin University (Earth Science Edition), 2024, 54(1): 208 − 218. (in Chinese with English abstract)
[21] 李富春,张璟泓,周红星,等. 粉粒及黏粒含量对强夯加固粉细砂土层效果的影响[J]. 人民长江,2022,53(8): 186 − 191. [LI Fuchun,ZHANG Jinghong,ZHOU Hongxing,et al. Study on influence of silt particle and clay particle on dynamic compaction effect of silty fine sand[J]. Yangtze River,2022,53(8): 186 − 191.(in Chinese with English abstract)]
LI Fuchun, ZHANG Jinghong, ZHOU Hongxing, et al. Study on influence of silt particle and clay particle on dynamic compaction effect of silty fine sand[J]. Yangtze River, 2022, 53(8): 186 − 191.(in Chinese with English abstract)
[22] 刘强,高立群,赵民,等. 强夯置换对软土基坑边坡开挖稳定性的影响研究[J]. 人民长江,2024,55(3): 226 − 233. [LIU Qiang,GAO Liqun,ZHAO Min,et al. Influence of dynamic compaction replacement on excavation stability of soft soil foundation pit[J]. Yangtze River,2024,55(3): 226 − 233. (in Chinese with English abstract)]
LIU Qiang, GAO Liqun, ZHAO Min, et al. Influence of dynamic compaction replacement on excavation stability of soft soil foundation pit[J]. Yangtze River, 2024, 55(3): 226 − 233. (in Chinese with English abstract)
[23] GHORBANI J,NAZEM M,CARTER J P. Dynamic compaction of clays:Numerical study based on the mechanics of unsaturated soils[J]. International Journal of Geomechanics,2020,20(10):1943 − 5622.
[24] 董炳寅,水伟厚,秦劭杰. 中国强夯 40 年之技术创新[J]. 地基处理,2022,4(1):1 − 16. [DONG Bingyin,SHUI Weihou,QIN Shaojie,et al. Technological innovation of dynamic compaction in China for forty years[J]. Journal of Ground Improvement,2022,4(1):1 − 16. (in Chinese with English abstract)]
DONG Bingyin, SHUI Weihou, QIN Shaojie, et al. Technological innovation of dynamic compaction in China for forty years[J]. Journal of Ground Improvement, 2022, 4(1): 1 − 16. (in Chinese with English abstract)
[25] 刘嘉,罗彦,张功新,等. 井点降水联合强夯法加固饱和淤泥质地基的试验研究[J]. 岩石力学与工程学报,2009,28(11),2222 − 2227. [LIU Jia,LUO Yan,ZHANG Gongxin,et al. Experimental research on saturated mucky foundation treatment with well-point dewatering combined with dynamic compaction method[J]. Chinese Journal of Rock Mechanics and Engineering. 2009,28(11),2222 − 2227. (in Chinese with English abstract)]
LIU Jia, LUO Yan, ZHANG Gongxin, et al. Experimental research on saturated mucky foundation treatment with well-point dewatering combined with dynamic compaction method[J]. Chinese Journal of Rock Mechanics and Engineering. 2009, 28(11), 2222 − 2227. (in Chinese with English abstract)
[26] GHASSEMI A,PAK A,SHAHIR H. Numerical study of the coupled hydro-mechanical effects in dynamic compaction of saturated granular soils[J]. Computers and Geotechnics,2010,37(1/2):10 − 24. doi: 10.1016/j.compgeo.2009.06.009
[27] 孙文怀,杨志刚,杜小川. 增湿高能级强夯法处理湿陷性黄土地基的研究[J]. 水文地质工程地质,2012,39(2):74 − 78. [SUN Wenhuai,YANG Zhigang,DU Xiaochuan. Research on the treatment of collapsible loess foundation using high-energy level dynamic compaction method with increased humidity[J]. Hydrogeology & Engineering Geology,2012,39(2):74 − 78. (in Chinese with English abstract)]
SUN Wenhuai, YANG Zhigang, DU Xiaochuan. Research on the treatment of collapsible loess foundation using high-energy level dynamic compaction method with increased humidity[J]. Hydrogeology & Engineering Geology, 2012, 39(2): 74 − 78. (in Chinese with English abstract)
[28] 黄涛,张西华,曹江英,等. 强夯法控制高填方变形的离心模型试验[J]. 水文地质工程地质,2007,34(4):121 − 125. [HUANG Tao,ZHANG Xihua,CAO Jiangying,et al. Centrifugal model test for controlling high fill deformation using dynamic compaction method[J]. Hydrogeological & Engineering Geology,2007,34(4):121 − 125. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-3665.2007.04.028
HUANG Tao, ZHANG Xihua, CAO Jiangying, et al. Centrifugal model test for controlling high fill deformation using dynamic compaction method[J]. Hydrogeological & Engineering Geology, 2007, 34(4): 121 − 125. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2007.04.028
[29] 周健,曹宇,贾敏才,等. 强夯-降水联合加固饱和软粘土地基试验研究[J]. 岩土力学,2003,24(3):376 − 380. [ZHOU Jian,CAO Yu,JIA Mincai,et al. In-situ test study on soft soils improvement by the DCM combined with dewatering[J]. Rock and soil mechanics. 2003,24(3):376 − 380. (in Chinese with English abstract)]
ZHOU Jian, CAO Yu, JIA Mincai, et al. In-situ test study on soft soils improvement by the DCM combined with dewatering[J]. Rock and soil mechanics. 2003, 24(3): 376 − 380. (in Chinese with English abstract)
[30] 张军舰,李鹏,殷坤宇,等. 基于接力排水的强夯法在滨海回填区地基处理中的试验研究[J]. 水文地质工程地质,2022,49(1):117 − 125. [ZHANG Junjian,LI Peng,YIN Kunyu,et al. An experimental study of the dynamic compaction method based on relay drainage in foundation treatment of the coastal backfill area[J]. Hydrogeology & Engineering Geology,2022,49(1):117 − 125. (in Chinese with English abstract)]
ZHANG Junjian, LI Peng, YIN Kunyu, et al. An experimental study of the dynamic compaction method based on relay drainage in foundation treatment of the coastal backfill area[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 117 − 125. (in Chinese with English abstract)
[31] 杜健,刘红玫,张豫川. 夯扩挤密法室内模型试验研究[J]. 水文地质工程地质,2016,43(5):81 − 86. [DU Jian,LIU Hongmei,ZHANG Yuchuan. 2016. Model tests on down hole deep compaction pile [J]. Hydrogeology & Engineering Geology,43(5):81 − 86. (in Chinese with English abstract)]
DU Jian, LIU Hongmei, ZHANG Yuchuan. 2016. Model tests on down hole deep compaction pile [J]. Hydrogeology & Engineering Geology, 43(5): 81 − 86. (in Chinese with English abstract)
[32] MAYNE P W,JONES JR J S,DUMAS J C. Ground response to dynamic compaction[J]. Journal of Geotechnical Engineering,1984,110(6):757 − 774. doi: 10.1061/(ASCE)0733-9410(1984)110:6(757)
-